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Abstract.

In this paper, buckling analysis of hybrid functionally graded plates using a novel four variable refined plate theory

is presented. In this theory the distribution of transverse shear deformation is parabolic across the thickness of the plate by
satisfying the surface conditions. Therefore, it is unnecessary to use a shear correction factor. The variations of properties of the
plate through the thickness are according to a symmetric sigmoid law (symmetric S-FGM). The principle virtual works is used
herein to extract equilibrium equations. The analytical solution is determined using the Navier method for a simply supported
rectangular plate subjected to axial forces. The precision of this theory is verified by comparing it with the various solutions

available in the literature.
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1. Introduction

The functionally graded materials (FGM) are an
exceptional class of composite in which the composition
and structure gradually change, causing a corresponding
change in the properties of the material. These types of
materials have attracted much attention in recent years,
caused of their advantages to reduce the disparity in
material properties and reducing the thermal stresses Zhong
and Yu (2007). The use of these material in numerous
applications (Ahmed 2014, Zidi et al. 2014, 2017, Kar et al.
2016, Akavci 2016, Ahouel et al. 2016, Aldousari 2017,
Karami et al. 2017, Bellifa et al. 2017a, Zine et al. 2018)
such as aeronautic, civil engineering, nuclear and are also
found in biomedical applications Baron and Naili (2008).
For study of the behaviour of the FG plates under
mechanical loading, many theories have been developed.
The simplest is the Kirchoff-Love theory (Classical Plate
Theory) generally used for thin plates which stipulates that
the straight lines remaining straight and perpendicular to the
mid-plane after deformation. Therefore, this theory neglects
the transverse shears effects (Fourn ez al. 2018, Shahsavari
et al. 2017, Bellifa et al. 2017b, El-Haina et al. 2017,
Klouche et al. 2017, Boukhari et al. 2016, Belkorissat et al.
2015, Tounsi et al. 2013). Several researchers used the CPT
(Classical Plate Theory) for buckling analysis of
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functionally graded plates such as Feldman and Aboudi
(1997), Javaheri and Eslami (2002), Abrate (2008). The
buckling of functionally graded plates subjected to uniform
compression was also examined by Mahdavian (2009)
using the CPT and the Fourier solution. The free vibration
of the FG plate resting on elastic foundations was studied
by Chakraverty and Pradhan (2014). Since the CPT over
predicts frequencies as well as buckling loads of moderately
thick plate (Reddy 2004), Reissner (1945) and Mindlin
(1951) have developed the first shear deformation plate
theory (FSDT) which introduce the transverse shear effect
through a linear distribution of displacements across the
thickness of the plate. Several works have been presented
using the FSDT to study the free vibration of composite and
functionally graded plates (Whitney 1969, Reddy 1979,
Praveen and Reddy 1998, Chen 2005, Kant and
Swaminathan 2001, Hosseini-Hashemi et al. 2010). The
bending of the plate under mechanical and thermal stresses
was examined by Della Croce and Venini (2004) and the
buckling of the plates was analyzed by Lanhe (2004) and
Bouazza et al. (2010). Recently, Meksi et al (2015),
Mantari and Granados (2015), Bellifa et al. (2016), Hadji et
al. (2016) proposed a new simple FSDT with only four
variables for static and vibration analysis of functionally
graded plates. Since FSDT considers a uniform distribution
of transverse shear stresses across the thickness and
predicting shear stresses at the top and bottom surface of the
plate (Al-Basyouni et al. 2015, Bouderba et al. 2016,
Shokravi 2017a, Youcef et al. 2018), it is necessary to use
the shear correction factor. To avoid the use of this factor
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and to pass through the limitations of the CPT which
neglect the shear effect and the FSDT which requires a
shear correction factor, several high order shear
deformation plate theories have been proposed such as
Levinson (1980), Bhimaraddi and Stevens (1984), Reddy
(1984), Kant and Pandya (1988), Shahrjerdi ez al. (2011),
Viswanathan et al. (2013), Nedri ef al. (2014), Ait Amar
Meziane et al. (2014). These theories (HSDTs) satisfies the
condition of the nullity of transverse shear deformations and
stresses at the top and bottom surface of the plate without
introducing a shear correction factor. The high order shear
deformation plate theory is widely used in many works such
as Mantari and Guedes Soares (2012) for static analysis of
composites, isotropic and sandwich plates, Saidi et al.
(2016) for the vibration of the rectangular functionally
graded plate on elastic foundation, Tounsi et al. (2016) for
buckling analysis and the vibration of sandwich plate.
Kolahchi and Moniri Bidgoli (2016) studied the dynamic
instability of single-walled carbon nanotubes using size-
dependent sinusoidal beam model. Arani and Kolahchi
(2016) presented buckling analysis of embedded concrete
columns armed with carbon nanotubes. Kolahchi et al.
(2016a) employed differential cubature and quadrature-
Bolotin methods for dynamic stability of embedded
piezoelectric  nanoplates based on visco-nonlocal-
piezoelasticity theories. Bilouei et al. (2016) analyzed
buckling response of concrete columns retrofitted with
Nano-Fiber Reinforced Polymer (NFRP). Kolahchi et al.
(2016b)  presented dynamic stability analysis of
temperature-dependent functionally graded CNT-reinforced
visco-plates resting on orthotropic elastomeric medium.
Kolahchi and Cheraghbak (2017) examined agglomeration
effects on the dynamic buckling of viscoelastic microplates
reinforced with SWCNTSs using Bolotin method. Zamanian
et al. (2017) investigated also agglomeration effects on the
buckling behaviour of embedded concrete columns
reinforced with SiO» nano-particles. Golabchi et al. (2018)
presented vibration and instability analysis of pipes
reinforced by SiO» nanoparticles considering agglomeration
effects. Manypapers have been publishedbased on HSDT
(Ahmed 2014, Bousahla et al. 2016, Meradjah et al. 2015,
Attia et al. 2015, Ait Atmane et al. 2015, Merazi et al. 2015,
Bakora and Tounsi 2015, Tebboune et al. 2015, Nguyen et
al. 2015, Mahi et al. 2015, Chikh et al. 2016, Eltaher et al.
2016, Bourada et al. 2016, Bounouara et al. 2016, Mouaici
et al. 2016, Beldjelili et al. 2016, Karami and Janghorban
2016, Madani et al. 2016, Kolahchi 2017, Kolahchi et al.
2017a, b, ¢, Khetir et al. 2017, Haymohammad et al. 2017,
Mouffoki et al. 2017, Sekkal et al. 2017a, Benadouda et al.
2017, Shokravi 2017b, ¢, d, Bouderba et al. 2013,
Hajmohammad ef al. 2018a, b, ¢, d, Karami ef al. 2018a, b,
¢, Bouadi ef al. 2018, Shahsavari ef al. 2018a, b, Yazid ef al.
2018, Kadari et al. 2018, Mokhtar et al. 2018). Recently,
new development of advanced materials is developed for
improving mechanical properties of structures made of
these structures (Karami et al. 2017, Karami et al. 2018d, e,
f, g, h, Heydari and Shariati 2018, Ferezghi et al. 2018,
Khelifa et al. 2018).

