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1. Introduction  
 

The functionally graded materials (FGM) are an 

exceptional class of composite in which the composition 

and structure gradually change, causing a corresponding 

change in the properties of the material. These types of 

materials have attracted much attention in recent years, 

caused of their advantages to reduce the disparity in 

material properties and reducing the thermal stresses Zhong 

and Yu (2007). The use of these material in numerous 

applications (Ahmed 2014, Zidi et al. 2014, 2017, Kar et al. 

2016, Akavci 2016, Ahouel et al. 2016, Aldousari 2017, 

Karami et al. 2017, Bellifa et al. 2017a, Zine et al. 2018) 

such as aeronautic, civil engineering, nuclear and are also 

found in biomedical applications Baron and Naili (2008). 

For study of the behaviour of the FG plates under 

mechanical loading, many theories have been developed. 

The simplest is the Kirchoff-Love theory (Classical Plate 

Theory) generally used for thin plates which stipulates that 

the straight lines remaining straight and perpendicular to the 

mid-plane after deformation. Therefore, this theory neglects 

the transverse shears effects (Fourn et al. 2018, Shahsavari 

et al. 2017, Bellifa et al. 2017b, El-Haina et al. 2017, 

Klouche et al. 2017, Boukhari et al. 2016, Belkorissat et al. 

2015, Tounsi et al. 2013). Several researchers used the CPT 

(Classical Plate Theory) for buckling analysis of  
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functionally graded plates such as Feldman and Aboudi 

(1997), Javaheri and Eslami (2002), Abrate (2008). The 

buckling of functionally graded plates subjected to uniform 

compression was also examined by Mahdavian (2009) 

using the CPT and the Fourier solution. The free vibration 

of the FG plate resting on elastic foundations was studied 

by Chakraverty and Pradhan (2014). Since the CPT over 

predicts frequencies as well as buckling loads of moderately 

thick plate (Reddy 2004), Reissner (1945) and Mindlin 

(1951) have developed the first shear deformation plate 

theory (FSDT) which introduce the transverse shear effect 

through a linear distribution of displacements across the 

thickness of the plate. Several works have been presented 

using the FSDT to study the free vibration of composite and 

functionally graded plates (Whitney 1969, Reddy 1979, 

Praveen and Reddy 1998, Chen 2005, Kant and 

Swaminathan 2001, Hosseini-Hashemi et al. 2010). The 

bending of the plate under mechanical and thermal stresses 

was examined by Della Croce and Venini (2004) and the 

buckling of the plates was analyzed by Lanhe (2004) and 

Bouazza et al. (2010). Recently, Meksi et al. (2015), 

Mantari and Granados (2015), Bellifa et al. (2016), Hadji et 

al. (2016) proposed a new simple FSDT with only four 

variables for static and vibration analysis of functionally 

graded plates. Since FSDT considers a uniform distribution 

of transverse shear stresses across the thickness and 

predicting shear stresses at the top and bottom surface of the 

plate (Al-Basyouni et al. 2015, Bouderba et al. 2016, 

Shokravi 2017a, Youcef et al. 2018), it is necessary to use 

the shear correction factor. To avoid the use of this factor 
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and to pass through the limitations of the CPT which 

neglect the shear effect and the FSDT which requires a 

shear correction factor, several high order shear 

deformation plate theories have been proposed such as 

Levinson (1980), Bhimaraddi and Stevens (1984), Reddy 

(1984), Kant and Pandya (1988), Shahrjerdi et al. (2011), 

Viswanathan et al. (2013), Nedri et al. (2014), Ait Amar 

Meziane et al. (2014). These theories (HSDTs) satisfies the 

condition of the nullity of transverse shear deformations and 

stresses at the top and bottom surface of the plate without 

introducing a shear correction factor. The high order shear 

deformation plate theory is widely used in many works such 

as Mantari and Guedes Soares (2012) for static analysis of 

composites, isotropic and sandwich plates, Saidi et al. 

(2016) for the vibration of the rectangular functionally 

graded plate on elastic foundation, Tounsi et al. (2016) for 

buckling analysis and the vibration of sandwich plate. 

Kolahchi and Moniri Bidgoli (2016) studied the dynamic 

instability of single-walled carbon nanotubes using size-

dependent sinusoidal beam model. Arani and Kolahchi 

(2016) presented buckling analysis of embedded concrete 

columns armed with carbon nanotubes. Kolahchi et al. 

(2016a) employed differential cubature and quadrature-

Bolotin methods for dynamic stability of embedded 

piezoelectric nanoplates based on visco-nonlocal-

piezoelasticity theories. Bilouei et al. (2016) analyzed 

buckling response of concrete columns retrofitted with 

Nano-Fiber Reinforced Polymer (NFRP). Kolahchi et al. 

