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1. Introduction  
 

Concrete made by using Portland cement (PC) is the 

most widely used material in the construction sector 

accounting for about 30% of all materials on the planet and 

70% of all materials in the built environment. The 

production of cement clinker is highly expensive and 

harmful in view of ecologically and environmentally due to 

hazardous emissions of CO2, NOx and SOx, which are the 

significant contributors to the “greenhouse gas (GHG) 

effect”. To reduce greenhouse effect, various supplementary 

cementitious materials, such as ground granulated blast 

furnace slag (GGBS), fly ash and silica fume are commonly 

used in concrete. These supplementary cementitious 

materials not only reduce the greenhouse effect but also 

improve durability, reduce porosity and improve the 

interface with the aggregate. While using the supplementary 

cementitious materials certain aspects such as economics 

(lower cement requirement), energy, and environmental 

considerations are to be studied for better engineering and 

performance properties. The lower cement requirement for 

preparation of concrete leads to a reduction of CO 2 

(Badogiannis et al. 2004, Roy et al. 2001, Ferraris et al. 

2001; Chan and Wu, 2000). The inclusion of mineral 

admixture such as GGBS has been recognized to improve 

certain concrete properties. In comparison to Ordinary  
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Portland Cement (OPC), the production of GGBS requires 

less energy and it produces less greenhouse gases. GGBS is 

a by-product in the manufacture of pig iron and the amounts 

of iron and slag obtained are of the same order. The slag 

contains lime, silica, and alumina, the same oxides that 

required for Portland cement, but in different proportion 

(Sha and Pereira 2001, Domone and Soutsos 1995). 

The composition of blast-furnace slag is typically, 

silicon, calcium, aluminum, magnesium, and oxygen, hence 

a GGBS-blended concrete is a more environmentally 

friendly concrete compared to an OPC concrete. A GGBS-

blended concrete paste found to improve fluidity and 

reduction of bleeding (Gao et al. 2005). It is well 

documented on the aspects related to mechanical properties 

of GGBS-blended concrete (Gopalkrishnan et al. 2001, 

Rols et al. 1999, Megat et al. 1999, Binici et al. 2007). 

Vejmelkova et al. (2009) mentioned that GGBS-blended 

concrete with 10% replacement of cement by GGBS 

(specific surface area of 360 m2/kg) exhibited a 20% 

reduction in the open porosity measured by water vacuum 

saturation method and mercury intrusion porosimetry 

compared to OPC concrete. Several investigations were 

carried out on the effect of GGBS in numerous ways, 

namely, workability of concrete (Megat et al. 2011), 

compressive strength (Guneyisi and Gesoglu 2008, Oner 

and Akyuz 2007, Erdogan et al. 2016, Chidiac and Panesar 

2008, Yazici 2007), durability properties (Teng et al. 2013 

Chidiac and Panesar 2008). 

In view of difficulty in conducting experiments everal 

times and to reduce time and effort, analytical models will 

be useful to predict the mechanical properties. There are 

several advanced statistical models, namely, Artificial 
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Abstract.  Ground granulated blast furnace slag (GGBS) is a by product obtained from iron and steel industries, useful in the 

design and development of high quality cement paste/mortar and concrete. This paper investigates the applicability of relevance 

vector machine (RVM) based regression model to predict the compressive strength of various GGBS based concrete mixes. 

Compressive strength data for various GGBS based concrete mixes has been obtained by considering the effect of water binder 

ratio and steel fibres. RVM is a machine learning technique which employs Bayesian inference to obtain parsimonious solutions 

for regression and classification. The RVM is an extension of support vector machine which couples probabilistic classification 

and regression. RVM is established based on a Bayesian formulation of a linear model with an appropriate prior that results in a 

sparse representation. Compressive strength model has been developed by using MATLAB software for training and prediction. 

About 70% of the data has been used for development of RVM model and 30% of the data is used for validation. The predicted 

compressive strength for GGBS based concrete mixes is found to be in very good agreement with those of the corresponding 

experimental observations. 
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Neural Network, Gaussian regression process, least squares 

support vector machine, relevance vector machine, extreme 

learning machine and multivariate adaptive regression 

splines to predict the response of the structural components 

or mechanical and durability properties of concrete mixes 

(Yuvaraj et al. 2013a, 2013b, 2014a, 2014b, Shantaram et 

al. 2014, Vishal et al. 2014, Susom Dutta et al. 2017, 

Jaideep Kaur et al. 2017, Erdem 2017, Engin et al. 2015, 

Mansouri et al. 2016). In the present investigation, it is 

proposed to employ relevance vector machine to predict the 

compressive strength of various GGBS based concrete 

mixes. 