In this paper, the study of the stability of ceramic-FGM-
metal plates and symmetric S-FGM plates subjected to in-
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Fig. 2 Geometry of symmetric S-FGM plate

plane loads using a novel four variables refined plate theory
is presented. By employing the Navier method, the closed-
form solutions have been obtained to analyze the buckling
behaviours of plates. The variation of the critical buckling
load of the symmetric S-FGM and hybrid plates under the
effects of the material index, the thickness of FGM layer,
the geometric dimensions, modulus ratios and types of
solicitations are investigated and discussed.

2. Theoretical formulation
2.1 Modeling of functionally graded material

In this work, two types of plate are used: the first one is
hybrid (ceramic- FGM- metal) which resembles a laminated
sandwich plate. The total thickness of plate (h) is composed

of three layers (h:t0+tFGM +t,, ), a ceramic top layer (

e <t <h/2), a metal lower layer (_h/thM g_zM) and

intermediate functionally graded plate layer( - 2y Steoy < 2c

) as shown in Fig. 1.

The Young’s modulus E(z) of an FGM layer of the
functionally graded plate using the Voigt model (Gibson et
al. 1995, Abdelaziz et al. 2017, Ait Yahia ef al. 2015) are
assumed as

E(z)=EcVc +Ec(1-Vc) (1)

where E., Ej are the elastic modulus of ceramic and metal,
respectively. V.(z) is the volume fraction of the ceramic and
is expressed by a simple power low as follows

22+hjP
2h

Ve (2) =[ )

By replacing Eq. (2) in Eq. (1), the Young modulus
becomes
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Fig. 3 The variation of ceramic volume fraction along the
thickness of the functionally graded plate
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Fig. 4 The variation of ceramic volume fraction along the
thickness of symmetric S-FGM plate
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The second type of plate is symmetric S-FGM plate that
consist of three layers fabricated with functionally graded
ceramic and metal, the plate is symmetric with respect to
median axis, the plate is metallic in the mid-plane, the upper
and lower surfaces of the plate are made of ceramic (Fig. 2).

The Young’s modulus (Eq. (1)) is always retained, but
the analytical model of the volume fraction becomes

P
(z”hj for—h/2<z<0

(—22+h

Vm (2) = Ne(@)=1-Vm () (3)

P
) for 0<z<h/2

The variation of ceramic volume fraction along the
thickness of the hybrid FGM plate and Symmetric S-FGM
plate are illustrated in Figs. 3 and 4, respectively.