(2016b) presented dynamic stability analysis of 

temperature-dependent functionally graded CNT-reinforced 

visco-plates resting on orthotropic elastomeric medium. 

Kolahchi and Cheraghbak (2017) examined agglomeration 

effects on the dynamic buckling of viscoelastic microplates 

reinforced with SWCNTs using Bolotin method. Zamanian 

et al. (2017) investigated also agglomeration effects on the 

buckling behaviour of embedded concrete columns 

reinforced with SiO2 nano-particles. Golabchi et al. (2018) 

presented vibration and instability analysis of pipes 

reinforced by SiO2 nanoparticles considering agglomeration 

effects. Manypapers have been publishedbased on HSDT 

(Ahmed 2014, Bousahla et al. 2016, Meradjah et al. 2015, 

Attia et al. 2015, Ait Atmane et al. 2015, Merazi et al. 2015, 

Bakora and Tounsi 2015, Tebboune et al. 2015, Nguyen et 

al. 2015, Mahi et al. 2015, Chikh et al. 2016, Eltaher et al. 

2016, Bourada et al. 2016, Bounouara et al. 2016, Mouaici 

et al. 2016, Beldjelili et al. 2016, Karami and Janghorban 

2016, Madani et al. 2016, Kolahchi 2017, Kolahchi et al. 

2017a, b, c, Khetir et al. 2017, Hajmohammad et al. 2017, 

Mouffoki et al. 2017, Sekkal et al. 2017a, Benadouda et al. 

2017, Shokravi 2017b, c, d, Bouderba et al. 2013, 

Hajmohammad et al. 2018a, b, c, d, Karami et al. 2018a, b, 

c, Bouadi et al. 2018, Shahsavari et al. 2018a, b, Yazid et al. 

2018, Kadari et al. 2018, Mokhtar et al. 2018). Recently, 

new development of advanced materials is developed for 

improving mechanical properties of structures made of 

these structures (Karami et al. 2017, Karami et al. 2018d, e, 

f, g, h, Heydari and Shariati 2018, Ferezghi et al. 2018, 

Khelifa et al. 2018).  

In this paper, the study of the stability of ceramic-FGM-

metal plates and symmetric S-FGM plates subjected to in- 

 

Fig. 1 geometry of hybrid functionally graded plate 

 

 

Fig. 2 Geometry of symmetric S-FGM plate 

 

 

plane loads using a novel four variables refined plate theory 

is presented. By employing the Navier method, the closed-

form solutions have been obtained to analyze the buckling 

behaviours of plates. The variation of the critical buckling 

load of the symmetric S-FGM and hybrid plates under the 

effects of the material index, the thickness of FGM layer, 

the geometric dimensions, modulus ratios and types of 

solicitations are investigated and discussed. 

 

 

2. Theoretical formulation 
 

2.1 Modeling of functionally graded material 
 

In this work, two types of plate are used: the first one is 

hybrid (ceramic- FGM- metal) which resembles a laminated 

sandwich plate. The total thickness of plate (h) is composed 

of three layers (
MFGMC ttth ++= ), a ceramic top layer (

2htz CC  ), a metal lower layer (
MM zth −− 2 ) and 

intermediate functionally graded plate layer(
CFGMM ztz −

) as shown in Fig. 1. 

The Young’s modulus E(z) of an FGM layer of the 

functionally graded plate using the Voigt model (Gibson et 

al. 1995, Abdelaziz et al. 2017, Ait Yahia et al. 2015) are 

assumed as 

)1()( CCCC VEVEzE −+=  (1) 

where Ec, EM are the elastic modulus of ceramic and metal, 

respectively. Vc(z) is the volume fraction of the ceramic and 

is expressed by a simple power low as follows 

P

C
h

hz
zV 







 +
=

2

2
)(  (2) 

By replacing Eq. (2) in Eq. (1), the Young modulus 

becomes 
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Fig. 3 The variation of ceramic volume fraction along the 

thickness of the functionally graded plate 
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Fig. 4 The variation of ceramic volume fraction along the 

thickness of symmetric S-FGM plate 
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The second type of plate is symmetric S-FGM plate that 

consist of three layers fabricated with functionally graded 

ceramic and metal, the plate is symmetric with respect to 

median axis, the plate is metallic in the mid-plane, the upper 

and lower surfaces of the plate are made of ceramic (Fig. 2). 