Relevance vector machine was initially proposed by 

Tipping (2001) which was developed based on support 

vector machine (SVM). In SVM, the target function 

minimizes a measure of error on the training set data and 

simultaneously maximizes the ‘margin’ between the two 

classes (in the feature space implicitly defined by the 

kernel). This found to be an effective mechanism to avoid 

over fitting (Tipping 2001). Though there are good 

predictions obtained from SVM, it was found that there are 

several limitations and demerits (Tipping 2000, Caesarendra 

et al. 2009). RVM is a special case of a sparse kernel model, 

which consists of a Bayesian treatment of a generalized 

linear model of identical functional form as in the case of 

support vector machine (SVM). RVM differs from SVM in 

the case of solution, which is based on probabilistic 

interpretation of its output (Wei et al. 2005). RVM evades 

the complexity by producing simple models that have both 

a structure and a parameterization process together in 

relation to the data type. RVM is a probabilistic based 

approach, introduces a prior over the model weights 

governed by a set of hyperparameters associated with each 

weight, whose most probable values are interactively 

estimated from the data. The important feature of RVM is 

that it requires less kernel functions. RVM based regression 

and classifications are popular in many fields (Dawei et al. 

2002, Wei et al. 2005, Sarat Kumar Das and Pijush Samui 

2008, Achmad et al. 2009, Xiaodong Wanga et al. 2009, 

Kefei Liu and Zhisheng Xu 2011, Yuvaraj et al. 2014b). 

From the above literature, it was found that RVM based 

models for prediction of data in the field of structural 

engineering is limited. Authors were carried out several 

experimental studies to evaluate various mechanical 

properties of different GGBS based concrete mixes. In the 

present study, compressive strength values for various 

GGBS based mixes are predicted by developing a 

regression model based on relevance vector machine 

approach.  

 
 

2. Compressive strength of various CGBS based 

concrete mixes 
 

For various GGBS based concrete mixes, compressive 

strength data obtained from experiments for 28 days, 90 

days and 180 days are compiled and the data is presented in 

Table 1(b).  Compressive strength is compiled against 

water to binder ratio, % of cement replacement by GGBS, 

% of steel fibres and cement quantity. The compressive 

strength of various mixes was obtained by testing a cube of  

Table 1(a) Physical and Chemical Properties of Cement and 

GGBS 

Parameter Cement GGBS 

Specific gravity (g/cm3) 3.13 2.88 

Specific surface (cm2/g) 3513 4250 

Fineness (retained on 90µm sieve) 

Fineness (retained on 45µm sieve) 

9% 

----- 

--- 

4% 

Consistency 28%  

Initial setting time (min) 

Final setting time (min) 

100 

312 
 

Soundness test/expansion of cement 

(mm) 
1  

SiO2 

Al2O3 

Fe2O3 

CaO 

Na2O 

MgO 

K2O 

SO3 

20.48 

5.44 

2.71 

64.30 

0.21 

1.72 

0.42 

1.94 

32.51 

14.37 

0.15 

43.98 

0.31 

5.17 

0.26 

3.03 

 