2.2 The displacement base field
The field displacement of the new HSDT is given as

follows (Fahsi et al. 2017, Menasria et al. 2017, Meksi et
al. 2019)

u(x,y,z,t):uo(x,y,t)—z%+k1f(z)j&(x,y,t)dx (52)

V(X,Y,2,t) =vo (X, y,t) - z% +k, f (z).[a(x, yydy (5D

(5¢)
W(X, Y, th) = WO(X, yvt)

In this research, the proposed higher-order shear
deformation plate theory (HSDT) is determined by

considering
5 57°
f(z)=2--—
@ z[ ; 3h2] ()

The non-zero strains associated with displacements in
Eq. (5) are

&| & § ks
_ 0 b s
g, r=9&, pt2yky p+ F(2) K 4, (7)
0 b
vl 7wl Ky Ky
where
6u0 _62W0
0 X 2
€ b OX
8(); = % ’ ki; a2W0 ’
oy ox Ky 1=y ">
Y x 6uo Bvo kb ay
y =0 .70 Xy 62W
oy o -2 0
o (8a)
ky ki 0] Jkefoay
k)s, = kze B g = 5
k| |k Ejeo|x+|< 2jecl el koo
Xy 1ay zax Yy
and
df(z)
)= 8b
9(z) % (8b)

The apparent integrals in the above expressions shall be
resolved by a Navier type method and can be written as
follows

2 2
Lloa=nll, Zfooy-827,
oy Xy X ox
00 0 ©)]
0 dx=A", g%
I ax [oay-8 5
where
A=-L, g lk=a’ k= p (10)
az ﬁZ

and a, f are defined in expression (18).
2.3 Constitutive equations

For the functionally graded plate, the constitutive
relations can be written as
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ox| [Qu Q2 0 0 0 |f&
o y le Q22 0 0 0 & y
Txy(=| O 0 Qg O 0 W7y (11
Ty 0 0 0 Qu 0 |lry

Txz 0 0 0 0 Qss7x

where (O-xlay Ty Ty, Ty ) (gx,g o V) are stresses

and strains components respectively and Oy are the reduced
elastic constants in the material axes of the plate, and are
expressed as

Qu=Qp = E(Z) Q= E@ ) Qs =Gz

1- v
(12)
A A _ E(@®@
Qa4 =Qs5 =Qgp =G(2) = 200)

where E(z), G(z) and v are Young’s modulus, shear

modulus, and Poisson’s ratios, respectively.
2.4 Governing equations

The principle of minimum total potential energy is used
herein to derive the governing equations. The principle can
be expressed in analytical form as (Attia et al. 2018, Kaci
et al. 2018, Belabed ef al. 2018, Besseghier et al. 2017,
Hachemi et al. 2017, Houari et al. 2016, Mabhi et al. 2015,
Zemri et al. 2015)

SU+5V =0 (13)

where U and 6V are the variation of strain energy and the
variation of the external work, respectively.

The governing equations can be expressed in terms of
displacements (duo, dvo, owo, 06) and take the following
form

Anduuo + A66 d22u0 + (AIZ + AGB)dIZVO
- (Bndmwo + (Blz + ZBee)dlzzwo) (14a)
+(k Ak, BB d,y0+ (K B, +k,B5, ) d,6 =0,

(A12 + AGG)dSlZuO + A66 d22V0 + A22d22V0
- ((BIZ + 2866)d112W0 + BZZdZZZWO)
+(k,A+k,BY)BS, dy,,0 + (k,BS, + kB, ) d,0 =0,

(14b)

(Byyyy Uy + (Byy +2Bgq )yl )+

((512 +2Bgg ) dyy 2V + By )

- Dndmlwo - 2(D12 +2 Dee) d1122W0 - D22 d2222W0

1 (kD +k,D,) d,,0+ 2 (k A+k,BY) DS, dy10 (14c)
+(k,Dy, +k,D5,) d,,0

+NJdywy +2ND dwy + NJ dywy =0

—((k Ak, B) B, Aty + (KBS, + KB, ) dutg)
—((k Ak, BY)B, dyvy + (B2, +k,BY, ) dyv,)
+ (Df1 + sz) dyw, +2(k, A+k,B') DS, dyypoW,
+(D5, +D3,) oy —k2H30 —k,2H5,0 — 2k k,H5,0
—(k, A4k, B HE d,p0 + A, (k,B'Y d,,0
+ A (kAY d,0=0

(14d)

Table 1 Properties of materials

Material Young modulus (GPa) Poison’s ratio
Aluminium (Al) 70 03
Silicon carbide (Sic) 420 '

where NE , NS, N fy are axial pre-buckling forces and dj,

djir and dj;i are the following differential operators

02 53
P P ,
1 aXi 8xJ it 6Xi OX j 6x|
(15)
4 0 ..
dijlm Za—, di =—, (|,J,|,m=1,2).
6Xian8X|6Xm aXi

The stiffness components in the governing equations
with material parameters of hybrid functionally graded
plates are expressed as

hi2

{A,.B,,D,,B;,D: H; |= mj/?”{nz t(2).2 1(2), F2(2)ldz, (16a)

i, j=126

hi2

A} = J.Qij [g(z)]zdz

-h/2

i,j=45 (16b)

2.5 Closed-form solution

The critical buckling loads of simply supported hybrid
FGM plate will be computed in this investigation by using
Navier’s procedure, the plate is subjected to an in-plane

loading in two directions NP =p,N, ., NJ=p,N, .

ny =0 (where y, and y, are non-dimensional load

parameters).