The Young’s modulus (Eq. (1)) is always retained, but 

the analytical model of the volume fraction becomes 
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(3) 

The variation of ceramic volume fraction along the 

thickness of the hybrid FGM plate and Symmetric S-FGM 

plate are illustrated in Figs. 3 and 4, respectively. 

 

2.2 The displacement base field 
 

The field displacement of the new HSDT is given as 

follows (Fahsi et al. 2017, Menasria et al. 2017, Meksi et 

al. 2019) 
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(5c) 

In this research, the proposed higher-order shear 

deformation plate theory (HSDT) is determined by 

considering 
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The non-zero strains associated with displacements in 

Eq. (5) are 
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and 

dz

)z(df
)z(g =  (8b) 

The apparent integrals in the above expressions shall be 

resolved by a Navier type method and can be written as 

follows 

yx
Adx

y 


=









2

' ,  
yx

Bdy
x 


=









2
'' ,  

x
Adx




=


 ' , 

y
Bdy




=


 '  

(9) 

where 

2
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2
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and α, β are defined in expression (18). 

 

2.3 Constitutive equations 
 

For the functionally graded plate, the constitutive 

relations can be written as 
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where ),,,( ,, xzyzxyyx  ),,( ,, xzyzxyyx  are stresses 

and strains components respectively and Qij are the reduced 

elastic constants in the material axes of the plate, and are 

expressed as 
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where E(z), G(z) and v are Young’s modulus, shear 

modulus, and Poisson’s ratios, respectively. 

 

2.4 Governing equations 
 

The principle of minimum total potential energy is used 

herein to derive the governing equations. The principle can 

be expressed in analytical form as (Attia et al. 2018, Kaci  

et al. 2018, Belabed et al. 2018, Besseghier et al. 2017, 

Hachemi et al. 2017, Houari et al. 2016, Mahi et al. 2015, 

Zemri et al. 2015) 

0  =+ VU   (13) 

where δU and δV are the variation of strain energy and the 

variation of the external work, respectively. 

The governing equations can be expressed in terms of 

displacements (δu0, δv0, δw0, δθ) and take the following 

form 
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Table 1 Properties of materials 

Material Young modulus (GPa) Poison’s ratio 

Aluminium (Al) 70 
0.3 

Silicon carbide (Sic) 420 

 

 

where 
0

xN , 0

yN ,
0

xyN  are axial pre-buckling forces and dij, 

dijl and dijlm are the following differential operators 
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The stiffness components in the governing equations 

with material parameters of hybrid functionally graded 

plates are expressed as 
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2.5 Closed-form solution 
 

The critical buckling loads of simply supported hybrid 

FGM plate will be computed in this investigation by using 

Navier’s procedure, the plate is subjected to an in-plane 

loading in two directions 
crx NN 1

0 = ,
cry NN 2

0 = , 

00 =xyN (where
1  and 

2 are non-dimensional load 

parameters). 

The solution of the displacement variables satisfying the 

above boundary conditions based on double Fourier series 

can be expressed as follows 
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with 

a/m= and bn / =  (18) 

and Umn, Vmn, Wmn, Xmn are arbitrary parameters to be 

determined. Substituting Eq. (17) into Eq. (14), the closed-

form solution of buckling load can be determined from 
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By applying the condensation approach to eliminate the 

in-plane displacements Umn and Vmn, Eq. (19) can be 

rewritten as 
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Table 2 Comparison of critical buckling load Ncr(MN/m) of rectangular all FGM plate with (a/h=10) 

(γ1, γ2) b/a Theory 
p 

0 1 2 

(-1,0) 

0.5 

Present 2079.758 1028.449 780.228 

HSDT* 2080.010 1028.554 780.149 

HSDT** 2079,721 1028,412 780,097 

1 

Present 1437.390 702.251 534.835 

HSDT* 1437.452 702.276 534.807 

HSDT** 1437,361 702,304 534,441 

1.5 

Present 1527.994a 748.988a 569.825a 

HSDT* 1528.089a 749.027a 569.786a 

HSDT** 1527,903a 748,92a 569,751a 

(-1,-1) 

0.5 

Present 1663.807 822.759 624.182 

HSDT* 1664.008 822.843 624.119 

HSDT** 1663,777 822,738 624,158 

1 

Present 718.695 351.126 267.418 

HSDT* 718.726 351.138 267.403 

HSDT** 718,692 351,124 267,416 

1.5 

Present 526.862 256.776 195.714 

HSDT* 526.878 256.782 195.706 

HSDT** 526,861 256,776 195,714 

(-1,1) 