Table 1(b) Compressive strength of various GGBS based 

concrete mixes 

GGBS concrete mix input Output 

% of cement 

replacement by 

GGBS 

% steel 

fibres 

Water to 

binder 

ratio 

Cement 

quantity 
Compressive strength, MPa 

kg/m3 28 days 90 days 180 days 

0  0.4 350 44.5 46.32 48.46 

20  0.4 350 52.66 60.56 62.14 

40  0.4 350 50.33 59.39 61.86 

60  0.4 350 46.33 57.68 60.69 

80  0.4 350 37.16 47.75 49.65 

0  0.5 350 49.33 51.55 53.77 

20  0.5 350 50.16 57.58 58.94 

40  0.5 350 49.66 59.1 61.08 

60  0.5 350 46.81 57.62 60.38 

80  0.5 350 25.5 32.64 34.17 

0 0.5 0.5 350 53.28   

20 0.5  350 55.63   

40 0.5  350 54.74   

60 0.5  350 50.52   

80 0.5  350 27.85   

0  0.3 400 69.6 72.61 75.52 

20  0.3 400 74.26 86.88 87.26 

40  0.3 400 71.42 84.96 87.85 

50  0.3 400 68.42 83.26 86.89 

60  0.3 400 65.46 81.56 85.10 

80  0.3 400 64.00 80.32 83.20 

0  0.4 400 45.30 47.22 49.23 

20  0.4 400 48.20 55.04 56.35 

40  0.4 400 47.66 56.72 58.48 

50  0.4 400 43.58 52.95 54.04 

60  0.4 400 40.96 50.79 53.25 

80  0.4 400 38.62 49.05 51.56 
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Table 1(b) Continued 

0  0.5 400 42.86 44.83 46.76 

20  0.5 400 44.50 50.73 52.29 

40  0.5 400 43.00 50.91 52.68 

50  0.5 400 38.48 46.91 49.25 

60  0.5 400 37.00 45.88 48.29 

80  0.5 400 33.40 42.42 44.42 

0  0.5 400 45.98   

20 0.5  400 48.65   

40 0.5  400 46.87   

50 0.5  400 43.21   

60 0.5  400 40.11   

80 0.5  400 35.24   

0  0.3 450 71.61 75.19 77.67 

20  0.3 450 77.00 88.17 89.32 

40  0.3 450 74.65 87.71 91.07 

50  0.3 450 69.01 84.19 85.57 

60  0.3 450 65.56 81.62 83.92 

80  0.3 450 59.52 71.42 76.78 

0  0.4 450 46.60 48.88 50.65 

20  0.4 450 54.62 61.72 63.91 

40  0.4 450 49.12 58.45 60.42 

50  0.4 450 45.20 55.14 57.86 

60  0.4 450 43.50 53.94 56.12 

80  0.4 450 37.56 47.70 48.83 

0 0.5 0.4 450 49.56   

20 0.5  450 56.92   

40 0.5  450 53.28   

50 0.5  450 47.34   

60 0.5  450 45.04   

80 0.5  450 40.56   

0  0.5 450 43.83 45.96 47.39 

20  0.5 450 45.62 52.01 53.38 

40  0.5 450 44.36 52.34 54.56 

50  0.5 450 42.12 51.39 53.07 

60  0.5 450 39.10 48.09 50.44 

80  0.5 450 34.50 43.82 45.89 

0  0.3 500 76.28 80.25 82.96 

20  0.3 500 81.82 92.46 96.55 

40  0.3 500 77.80 92.19 94.92 

50  0.3 500 69.25 88.29 88.64 

60  0.3 500 66.80 82.83 86.84 

80  0.3 500 60.24 76.50 80.12 

0 0.5 0.3 500 79.42   

20 0.5  500 87.69   

40 0.5  500 83.37   

50 0.5  500 71.13   

60 0.5  500 69.09   

80 0.5  500 64.07   

Table 1(b) Continued 

0  0.4 500 51.33 53.67 55.93 

20  0.4 500 58.92 66.58 68.94 

40  0.4 500 52.62 62.35 64.66 

50  0.4 500 48.63 59.33 61.03 

60  0.4 500 45.26 56.30 58.82 

80  0.4 500 41.42 52.60 55.38 

0  0.5 500 49.30 51.56 53.15 

20  0.5 500 51.60 56.28 60.77 

40  0.5 500 50.61 60.00 62.05 

50  0.5 500 47.95 58.93 61.18 

60  0.5 500 42.05 52.35 54.45 

 

 

size 100 mm. The properties of steel fibres are: (i) hooked 

end steel fiber (ii) fiber length = 30 mm (iii) fiber diameter 

= 0.5 mm (iv) aspect ratio = 60 (v) tensile strength = 1100 

MPa (vi) Young’s modulus = 2×105 MPa (v) density = 7800 

kg/m3. The physical and chemical properties of cement and 

GGBS are shown in Table 1(a). 

 

 

 

3. Relevance vector machine  
 

This section provides a brief description about RVM. 

Full details about model can be found in Tipping (2000, 

2001). RVM is an extension of support vector machine 

which employs Bayesian model and kernel function 

(Tipping 2001). The key feature of RVM is that it offers a 

generalized performance and the inferred predictors are 

exceedingly sparse wherein they contain relatively few 

‘‘relevance vectors”.    