The solution of the displacement variables satisfying the
above boundary conditions based on double Fourier series
can be expressed as follows

uo Umncos(a x)sin(By)
Vimnsin(a x)cos(By)
mZ:an; Winnsin(o x)sin(B y) (17)
9 Xmnsin(a x)sin(By)
with
a:mn/aandﬂznﬁ/b (18)

and Uuwn, Vi, Wun, Xmn are arbitrary parameters to be
determined. Substituting Eq. (17) into Eq. (14), the closed-
form solution of buckling load can be determined from

S11 S12 S13 S14{{Umn 0

S12. S22 S23 S24||Vmn | _JO (19)
S13 Spz Saztk S3s||Wmn| |0
S14 Sz4  Szg Syg](X 0
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Table 2 Comparison of critical buckling load Ne(MN/m) of rectangular all FGM plate with (a/h=10)

p
s b/a Theo
(v1, 72) ry 0 | 5
Present 2079.758 1028.449 780.228
0.5 HSDT* 2080.010 1028.554 780.149
HSDT** 2079,721 1028,412 780,097
Present 1437.390 702.251 534.835
(-1,0) 1 HSDT" 1437.452 702.276 534.807
HSDT** 1437361 702,304 534,441
Present 1527.9942 748.988* 569.825%
1.5 HSDT* 1528.089* 749.027* 569.786*
HSDT** 1527,9032 748,92% 569,751*
Present 1663.807 822.759 624.182
0.5 HSDT* 1664.008 822.843 624.119
HSDT** 1663,777 822,738 624,158
Present 718.695 351.126 267.418
(-1,-1) 1 HSDT" 718.726 351.138 267.403
HSDT** 718,692 351,124 267,416
Present 526.862 256.776 195.714
1.5 HSDT" 526.878 256.782 195.706
HSDT** 526,861 256,776 195,714
Present 2773.011 1371.265 1040.304
0.5 HSDT" 2773.347 1371.406 1040.199
HSDT** 2772,98 1371,653 1040,519
Present 2773.0112 1371.265* 1040.304*
(-1,1) 1 HSDT" 2773.347% 1371.406* 1040.199*
HSDT** 2772,982 1371,653* 1040,519*
Present 2773.011° 1371.265° 1040.304°
1.5 HSDT" 2773.347° 1371.406° 1040.199°
HSDT** 2772,98° 1371,653° 1040,519°
®Mode for plate is (m, n) = (1, 2), “Fekrar et al. (2012)
where By applying the condensation approach to eliminate the
S;1= —(Amocz + %6[32 ) S;,=—af (Aﬂ + Aea) in-plane displacements U,, and V., Eq. (19) can be
s - ( 9 2,55 2 ) rewritten as
13 =0 (Bria” + By +2 Bgg B _ W 5
, , Sass+k S
814:a(lefl+k2 152_(k1A+sz) geﬁz)a 2 > { mn}:{ } 21)
2 2 2 2 2 Sz Sas [(Xmn 0
Syo= —(Aeea + AP ) Sz =B(3225 +Bpo0” + 2Bgga )
So = ﬁ(kz B3, +kiBf, — (kg Ak, B)Bgser? )’
S =—(D1 ot +2(Dy, + 2Dgg ) ?B% + D [34) Where
33 I 12 66 22 ) (20) S5 =Sy43 - S15(S13822 = $12523) — S23(S11S 23 — S1251)
2 ' 1 2 n2
Sy = _(k1D1S1 +k, Dlsz)a +2(k,A'+k,B") Desea s S11S,; — S’122
- <k2 D,, +k,D;, )ﬂz Sy =S, — S14(S13822 = $15523) — S24(S11825 — S15513)
. S11S5; — S2
Sus =k, (K H3, +koHS, )— (K Ak, B (M, B2) . 2
44 1K My TR Fg 21 2 626 Sw=S,, - S15(S14S25 — S15524 ) — S23(S11S54 — S1,51,)  (22)
' 2 1 2
- kZ(k1H152 + szzsz)_ (klA) Asss a - (sz ) AZ4 ﬁ 1159, = S122
_ 2 2
k= Ner (71 a”+y,p ) Su= Sus— S14(514822 - 512324)_ S24(811524 - S12814)