0.5 

Present 2773.011 1371.265 1040.304 

HSDT* 2773.347 1371.406 1040.199 

HSDT** 2772,98 1371,653 1040,519 

1 

Present 2773.011a 1371.265a 1040.304a 

HSDT* 2773.347a 1371.406a 1040.199a 

HSDT** 2772,98a 1371,653a 1040,519a 

1.5 

Present 2773.011b 1371.265b 1040.304b 

HSDT* 2773.347b 1371.406b 1040.199b 

HSDT** 2772,98b 1371,653b 1040,519b 

aMode for plate is (m, n) = (1, 2), *Fekrar et al. (2012) 
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The system of homogeneous Eq. (21) has a nontrivial 

solution only for discrete values of the buckling load. For a 

nontrivial solution, the determinant of the coefficients (Wmn, 

Xmn) must equal zero 

0
4443

3433
=

+

SS
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(23) 

 

 

The resulting equation may be solved for the buckling 

load. This gives the following expression for buckling load 

44

44334334
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SSSS
k

−
=  (24) 

Table 3 The effect of material index (p) and (tFGM/h) on non-dimensional critical buckling load of square hybrid 

functionally graded plate with (a/h=10) under different loading conditions 

)( htFGM
 ),( 21   Theory 

p 

0 0.1 0.2 0.5 1 2 5 10 ∞ 

0 

(-1,0) 
Present 7.5618 7.5618 7.5618 7.5618 7.5618 7.5618 7.5618 7.5618 7.5618 

HSDT* 7.5632 7.5632 7.5632 7.5632 7.5632 7.5632 7.5632 7.5632 7.5632 

(-1,-1) 
Present 

 

.7809 
3.7809 3.7809 3.7809 3.7809 3.7809 3.7809 3.7809 3.7809 

HSDT* 3.7816 3.7816 3.7816 3.7816 3.7816 3.7816 3.7816 3.7816 3.7816 

(-1,1) 
Present 15.0339a 15.0339a 15.0339a 15.0339a 15.0339a 15.0339a 15.0339a 15.0339a 15.0339a 

HSDT* 15.0408a 15.0408a 15.0408a 15.0408a 15.0408a 15.0408a 15.0408a 15.0408a 15.0408a 

0.2 

(-1,0) 
Present 8.5611 8.3968 8.2601 7.9635 7.6805 7.4249 7.216 7.1429 7.0767 

HSDT* 8.5641 8.3996 8.2626 7.9655 7.6818 7.42520 7.2150 7.1411 7.0740 

(-1,-1) 
Present 4.2806 4.1984 4.1301 3.9818 3.8403 3.7124 3.608 3.5714 3.5384 

HSDT* 4.2820 4.2000 4.1313 3.9828 3.8409 3.7126 3.6075 3.5705 3.5370 

(-1,1) 
Present 17.0813a 16.7430a 16.4611a 15.8469a 15.2552a 14.71a 14.2454a 14.072a 13.9013a 

HSDT* 17.095a 16.7562a 16.4733a 15.8565a 15.2614a 14.7118a 14.2411a 14.0641a 13.8888a 

0.4 

(-1,0) 
Present 10.2427 9.8218 9.4722 8.7206 8.0265 7.4470 7.0535 6.9504 6.8801 

HSDT* 10.2454 9.8243 9.4746 8.7225 8.0275 7.4463 7.0493 6.9438 6.8707 

(-1,-1) 
Present 5.1213 4.9109 4.7361 4.3603 4.0132 3.7235 3.5267 3.4752 3.4401 

HSDT* 5.1227 4.9122 4.7373 4.3613 4.0138 3.7231 3.5247 3.4719 3.4354 

(-1,1) 
Present 20.3808a 19.536a 18.8332a 17.3160a 15.8980a 14.6780a 13.7699a 13.4792a 13.2168a 

HSDT* 20.3936a 19.5482a 18.8448a 17.3252 a 15.903 a 14.675 a 13.7512 a 13.4502 a 13.1758 a 

0.6 

(-1,0) 
Present 12.7325 11.9330 11.2697 9.8518 8.5695 7.5563 6.9523 6.8137 6.6783 

HSDT* 12.7333 11.9341 11.2709 9.853 8.5702 7.5551 6.946 6.8039 6.6679 

(-1,-1) 
Present 6.3663 5.9665 5.6348 4.9259 4.2847 3.7782 3.4762 3.4069 3.3391 

HSDT* 6.3667 5.9670 5.6354 4.9265 4.2851 3.7776 3.4730 3.4019 3.3340 

(-1,1) 
Present 25.1446a 23.5741a 22.2687a 19.4666a 16.9027a 14.8089a 13.3907a 12.9505a 12.4865a 