As mentioned earlier, RVM starts with the base of linear 

models, i.e., the function of y(x) to be predicted at some 

arbitrary point x given a set of (typically noisy) 

measurements of the function t=(t1, y, tN) and with some 

training points x=(x1,y, xN) 

( ) iii εxyt +=  (1) 

Where, i is the noise component of the measurement 

with mean 0 and variance σ2. With a linear model 

assumption, the unknown function y(x) can be written as a 

linear combination of some known basis function i.e., 

(x)φwy(x) i

M

1i

i
=

=  (2) 

where, wi=(w1,…,wM) =  a vector consisting of the linear 

combination weights 

y(x) = the output which is a linearly-weighted sum of 

M, generally nonlinear and fixed basis functions 

( ) ( ) ( )( )TM21i xφ...,,.........xφ,xφ(x)φ = . 

The details of analysis of function as shown in equation 

2 are available in Tipping (2001). To arrive at good 

predictions, during the development of model, the majority 
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of parameters are default set to zero (Tipping 2000, 2001). 

εΦwt +=  (3) 

where,   = NxM design matrix, whose ith column is 

formed with the values of basis function  i(x) at all the 

training points 

i = (1,…, N), the noise vector. 

As a supervised learning, RVM starts with a set of data 

input   1x
N
nn =  and their corresponding target vector

  1t
N
nn = .  

The basic aim of the ‘training’ set is to learn a model of 

the dependency of the target vectors on the inputs to make 

accurate prediction of t for previously unseen value of x.   

For the case of SVM, the prediction is made by 

assuming the function of the form given below 

( ) ( ) 0i

N

1i

i wxx,Kwxy +=
=

 (4) 

where, wi= w1, w2,…, wN, weight vector 

K(x, xi) = a kernel function and w0 is the bias 

Radial basis kernel function is used in the present study 

and the related equation is given below 

( )
( ) ( )











 −−
−=

2

i

T

i
i

2σ

xxxx
expx,xK

 

(5) 

where, xi and x = the training and test patterns, respectively. 

d = a dimension of the input vector, σ = width of the basis 

function. 

For a given input dataset, it is assumed as

  1t,x
N
nnn =  . Further, it is assumed that p (t|x) is 

Gaussian N (t|y(x), σ2). The mean of this distribution for a 

given x is modelled by y(x) as mentioned in Eq. (4).The 

likelihood of dataset can be expressed as 

( )









−−

=
−

2

2

2/22

2

1

exp2),(

wt

wtp
N




 (6) 

Where, ( )TN1i t...,tt = , ( )N0i ω,...,ωω =  and  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

















=

nn2n1n

n22212

n12111

T

x,xKx,xKx,xK1

x,xKx,xKx,xK1

x,xKx,xKx,xK1

Φ









  

Where, ( )ni x,xK  is the kernel function 

New higher-level parameters are generally preferred to 

constrain an explicit zero-mean Gaussian prior probability 

distribution to the weights 

( ) ( )
=

−=
N

0i

1
ii ,0wNwp  (7a) 

where α is a vector of (N+1) hyperparameters, controls the 

deviation of weight (Caesarendra 2010). By using Bayes’ 

rule, the posterior all unknowns can be computed, given the 

defined non-informative prior-distributions. To complete 

the specification of the prior-distribution, hyperpriors are to 

be defined for α and noise variance σ2. These quantities are 

typical scale parameters and suitable prior are Gamma 

Distributions (Tipping 2000) 

( ) ( ),b,aGammap
N

0i

i
=

=

 

(7b) 

( ) ( )
=

=
N

0i

d,cGammap

 

(7c) 

Where, β = σ-2 .  

Hence, for α and σ, the distribution is gamma 

distribution and for w, it is normal distribution and after the 

prior-distributions, Bayes rule is followed.  