S11822 - 8122
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Table 3 The effect of material index (p) and (trem/h) on non-dimensional critical buckling load of square hybrid
functionally graded plate with (a/h=10) under different loading conditions

p

(ran /M) (7.72) - Theory ——7 0.1 0.2 0.5 1 2 5 10 ©
Present 75618  7.5618 75618  7.5618  7.5618  7.5618  7.5618  7.5618  7.5618

CLO e 75632 75632 75632 75632 75632 75632 75632 75632 7.5632
Present 37809 37809  3.7809  3.7809  3.7809  3.7809  3.7809  3.7809

0 (-1,-1) 7809

HSDT* 37816 37816 37816 37816 37816 37816 37816 37816  3.7816
Present 15.0339° 15.0339° 15.0339° 15.0339° 15.0339° 15.0339° 15.0339° 15.0339° 15.0339°
CLD DT 150408 150408° 150408 150408° 150408 150408° 150408 15.0408° 15.0408"
Present  8.5611 83968 82601  7.9635  7.6805 74249 7216  7.1429  7.0767

CLO DT 85641 83996 82626 79655 76818 742520 72150 74411 7.0740
Present 42806  4.198%  4.1301 39818  3.8403 37124  3.608  3.5714 3.5384

02 G0 ept 42820 42000 41313 39828 38400 37126 36075 35705 3.5370
Present 17.0813% 16.7430° 164611° 15.8469° 152552% 14.71° 142454* 140720 13.9013°
CLD DT 170050 1675620 164733 15.8565% 152614° 147118° 1424118 1406415 13.8888"
(g Prent 102027 9828 0472 87206 80265 THM0 70535 69504 68801
HSDT* 102454 98243 94746 87225 80275 74463 70493 69438 68707

Present  5.1213 49109 47361 43603 40132 37235 35267 34752  3.4401

04 CLD yept 510227 49122 47373 43613 40138 37231 35247 34719 34354
Present 20.3808% 19.536° 18.8332¢ 17.3160° 15.8980° 14.6780° 13.7699° 13.4792¢ 13.2168a
CLD o™ 203036 1054800 18.8448° 1732520 15.903% 14.675% 13.7512% 134502% 13.1758°
Present 127325 119330 112697 9.8518 85695  7.5563 69523 68137  6.6783

CLO HopT 127333 119341 112700 9853 85702 75551 6946 68039  6.6679
Present  6.3663  5.9665  5.6348 49259 42847 37782 34762 34069 3.3391

06 G0 yopt 63667 59670 56354 49265 42851 37776 34730 34019 33340
Present 25.1446° 23.5741° 222687 19.4666' 16.9027° 14.8089° 133907° 12.9505° 12.4865"
CLD DT 25.1484% 2357920 202746 1947264% 16906° 14.8037° 13363% 12.9086° 12.4435°
Present 16.1301 14802 137008 113549 92604 76612 67618 65137  6.0209

CLO HSDT 161289 148014 137007 113554 92608 76603 67565 65073  6.0209
Present  8.0650 7401 68504  5.6775 46302  3.8306 33809 32569  3.0105

08 CLD 0 opT 506443 74007 68503 56777 46304 38302 33782 32537 3.0105
Present 31.5034° 28.9501° 26.8273% 222815 18.1746° 14.9426° 12.8795° 12.1886° 11.1667°
CLD DT 3140840 28048 268271* 222830° 181768 14939 12857 12.1622% 11.1671°
1oy et 20531184960 168069 132159 10032 76405 62304 SE%2 3424
HSDT® 20535 184968 168076 132165 100325 7.6401 62476 56339  3.4225

| Pt 102671 92480 84034 6608 SOl6l 38203 3D 28176 17112
HSDT® 102675 92484 84038 66082 50163 38201 31238 2817  1.7112
(g PRt 396144 3SIET 325716 257292 193895 148615 118698 105713 6.6024°
HSDT®  39.6192° 357739 32.5753% 257322 195915  14.86* 11.8583 105663 6.6032°

aMode for plate is (m, n) = (1, 2), "Mode for plate is (m, n) = (1, 3), "Fekrar et al. (2012), “Bodaghi and Saidi (2010).

The system of homogeneous Eq. (21) has a nontrivial
solution only for discrete values of the buckling load. For a
nontrivial solution, the determinant of the coefficients (W,
Xun) must equal zero
Ssz+k Sa

§43 §44

=0 (23)

The resulting equation may be solved for the buckling
load. This gives the following expression for buckling load

k

_ §34§43 - §33§44

Sua

24
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Table 4 The effect of material index (p) and side to thickness ratio (a/h) on non-dimensional critical buckling load of
square hybrid functionally graded plate with (trem/h=0.8) under different loading conditions

P
0 0.1 0.2 0.5 1 2 5 10 o0
Present 16.1301  14.802 13.7008  11.3549 9.2604 7.6612 6.7618 6.5137 6.0209

a/h (y1,72)  Theory

cL0) HSDT* 16.1289 14.8014  13.7007 11.3554 9.2608 7.6603 6.7565 6.5073 6.0209
10 (11 Present  8.0650 7.401 6.8504 5.6775 4.6302 3.8306 3.3809 3.2569 3.0105
HSDT* 8.0644 7.4007 6.8503 5.6777 4.6304 3.8302 3.3782 3.2537 3.0105