HSDT* 25.1484 a 23.5792 a 22.2746 a 19.47264 a 16.906 a 14.8037 a 13.363 a 12.9086 a 12.4435 a 

0.8 

(-1,0) 
Present 16.1301 14.802 13.7008 11.3549 9.2604 7.6612 6.7618 6.5137 6.0209 

HSDT* 16.1289 14.8014 13.7007 11.3554 9.2608 7.6603 6.7565 6.5073 6.0209 

(-1,-1) 
Present 8.0650 7.401 6.8504 5.6775 4.6302 3.8306 3.3809 3.2569 3.0105 

HSDT* 8.06443 7.4007 6.8503 5.6777 4.6304 3.8302 3.3782 3.2537 3.0105 

(-1,1) 
Present 31.5034a 28.9501a 26.8273a 22.2815a 18.1746a 14.9426a 12.8795a 12.1886a 11.1667a 

HSDT* 31.4984a 28.948a 26.8271a 22.2839a 18.1768a 14.939a 12.857a 12.1622a 11.1671a 

1 

(-1,0) 
Present 20.5341 18.4960 16.8069 13.2159 10.0322 7.6405 6.2504 5.6352 3.4224 

HSDT* 20.535 18.4968 16.8076 13.2165 10.0325 7.6401 6.2476 5.6339 3.4225 

(-1,-1) 
Present 10.2671 9.2480 8.4034 6.608 5.0161 3.8203 3.1252 2.8176 1.7112 

HSDT* 10.2675 9.2484 8.4038 6.6082 5.0163 3.8201 3.1238 2.817 1.7112 

(-1,1) 
Present 39.6144a 35.7697a 32.5716a 25.7292a 19.5895a 14.8615a 11.8698a 10.5713a 6.6024a 

HSDT* 39.6192a 35.7739a 32.5753a 25.7322a 19.5915a 14.86a 11.8583a 10.5663a 6.6032a 

aMode for plate is (m, n) = (1, 2), bMode for plate is (m, n) = (1, 3), *Fekrar et al. (2012), **Bodaghi and Saidi (2010). 
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Fig. 5 The non-dimensional critical buckling load of square 

hybrid functionally graded plate versus the power of FGM 

for three different types of loading with a/h=10 and 

tFGM/h=0.8 
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Fig. 6 The non-dimensional critical buckling load ( N ) of 

square hybrid functionally graded plate versus tFGM/h=0.8 

with a/h=10 and p=1 

Table 4 The effect of material index (p) and side to thickness ratio (a/h) on non-dimensional critical buckling load of 

square hybrid functionally graded plate with (tFGM/h=0.8) under different loading conditions 

a/h ),( 21   Theory 
P 

0 0.1 0.2 0.5 1 2 5 10 ∞ 

10 

(-1,0) 
Present 16.1301 14.802 13.7008 11.3549 9.2604 7.6612 6.7618 6.5137 6.0209 

HSDT* 16.1289 14.8014 13.7007 11.3554 9.2608 7.6603 6.7565 6.5073 6.0209 

(-1,-1) 
Present 8.0650 7.401 6.8504 5.6775 4.6302 3.8306 3.3809 3.2569 3.0105 

HSDT* 8.0644 7.4007 6.8503 5.6777 4.6304 3.8302 3.3782 3.2537 3.0105 

(-1,1) 
Present 31.5034a 28.9501a 26.8273a 22.2815a 18.1746a 14.9426a 12.8795a 12.1886a 11.1667a 

HSDT* 31.4984 a 28.9480 a 26.8271 a 22.2839 a 18.1768 a 14.9390 a 1.857 a 12.1622 a 11.1671 a 

20 

(-1,0) 
Present 16.6871 15.3014 14.1540 11.7169 9.5546 7.9319 7.0951 6.9061 6.4175 

HSDT* 16.6868 15.3012 14.154 11.717 9.5547 7.9316 7.0936 6.9043 6.4175 

(-1,-1) 
Present 8.3435 7.6507 7.0770 5.8584 4.7773 3.9659 3.5476 3.4531 3.2087 

HSDT* 8.3434 7.6506 7.0770 5.8585 4.7774 3.9658 3.5468 3.4521 3.2087 

(-1,1) 
Present 34.1746a 31.3489a 29.0076a 24.0271a 19.5941a 16.2378a 14.4258a 13.9669a 12.9433a 

HSDT* 34.1729 a 31.3482 a 29.0074 a 24.0277 a 19.5946 a 16.2366 a 14.4185 a 13.958 a 12.9833 a 

30 

(-1,0) 
Present 16.7946 15.3976 14.2413 11.7865 9.6112 7.9841 7.1605 6.9841 6.4968 