( ) ( )
)t(p

,,wp,,wtp
t,,wp

22
2 

=




   (8a) 

The predictive distribution for a new test point (X*) 

corresponding to target (t*) is given below 

( ) ( ) ( ) 222

** dσ dα dwtσα,w,pσα,w,tpttp =  (8b) 

The above equation is solved by decomposition of 

posterior, which is given below 

( ) 




 =





  t,p,,twpt,,wp 222

 (9) 

The posterior distribution has been analysed by 

considering the appropriate weights due to the property of 

normalization integral is convolution of gaussians (Tipping 

2000). Accordingly, the equation 9 has been modified as  

( ) ( ) ( )

),t(p

,wp,wtp
,,twp

2

2
2




=  (10) 

By using the Bayes rule, the above equation can be 

modified as  

( )

( ) ( )








−−−

=

−

−+−





ww

twp

T

N

1

2/12/)1(2

2

1
exp

)2(,,
 

(11) 

The solution for the above equation is given below.  

( ) 1T2 A
−− +=  (12) 

tT2 = −
 (13) 

Where, ∑ = covariance, µ = mean, A = (α0, α1… αN).  
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Maximization of 

( ) ( )

( ) ( )2

22 ,,

n

nn

pp

ypyp









 

with respect to a α and σ2. 

yields a search for the hyperparameters posterior 

For the case of uniform hyperpriors, maximization is to 

be done for the term ( )2

n
,yp


 , as described below. 

( ) ( )

( )dwαwp

αw,ypαα,yp 22

nn   =
 

( )














 +−

+=

−
−



−


−

yAIy
2

1
exp

AI2

1
T12T

2/1
T122/1

n

n
 

(14) 

Determination of hyperparameters can be done by using 

an iterative formula, namely, a gradient ascent on the 

objective function (Tipping 2000, Ghosh and Mujumdar 

2008). Predictions for a new data are then made by 

performing integration of the weights to arrive at the 

marginal likelihood for the hyperparameters. The 

predictions are made based on the posterior distribution 

over the weights, conditioned on the maximized most 

probable values of α and 
MP

2 α,σ
n

 and 
2

MPσ  

respectively. 

( )

( ) ( )dwσ,αy,wp σw,yp

σ,αy,yp

2

MPMP

2

MP

2

MPMP*

*

=
 (15) 

This can readily be evaluated as  

( ) ( )2

*

2

MPMP σ,tyNσ,αy,yp
***

=  (16) 

( )*

T

* xΦμt =  (17) 

With 

( ) ( )*

T

*

2

MP

2

* xΦxΦσσ +=  (18) 

the result of the optimization involved in RVM  (i.e., max 

of ( )2

n
,yp


 ), is that many of α tend to infinity such 

that 'w' will have only a few nonzero weights that can be 

considered as relevant vectors (Ghosh and  Mujumdar, 

2008). The relevant vectors (RVs) can be viewed as 

counterparts of support vectors (SVs) in SVM. Hence, the 

developed model contains the benefits of SVM (sparsity 

and generalization) and in addition, provides estimates of 

uncertainty bounds in the predictions (Ghosh and  

Mujumdar 2008). 
 