-1.1) Present 31.5034® 28.9501° 26.8273* 222815 18.1746* 14.9426* 12.8795* 12.1886* 11.1667%

HSDT* 3149842 289480° 26.8271* 222839* 18.1768* 14.9390*  1.857* 12.1622* 11.1671*%
-1.0) Present 16.6871 153014  14.1540  11.7169 9.5546 7.9319 7.0951 6.9061 6.4175
HSDT* 16.6868  15.3012 14.154 11.717 9.5547 7.9316 7.0936 6.9043 6.4175
20 (-1-1) Present  8.3435 7.6507 7.0770 5.8584 4.7773 3.9659 3.5476 3.4531 3.2087
HSDT* 83434 7.6506 7.0770 5.8585 4.7774 3.9658 3.5468 3.4521 3.2087

1.1 Present 34.1746* 31.3489° 29.0076* 24.0271* 19.5941* 16.2378* 14.4258 13.9669* 12.9433?

’ HSDT* 34.1729® 31.3482® 29.0074* 24.0277° 19.5946° 16.2366° 14.4185* 13.958* 12.9833%
-1.0) Present 16.7946 153976  14.2413  11.7865 9.6112 7.9841 7.1605 6.9841 6.4968
HSDT* 16.7944 153975 14.2413 11.7865 9.6113 7.984 7.1599 6.9832 6.4968
30 (-1-1) Present  8.3973 7.6988 7.1206 5.8932 4.8056 3.9921 3.5803 3.4920 3.2484
HSDT* 8397 7.6988 7.1206 5.8933 4.8056 3.9920 3.5799 34916 3.2484

1.1 Present 34.7204* 31.8380° 29.4514* 24.3813* 19.8821* 16.5031*° 14.7545* 14.3557* 13.3372%

’ HSDT* 34.7196* 31.8377® 29.4513* 24.3816° 19.8823* 16.5026* 14.7511* 14.3514* 13.3371%
-1.0) Present 16.8325 154316 14.2721 11.8110 9.6312 8.0026 7.1837 7.0118 6.5250
HSDT* 168324 154315 14.2721 11.8111 9.6312 8.0025 7.1833 7.0113 6.5250
40 (-1-1) Present  8.4162 7.7158 7.1361 5.9055 4.8156 4.0013 3.5919 3.5059 3.2625
HSDT* 8.4162 7.7158 7.1360 5.9055 4.8156 4.0013 3.5917 3.5057 3.2625

L1 Present 34.9156* 32.0129° 29.6100° 24.5078* 19.9849* 16.5981* 14.8732* 14.497* 13.4808°

’ HSDT* 349151* 32.0127*  29.61% 24.508* 19.985*  16.5978* 14.8713* 14.4945* 13.4308°
-1.0) Present 16.8501 154473  14.2864  11.8224 9.6405 8.0112 7.1945 7.0247 6.5382
HSDT* 16.8501  15.4473 14.2864  11.8225 9.6405 8.0111 7.1943 7.0244 6.5381
50 (-1-1) Present  8.4251 7.7237 7.1432 59112 4.8202 4.0056 3.5973 3.5124 3.2691
HSDT*  8.425 7.7237 7.1432 59112 4.8202 4.0056 3.5971 35122 3.2691

1.1 Present 35.0067* 32.0945° 29.6840° 24.5668* 20.0329° 16.6424* 14.9288* 14.5633* 13.5483?

HSDT* 35.00642 32.0943® 29.684® 24.5669* 20.033® 16.64222 14.9275® 1456182 13.5408%
aMode for plate is (m, n) = (1, 2), "Fekrar et al. (2012).
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Table 5 The variation of the critical buckling load Ne(MN/m) of symmetric S-FGM plate as function of the geometry
(a/h) and dimension (b/a) ratios