HSDT* 16.7944 15.3975 14.2413 11.7865 9.6113 7.984 7.1599 6.9832 6.4968 

(-1,-1) 
Present 8.3973 7.6988 7.1206 5.8932 4.8056 3.9921 3.5803 3.4920 3.2484 

HSDT* 8.397 7.6988 7.1206 5.8933 4.8056 3.9920 3.5799 3.4916 3.2484 

(-1,1) 
Present 34.7204a 31.8380a 29.4514a 24.3813a 19.8821a 16.5031a 14.7545a 14.3557a 13.3372a 

HSDT* 34.7196 a 31.8377 a 29.4513 a 24.3816 a 19.8823 a 16.5026 a 14.7511 a 14.3514 a 13.3371 a 

40 

(-1,0) 
Present 16.8325 15.4316 14.2721 11.8110 9.6312 8.0026 7.1837 7.0118 6.5250 

HSDT* 16.8324 15.4315 14.2721 11.8111 9.6312 8.0025 7.1833 7.0113 6.5250 

(-1,-1) 
Present 8.4162 7.7158 7.1361 5.9055 4.8156 4.0013 3.5919 3.5059 3.2625 

HSDT* 8.4162 7.7158 7.1360 5.9055 4.8156 4.0013 3.5917 3.5057 3.2625 

(-1,1) 
Present 34.9156a 32.0129a 29.6100a 24.5078a 19.9849a 16.5981a 14.8732a 14.497a 13.4808a 

HSDT* 34.9151a 32.0127 a 29.61 a 24.508 a 19.985 a 16.5978 a 14.8713 a 14.4945 a 13.4808a 

50 

(-1,0) 
Present 16.8501 15.4473 14.2864 11.8224 9.6405 8.0112 7.1945 7.0247 6.5382 

HSDT* 16.8501 15.4473 14.2864 11.8225 9.6405 8.0111 7.1943 7.0244 6.5381 

(-1,-1) 
Present 8.4251 7.7237 7.1432 5.9112 4.8202 4.0056 3.5973 3.5124 3.2691 

HSDT* 8.425 7.7237 7.1432 5.9112 4.8202 4.0056 3.5971 3.5122 3.2691 

(-1,1) 
Present 35.0067a 32.0945a 29.6840a 24.5668a 20.0329a 16.6424a 14.9288a 14.5633a 13.5483a 

HSDT* 35.0064 a 32.0943 a 29.684 a 24.5669 a 20.033 a 16.6422 a 14.9275 a 14.5618 a 13.5408 a 

aMode for plate is (m, n) = (1, 2), *Fekrar et al. (2012). 
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Fig. 7 The effect of modulus ratio and the power of FGM 

(p=1) on non-dimensional critical buckling load ( N ) of 

square hybrid plate (a/h=10) under uni-axial compression 

along the x-axis ( 0,1 21 =−=  ) with tFGM/h=0.8 
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Fig. 8 The effect of modulus ratio and the FGM layer 

thickness (tFGM/h) on non-dimensional critical buckling load 

( N ) of square hybrid plate (a/h=10) under uni-axial 

compression along the x-axis ( 0,1 21 =−=  ) with p=1 
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Fig. 9 The non-dimensional critical buckling load of square 

hybrid functionally graded plate versus the Symmetric S-

FGM for three different types of loading with a/h=5 
 

 

By employing the Eq. (23), the following expression for 

critical buckling load is determined 
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3. Numerical results and discussions 
 

In this part, the buckling study of hybrid functionally 

graded plate (ceramic-FGM-metal) is presented, for 

convenience, the following non-dimensional buckling load 

is utilized 

3
2

2

hE

aN
N cr=  (26) 

Table 5 The variation of the critical buckling load Ncr(MN/m) of symmetric S-FGM plate as function of the geometry 

(a/h) and dimension (b/a) ratios 

),( 21   b/a a/h 
p 

0 0.1 0.2 0.5 1 2 5 10 

(-1,0) 

0.5 
10 346.626 596.729 787.223 1168.493 1503.366 1780.511 1977.262 2034.639 

5 1013.749 1596.665 2024.656 2909.524 3776.341 4628.765 5424.033 5745.541 

1 
10 239.565 424.258 567.430 852.237 1092.888 1278.46 1394.162 1421.39 

5 826.349 1389.326 1812.725 2665.856 3438.599 4112.494 4634.953 4806.456 

1.5 
10 254.666a 447.471a 596.165a 892.397a 1145.46a 1344.668a 1473.860a 1506.517a 

5 837.080a 1378.468a 1781.791a 2600.223a 3360.999a 4052.681a 4625.764a 4829.492a 

(-1,-1) 