3.1 RVM Based analysis 
 

For prediction of the compressive strength of various  

Table 2 Training data set of various GGBS based concrete 

mixes 

GGBS concrete mix input Output 

% of cement 

replacement by 

GGBS 

% steel 

fibres 

Water to 

binder 

ratio 

Cement 

quantity 
Compressive strength, MPa 

kg/m3 28 days 90 days 180 days 

0  0.4 350 44.5 46.32 48.46 

20  0.4 350 52.66 60.56 62.14 

60  0.4 350 46.33 57.68 60.69 

0  0.5 350 49.33 51.55 53.77 

20  0.5 350 50.16 57.58 58.94 

40  0.5 350 49.66 59.1 61.08 

80  0.5 350 25.5 32.64 34.17 

0 0.5 0.5 350 53.28   

20 0.5 0.5 350 55.63   

60 0.5 0.5 350 50.52   

80 0.5 0.5 350 27.85   

0  0.3 400 69.6 72.61 75.52 

40  0.3 400 71.42 84.96 87.85 

80  0.3 400 64.00 80.32 83.20 

0  0.4 400 45.30 47.22 49.23 

20  0.4 400 48.20 55.04 56.35 

40  0.4 400 47.66 56.72 58.48 

80  0.4 400 38.62 49.05 51.56 

0  0.5 400 42.86 44.83 46.76 

50  0.5 400 38.48 46.91 49.25 

80  0.5 400 33.40 42.42 44.42 

0  0.5 400 45.98   

20 0.5 0.5 400 48.65   

40 0.5 0.5 400 46.87   

80 0.5 0.5 400 35.24   

0  0.3 450 71.61 75.19 77.67 

20  0.3 450 77.00 88.17 89.32 

50  0.3 450 69.01 84.19 85.57 

80  0.3 450 59.52 71.42 76.78 

0  0.4 450 46.60 48.88 50.65 

20  0.4 450 54.62 61.72 63.91 

50  0.4 450 45.20 55.14 57.86 

80  0.4 450 37.56 47.70 48.83 

0 0.5 0.4 450 49.56   

20 0.5 0.4 450 56.92   

40 0.5 0.4 450 53.28   

50 0.5 0.4 450 47.34   

80 0.5 0.4 450 40.56   

0  0.5 450 43.83 45.96 47.39 

20  0.5 450 45.62 52.01 53.38 

50  0.5 450 42.12 51.39 53.07 

60  0.5 450 39.10 48.09 50.44 

80  0.5 450 34.50 43.82 45.89 

0  0.3 500 76.28 80.25 82.96 
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Table 2 Continued 

40  0.3 500 77.80 92.19 94.92 

50  0.3 500 69.25 88.29 88.64 

60  0.3 500 66.80 82.83 86.84 

0 0.5 0.3 500 79.42   

20 0.5 0.3 500 87.69   

40 0.5 0.3 500 83.37   

60 0.5 0.3 500 69.09   

80 0.5 0.3 500 64.07   

0  0.4 500 51.33 53.67 55.93 

20  0.4 500 58.92 66.58 68.94 

50  0.4 500 48.63 59.33 61.03 

80  0.4 500 41.42 52.60 55.38 

0  0.5 500 49.30 51.56 53.15 

40  0.5 500 50.61 60.00 62.05 

80  0.5 500 38.56 49.67 51.28 

 

 

GGBS based concrete mixes, RVM model has been 

developed. From the experimental studies (Table 2), it can 

be noted that the compressive strength is influenced by the 

water binder ratio and water cement ratio. These two 

parameters from the input vector and it can also be noted 

that the input vector has different quantitative limit as 

shown in Table 2. Hence, a normalization of the data has 

been performed before presenting the input patterns to 

statistical machine learning algorithm. MALAB software 

has been used for development of model. Thus, equation 19 

has been used for the linear normalization of the data to the 

data values between 0 and 1. 

minmax

min

ii

i

a

in

i
xx

xx
x

−

−
=

 
(19) 

where, 

a

ix
and 

n

ix
  are ith components of the input 

vector before and after normalization, respectively,  

max

ix
and 

min

ix
are the maximum and minimum 

values of all the components of the input vector before 

normalization.  

 

3.1.1 Development of RVM model  
Compressive strength data of about 86 for various 

GGBS based concrete mixes were tabulated for 

development of model. About 70 % of data set is used for 

the development of RVM model and about 30% of the data 

set is used for testing and verification of the developed 

model. Testing and verification of the model is done by 

comparing the experimental compressive strength with the 

predicted compressive strength by using the developed 

RVM model. From the literature, it was observed that the 

important aspect of development of RVM model is the 

selection of kernel width which was determined by using 

post modelling analysis (Wahyu et al. 2010). Post- 

 

Fig. 1 Schematic diagram-development of RVM models 

 

Table 3 Performance of developed RVM models 

Parameters 

Coefficient of correlation (R) 

width 

(σ) 

No. of 

RVs 

used 

out of 

total 59 

dataset 

No of 

RVs (% 

of 

training 

data set) 
Training Testing 

Model I (Comp. Strength at 28 days) 0.994 0.992 0.13 36 62.06 

Model I (Comp. Strength at 90 days) 0.984 0.982 0.13 28 56.06 

Model I (Comp. Strength at 180 days) 0.996 0.990 0.13 28 56.06 

 