Gvra) - blaalh 0 0.1 0.2 0.5 1 2 5 10
s 10 346626 596729 787023 1168493 1503366 1780511 1977262 2034.639
5 1013749 1596.665 2024.656 2909.524 3776341 4628765 5424033  5745.541
clop 10 230565 428 567430 82237 102888 127846 1304162 142139
5 826349 1389326 1812725 2665856 3438599 4112494 4634953  4806.456
o 100 254666 4474710 596165 892397 114546 1344668 1473860 1506517
5 837.080°  1378.468° 1781.791° 2600.223%  3360.999% 4052.681° 4625.764°  4829.492
s 10 277301 47383 0779 934795 1202692 1424409 ISSISI 1627711
5 810999 1277332 1619725  2327.619  3021.073  3703.012 4339226  4596.433
CLp g 10 TOTE 21219 ORTIS 4GNS 464 6923 91081 710695
5 413175 694663 906362 1332928 1719299 2056247 2317477 2403228
o 10 8810 156422 20982 315936 404860 472349 513127 520145
5 314414 537750 707231  1047.024 1348055 1600960 1785207  1840.936
10 462169 795638  1049.631  1557.991 2004487 2374015 263635  2712.852
05 5 1351665 2128887 2699542 3879365 5035121 6171687 7232.043 7660722
cLny 1 10 AEI6 TGS 19631 IS990 2004487 234015 2636350 2712852
5 1351.665° 2128.887% 2699.542% 3879.365 5035.121% 6171.687° 7232.043*  7660.722%
o 10 462160 795.638° 1049.631° 1557.991° 2004487° 2374014° 263635° 2712852
5 1351665 2128.887° 2699.542% 3879.365" 5035.121° 6171.687° 7232.043b 7660.722°

aMode for plate is (m, n) = (1, 2), *"Mode for plate is (m, n) = (1, 3).

Fig. 7 The effect of modulus ratio and the power of FGM

(p=1) on non-dimensional critical buckling load (N ) of
square hybrid plate (a/h=10) under uni-axial compression
along the x-axis (y, =-17,=0) with teem/h=0.8

30

t/h=0
st h=02
Sms g h= 04

274

24 4

214

EE,
Fig. 8 The effect of modulus ratio and the FGM layer
thickness (¢#rgu/h) on non-dimensional critical buckling load
( N ) of square hybrid plate (a/h=10) under uni-axial
compression along the x-axis (y, =-1y,=0) with p=1

Fig. 9 The non-dimensional critical buckling load of square
hybrid functionally graded plate versus the Symmetric S-
FGM for three different types of loading with a/A=5

By employing the Eq. (23), the following expression for
critical buckling load is determined

1 S34S43— 533544

Ncr:(71a2+72,82) Saa

(25)

3. Numerical results and discussions

In this part, the buckling study of hybrid functionally
graded plate (ceramic-FGM-metal) is presented, for
convenience, the following non-dimensional buckling load
is utilized
N, a?

N (26)
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Table 6 The effect of fraction index (p) and geometry ratio (a/h) on the non-dimensional critical buckling load of square

symmetric S-FGM plate under different types loading conditions

alk () 0 0.1 0.2 0.5 1 2 5 10
(-1,0) 2.9512 4.9619 6.4740 9.5209 12.2807 14.6875 16.5534 17.1659
5 (-1,-1) 1.4756 2.4809 3.2370 4.7605 6.1404 7.3437 8.2767 8.583
(-1,1) 4.8274* 7.60322 9.64122 13.8549* 17.9826* 22.0417* 25.8287* 27.3597*
(-1,0) 3.4224 6.0608 8.1061 12.1748 15.6127 18.2637 19.9166 20.3056
10 (-1,-1) 1.7112 3.0304 4.0531 6.0874 7.8063 9.1319 9.9583 10.1528
(-1,1) 6.60242 11.3663% 14.99472 22.2570* 28.63552 33.9145? 37.6621?2 38.7550°
(-1,0) 3.565 6.4174 8.6537 8.6539 16.7536 19.4521 20.9859 21.2815
20 (-1,-1) 1.7825 3.2087 4.3268 6.5454 8.3768 9.7261 10.493 10.6407
(-1,1) 7.27542 12.9874* 17.43932 26.2834* 33.67252 39.2479* 42.57732 43.29572
(-1,0) 3.6071 6.525 8.8207 13.3729 17.104 19.8134 21.3065 21.572
50 (-1,-1) 1.8036 3.2625 4.4103 6.6865 8.552 9.9067 10.6532 10.786
(-1,1) 7.48952 13.5289¢ 18.2756* 27.6898* 35.4216* 41.06012 44.19552 44.76702
(-1,0) 3.6132 6.5407 8.8451 13.4142 17.1552 19.8662 21.3531 21.6141
100 (-1,-1) 1.8066 3.2703 4.4225 6.7071 8.5776 9.9331 10.6765 10.8071
(-1,1) 7.5211% 13.6100% 18.4018* 27.90322 35.6866* 41.33292 44.437% 44.98552
*Mode for plate is (m, n) = (1, 2).
60 70
— =0
504 ---Ejs ) 60 -
o p=2 .
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p=1 ) 404
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EJE,,
Fig. 10 The effect of modulus ratio on non-dimensional
critical buckling load (N) of square Symmetric S-FGM
plate (a/h=5) under uni-axial compression along the x-axis (

n=-1r =0)

where a is the length of the square plate and % is the
thickness of the plate.

Table 2 presents the critical buckling loads N.(MN/m)
of all FGM plate (A=trcu), as a function of the dimension
ratio (b/a) and the materiel index (p). A comparison is made
between the results obtained by the present model and those
found by Bodaghi and Saidi (2010) using the Levy solution
and those obtained by Fekrar er al. (2012) based on high
order shear deformation plate theory with four variable. The
obtained results are in good agreement with the models
already developed by Bodaghi and Saidi (2010) and Fekrar
etal. (2012).