0.5 
10 277.301 477.383 629.779 934.795 1202.692 1424.409 1581.81 1627.711 

5 810.999 1277.332 1619.725 2327.619 3021.073 3703.012 4339.226 4596.433 

1 
10 119.782 212.129 283.715 426.118 546.444 639.23 697.081 710.695 

5 413.175 694.663 906.362 1332.928 1719.299 2056.247 2317.477 2403.228 

1.5 
10 87.810 156.422 209.82 315.936 404.860 472.349 513.127 522.145 

5 314.414 537.750 707.231 1047.024 1348.055 1600.960 1785.207 1840.936 

(-1,1) 

0.5 
10 462.169 795.638 1049.631 1557.991 2004.487 2374.015 2636.35 2712.852 

5 1351.665 2128.887 2699.542 3879.365 5035.121 6171.687 7232.043 7660.722 

1 
10 462.169a 795.638 a 1049.631 a 1557.991a 2004.487a 2374.015a 2636.35 a 2712.852a 

5 1351.665 a 2128.887 a 2699.542 a 3879.365a 5035.121 a 6171.687a 7232.043a 7660.722a 

1.5 
10 462.169 b 795.638 b 1049.631 b 1557.991 b 2004.487 b 2374.014 b 2636.35 b 2712.852 b 

5 1351.665b 2128.887 b 2699.542 b 3879.365 b 5035.121 b 6171.687 b 7232.043 b 7660.722 b 

aMode for plate is (m, n) = (1, 2), bMode for plate is (m, n) = (1, 3). 

668



 

A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates 

 

 

0 2 4 6 8 10 12 14 16 18 20

0

10

20

30

40

50

60

N

E
C
/E

M

 p=0

 p=0,5

 p=1

 p=2

 p=5

 p=10

 

 

 
Fig. 10 The effect of modulus ratio on non-dimensional 

critical buckling load ( N ) of square Symmetric S-FGM 

plate (a/h=5) under uni-axial compression along the x-axis (

0,1 21 =−=  ) 

 

 

where a is the length of the square plate and h is the 

thickness of the plate. 

Table 2 presents the critical buckling loads Ncr(MN/m) 

of all FGM plate (h=tFGM), as a function of the dimension 

ratio (b/a) and the materiel index (p). A comparison is made 

between the results obtained by the present model and those 

found by Bodaghi and Saidi (2010) using the Levy solution 

and those obtained by Fekrar et al. (2012) based on high 

order shear deformation plate theory with four variable. The 

obtained results are in good agreement with the models 

already developed by Bodaghi and Saidi (2010) and Fekrar 

et al. (2012). 

In Tables 3 and 4, we have presented the non-

dimensional values of the critical buckling load of hybrid 

square plate subjected to axial forces (uni -axial  
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Fig. 11 The effect of side-to thickness and modulus ratio on 

non-dimensional critical buckling load of Symmetric S-

FGM plate under uni-axial compression along the x-axis (

0,1 21 =−=  ) with p =2 

 

 

compression, bi-axial compression, compression along the 

x-axis and a tension along the y-axis) as function of the 

material index (p), the results are compared with those 

obtained by Fekrar et al. (2012). It should be noted that a 

good concordance is confirmed with the results of Fekrar et 

al. (2012) and this for the different values of the FGM layer 

thickness (tFGM) and the geometry ratio )( ha . 

Fig. 5 illustrate the effect of materiel index (p) on the 

non-dimensional critical buckling load under the 

differentload types with (a/h=10) and (tFGM/h=0.8) it can be 

seen that the no-dimensional values of the critical buckling 

load are in inverse relation with the materiel index (p). 

The variation of the non-dimensional critical buckling 

load as function of FGM layer thickness (tFGM) is shown in 

Fig. 6. It can be observed that the critical buckling load ( N

Table 6 The effect of fraction index (p) and geometry ratio (a/h) on the non-dimensional critical buckling load of square 