Table 4(a) Values of weights (wi) for RVM models (for 

compressive strength at 28 days) 

i =1,2…59 wi i =1,2…59 wi 

1 0 30 0.02 

2 0.062 31 0.001 

3 0 32 0.013 

4 0 33 0.0512 

5 0 34 0.0612 

6 0.035 35 0.0045 

7 0 36 0.0185 

8 0.125 37 0.02 

9 0 38 0.051 

10 0.170 39 0.0782 

11 0.131 40 0.03 

12 0.058 41 0.012 

13 0.0543 42 0.0234 

14 0.095 43 0.034 

15 0.121 44 0.098 

16 0.106 45 0.0421 

17 0.112 46 0.002 

18 0 47 0 

19 0.101 48 0.003 

20 0.0321 49 0.005 

21 0.012 50 0.002 

22 0.02 51 0.031 

23 0.063 52 0.046 

24 0.012 53 0.012 

25 0.02 54 0.06 

26 0 55 0.04 

27 0.1331 56 0.0233 

28 0.0134 57 0.014 

29 0.0083 58 0.0231 

  59 0.0543 
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Table 4(b) Values of weights (wi) for RVM models (for 

compressive strength at 90 days) 

i =1,2…59 wi i =1,2…59 wi 

1 0 30 0.013 

2 0.032 31 0.0011 

3 0 32 0 

4 0 33 0 

5 0 34 0 

6 0.024 35 0 

7 0 36 0 

8 0 37 0.01 

9 0 38 0.012 

10 0.112 39 0.0122 

11 0.151 40 0.014 

12 0.023 41 0.01 

13 0.0543 42 0.0112 

14 0.002 43 0.012 

15 0.001 44 0.043 

16 0.121 45 0.0311 

17 0.102 46 0 

18 0.03 47 0 

19 0.01 48 0 

20 0.0141 49 0 

21 0 50 0 

22 0 51 0.021 

23 0 52 0.032 

24 0 53 0.011 

25 0.013 54 0.012 

26 0.012 55 0.024 

27 0.1031 56 0.012 

28 0.0121 57 0.0132 

29 0.0021 58 0.0121 

  59 0.010 

 

 

modelling analysis of the training and testing R values is 

associated with the number of relevance vectors (NRV) 

involved in the model and their corresponding weights & 

variation in the kernel width. The value of σ is assumed 

initially as 0.13 and for the assumed valued of σ, the model 

has been developed. Fig. 1 shows the schematic diagram of 

RVM model. The developed model gives the NRVs used 

and their corresponding weights (wi). The quality of the 

developed model is evaluated based on the coefficient of 

correlation (R), which is given below. 

( )( )
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Table 4(c) Values of weights (wi) for RVM models (for 

compressive strength at 180 days) 

i =1,2…59 wi i =1,2…59 wi 

1 0 30 0.031 

2 0.045 31 0.011 

3 0 32 0 

4 0 33 0 

5 0 34 0 

6 0.0025 35 0 

7 0 36 0 

8 0 37 0.021 

9 0 38 0.054 

10 0.023 39 0.022 

11 0.0131 40 0.067 

12 0.005 41 0.023 

13 0.012 42 0.046 

14 0.043 43 0.076 

15 0.02 44 0.054 

16 0.093 45 0.0211 

17 0.032 46 0 

18 0 47 0 

19 0.02 48 0 

20 0.0321 49 0 

21 0 50 0 

22 0 51 0.087 

23 0 52 0.082 

24 0 53 0.087 

25 0.0013 54 0.06 

26 0 55 0.04 

27 0.0161 56 0.0203 

28 0.005 57 0.0104 

29 0.0062 58 0.0201 

  59 0.005 

 

 

where, Eai and Epi are the actual and predicted values, 

respectively. 

aE  and 
pE

 are mean of actual and predicted E values 

corresponding to n patterns.  In each iteration, R value is 

computed and the model is finalized when the R value is 

closer to one.  

Table 4 shows the weights for RVM model for 

compressive strength at 28 days, 90 days and 180 days 

respectively. 

It is observed that the testing R value achieved its 

maximum at kernel widths shown in Table 3 for the 

corresponding models, involving minimum number of 

relevance vectors. The training and testing R values 

obtained for models are presented in Table 3. 