In Tables 3 and 4, we have presented the non-
dimensional values of the critical buckling load of hybrid
square plate subjected to axial forces (uni-axial

30

20

10

EJE,
Fig. 11 The effect of side-to thickness and modulus ratio on
non-dimensional critical buckling load of Symmetric S-
FGM plate under uni-axial compression along the x-axis (
7,=-L1y,=0) withp =2

compression, bi-axial compression, compression along the
x-axis and a tension along the y-axis) as function of the
material index (p), the results are compared with those
obtained by Fekrar ef al. (2012). It should be noted that a
good concordance is confirmed with the results of Fekrar et
al. (2012) and this for the different values of the FGM layer

thickness (¢rcar) and the geometry ratio (a/h)

Fig. 5 illustrate the effect of materiel index (p) on the
non-dimensional critical buckling load wunder the
differentload types with (a/h=10) and (¢troy/h=0.8) it can be
seen that the no-dimensional values of the critical buckling
load are in inverse relation with the materiel index (p).

The variation of the non-dimensional critical buckling
load as function of FGM layer thickness (zrGy) is shown in
Fig. 6. It can be observed that the critical buckling load ( N
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) increases with increasing of the plate core thickness
(treu), and it can be seen that the largest values of the non-

dimensional critical buckling load ( N ) are obtained for bi-
axial loading with compression along x-axis and tension
along y-axis.

The effects of the modulus ratio (E./E.) and the
variation of the FGM layer thickness (¢+Gi/h) on the non-

dimensional critical buckling load (N) of hybrid square
plate are shown in Figs. 7 and 8, respectively. It can be

observed that the critical buckling load ( N') increases with
the increase of the FGM layer thickness (¢from/h) and
modulus ratio (E/Ey).

This second part is devoted to the study of the stability
of the rectangular plate symmetric S-FGM. The variation of
the critical buckling load N.AMN/m) of symmetric S-FGM
plate as a function of the geometry ratio (a/h) and
dimension ratio (b/a) is presented in Table 5 for the
different loading types (uni-axial, bi-axial), it can be
observed the critical buckling load N.{MN/m) is in direct
correlation relation with the fraction index (p), it should be
noted that the lowest values of the critical buckling load
NAMN/m) are obtained for the square plate.

The effect of fraction index (p) and the geometry ratio
(a’/h) on the non-dimensional critical buckling load of
square symmetric S-FGM plate is shown in Table 6, it
canbe seen that the critical buckling load (N ) increases
with the increase of the geometry ratio and the largest
values are obtained for a most important material index (p).

Fig. 9 shows the variation of the non-dimensional
critical buckling load of the square symmetric S-FGM plate
for three types of loading under the effect of power (p) with
geometry ratio (a/h=5), it should be noted that the non-
dimensional critical buckling load ( N ) is in direct
correlation relation with the material index (p), the lowest
values of the critical buckling load ( N ) are obtained for bi-
axial compression loading, on the other hand a bi-axial
loading with compression along the x-axis and tension
along y-axis gives the largest values of the critical load (N
).

The effects of the modulus and the geometry ratios on
the variation of the non-dimensional critical buckling load (

N) are shown in the Figs. 10 and 11, the plate are subjected
to normal compressive forces along the x-axis (
y,=-Ly,=0 ), we observe that the non-dimensional

critical buckling load ( N ) increases with increasing
modulus ratio (E/E,,) and geometry (a/h) ratio.

4. Conclusions

In this research work, buckling analysis of thick
symmetric S-FGM and hybrid plates has been presented,
based on a novel four variables refined plate theory.
Governing equations are obtained from the principle of
virtual works. Closed-form solutions are obtained for
simply supported functionally graded plates. The accuracy
of the developed model has been checked for stability of
functionally graded plates. Other mathematical modelling
and numerical methods (Rehab et al. 2018, Henderson et al.

2018, Wang et al. 2018, Cherif et al. 2018) can be used in
future to investigate this type of problem applied to FGM
structures. Finally, an improvement of present approach will
be considered in the future study to account for the
thickness stretching effect by using quasi-3D shear
deformation models (Belabed er al. 2014, Bousahla et al.
2014, Hebali et al. 2014, Bourada et al. 2015, Hamidi et al.
2015, Larbi Chaht et al. 2015, Bennoun et al. 2016, Draiche
et al. 2016, Benahmed et al. 2017, Bouafia et al. 2017,
Sekkal et al. 2017b, Bouhadra et al. 2017, Karami et al.
20181, j, Shahsavari et al. 2018c, d, Abualnour ef al. 2018,
Younsi et al. 2018, Benchohra et al. 2018, Zaoui et al.
2019).
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