By using Eqs. (14), (15) and Table 4 with wo as zero, the 

following equations have been obtained from the developed 

RVM model. 
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Fig. 2 Variance of training data set for compressive strength 

at 28 days 

 

 

Fig. 3 Variance of testing data set for compressive strength 

at 28 days 

 

 

Fig. 4(a) Predicted and experimental compressive strength 

for 28 days 
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Table 5 Predicted and experimental compressive strength 

GGBS concrete mix input Output 

% of 

cement 

replace-

ment by 

GGBS 

% steel 

fibres 

Water 

to 

binder 

ratio 

Cement 

qty. 

kg/m3 

Compressive strength, MPa 

28 days 28 days 90 days 90 days 180 days 180 days 

Exptl. RVM Exptl. RVM Exptl. RVM 

40  0.4 350 50.33 49.32 59.39 59.32 61.86 60.54 

80  0.4 350 37.16 37.56 47.75 46.98 49.65 48.92 

60  0.5 350 46.81 46.21 57.62 56.87 60.38 60.87 

40 0.5  350 54.74 55.21     

60 0.5  350 50.52 51.21     

50  0.3 400 68.42 67.87 83.26 81.32 86.89 85.32 

60  0.3 400 65.46 65.12 81.56 80.43 85.10 84.43 

50  0.4 400 43.58 43.87 52.95 52.54 54.04 53.76 

60  0.4 400 40.96 41.12 50.79 51.21 53.25 53.98 

20  0.5 400 44.50 45.11 50.73 51.03 52.29 51.54 

40  0.5 400 43.00 42.83 50.91 50.76 52.68 52.03 

60  0.5 400 37.00 37.15 45.88 46.31 48.29 49.05 

50 0.5  400 43.21 43.65     

60 0.5  400 40.11 40.43     

40  0.3 450 74.65 73.32 87.71 85.32 91.07 89.43 

60  0.3 450 65.56 64.62 81.62 80.21 83.92 81.98 

60  0.4 450 43.50 43.89 53.94 52.78 56.12 54.21 

60 0.5  450 45.04 45.13     

40  0.5 450 44.36 43.67 52.34 51.45 54.56 53.42 

20  0.3 500 81.82 80.23 92.46 90.54 96.55 93.43 

80  0.3 500 60.24 59.76 76.50 75.21 80.12 79.31 

50 0.5  500 71.13 70.56     

40  0.4 500 52.62 52.01 62.35 63.21 64.66 65.43 

60  0.4 500 45.26 44.87 56.30 56.98 58.82 59.32 

20  0.5 500 51.60 50.98 56.28 56.89 60.77 61.32 

50  0.5 500 47.95 47.32 58.93 59.32 61.18 62.34 

60  0.5 500 42.05 52.35 54.45    

 
 

The values of weights,  wi for all the training data sets 

are available in Table 4 (a-c). 

Variance for training and testing data set for the typical 

developed model are plotted and shown in Figs. 2 and 3.  

The developed RVM model has been verified with the 

remaining 27 data sets and the results are shown in Table 5. 

The normalized output vector obtained from the RVM 

model is converted back to original value by using the 

equation below. 

( ) minminmax

iii

n

i

a

i xxxxx +−=  (24) 

where, 
n

ix  is the normalized result obtained after the test 

for the ith component.  
a

ix is the actual result obtained for  ith componenet, 

and 
max

ix  and 
min

ix are the maximum and minimum 

values of all the components of the corresponding input  
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Fig. 4(b) Predicted and experimental compressive strength 

for 90 days 

 

 

Fig. 4(c) Predicted and experimental compressive strength 

for 180 days 

 

 

vector before the normalization.  

From Table 5, it can be observed that the predicted 

compressive strength for 28th, 90th and 180th day is in very 

good agreement with the corresponding experimental 

observations. Fig. 4 shows the comparison plot of predicted 

and the corresponding experimental compressive strength. 

From Table 4 and Fig. 4, it can be concluded that the 

developed model is robust and reliable.  

 

 

4. Conclusions 
 

Relevance vector machine, one of the advanced 

statistical models was developed to predict a compressive 

strength for various GGBS based concrete mixes. The input 

parameters are Cement quantity, % of cement replacement 

by GGBS, % of steel fibres, water to binder ratio. 

Compressive strength data obtained from experiments for 

various GGBS mixes has been consolidated to develop and 

validate the model. Models were developed to predict the 

compressive strength at 28th, 90th and 180th days. MATLAB 

software has been used for training and prediction of 

compressive strength. About 70% of the data has been used 

for development of model and 30% of the data is used 

validation. The predicted compressive strength for GGBS 

mixes is found to be in very good agreement with those of 

the corresponding experimental observations. The 

developed equations for prediction of compressive strength 

can be used for all practical purposes. The R value for the 

developed model is found to be closer to 1  indicating 

better predictability of the models. From the overall study, it 

can be concluded that the developed RVM model is found 

to be robust and reliable. 
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