symmetric S-FGM plate under different types loading conditions 

a/h ),( 21   
P 

0 0.1 0.2 0.5 1 2 5 10 

5 

(-1,0) 2.9512 4.9619 6.4740 9.5209 12.2807 14.6875 16.5534 17.1659 

(-1,-1) 1.4756 2.4809 3.2370 4.7605 6.1404 7.3437 8.2767 8.583 

(-1,1) 4.8274a 7.6032a 9.6412a 13.8549a 17.9826a 22.0417a 25.8287a 27.3597a 

10 

(-1,0) 3.4224 6.0608 8.1061 12.1748 15.6127 18.2637 19.9166 20.3056 

(-1,-1) 1.7112 3.0304 4.0531 6.0874 7.8063 9.1319 9.9583 10.1528 

(-1,1) 6.6024a 11.3663a 14.9947a 22.2570a 28.6355a 33.9145a 37.6621a 38.7550a 

20 

(-1,0) 3.565 6.4174 8.6537 8.6539 16.7536 19.4521 20.9859 21.2815 

(-1,-1) 1.7825 3.2087 4.3268 6.5454 8.3768 9.7261 10.493 10.6407 

(-1,1) 7.2754a 12.9874a 17.4393a 26.2834a 33.6725a 39.2479a 42.5773a 43.2957a 

50 

(-1,0) 3.6071 6.525 8.8207 13.3729 17.104 19.8134 21.3065 21.572 

(-1,-1) 1.8036 3.2625 4.4103 6.6865 8.552 9.9067 10.6532 10.786 

(-1,1) 7.4895a 13.5289a 18.2756a 27.6898a 35.4216a 41.0601a 44.1955a 44.7670a 

100 

(-1,0) 3.6132 6.5407 8.8451 13.4142 17.1552 19.8662 21.3531 21.6141 

(-1,-1) 1.8066 3.2703 4.4225 6.7071 8.5776 9.9331 10.6765 10.8071 

(-1,1) 7.5211a 13.6100a 18.4018a 27.9032a 35.6866a 41.3329a 44.437 a 44.9855a 

aMode for plate is (m, n) = (1, 2). 
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) increases with increasing of the plate core thickness 

(tFGM), and it can be seen that the largest values of the non-

dimensional critical buckling load ( N ) are obtained for bi-

axial loading with compression along x-axis and tension 

along y-axis. 

The effects of the modulus ratio (Ec/Em) and the 

variation of the FGM layer thickness (tFGM/h) on the non-

dimensional critical buckling load ( N ) of hybrid square 

plate are shown in Figs. 7 and 8, respectively. It can be 

observed that the critical buckling load ( N ) increases with 

the increase of the FGM layer thickness (tFGM/h) and 

modulus ratio (Ec/Em). 

This second part is devoted to the study of the stability 

of the rectangular plate symmetric S-FGM. The variation of 

the critical buckling load Ncr(MN/m) of symmetric S-FGM 

plate as a function of the geometry ratio (a/h) and 

dimension ratio (b/a) is presented in Table 5 for the 

different loading types (uni-axial, bi-axial), it can be 

observed the  critical buckling load Ncr(MN/m) is in direct 

correlation relation with the fraction index (p), it should be 

noted that the lowest values of the critical buckling load 

Ncr(MN/m) are obtained for the square plate. 

The effect of fraction index (p) and the geometry ratio 

(a/h) on the non-dimensional critical buckling load of 

square symmetric S-FGM plate is shown in Table 6, it 

canbe seen that the critical buckling load ( N ) increases 

with the increase of the geometry ratio and the largest 

values are obtained for a most important material index (p). 

Fig. 9 shows the variation of the non-dimensional 

critical buckling load of the square symmetric S-FGM plate 

for three types of loading under the effect of power (p) with 

geometry ratio (a/h=5), it should be noted that the non-

dimensional critical buckling load ( N ) is in direct 

correlation relation with the material index (p), the lowest 

values of the critical buckling load ( N ) are obtained for bi-

axial compression loading, on the other hand a bi-axial 

loading with compression along the x-axis and tension 

along y-axis gives the largest values of the critical load ( N

). 

The effects of the modulus and the geometry ratios on 

the variation of the non-dimensional critical buckling load (

N ) are shown in the Figs. 10 and 11, the plate are subjected 

to normal compressive forces along the x-axis (

0,1 21 =−=  ), we observe that the non-dimensional 

critical buckling load ( N ) increases with increasing 

modulus ratio (Ec/Em) and geometry (a/h) ratio. 
 

 

4. Conclusions 
 

In this research work, buckling analysis of thick 

symmetric S-FGM and hybrid plates has been presented, 

based on a novel four variables refined plate theory. 

Governing equations are obtained from the principle of 

virtual works. Closed-form solutions are obtained for 

simply supported functionally graded plates. The accuracy 

of the developed model has been checked for stability of 

functionally graded plates. Other mathematical modelling 

and numerical methods (Rehab et al. 2018, Henderson et al. 

2018, Wang et al. 2018, Cherif et al. 2018) can be used in 

future to investigate this type of problem applied to FGM 

structures. Finally, an improvement of present approach will 

be considered in the future study to account for the 

thickness stretching effect by using quasi-3D shear 

deformation models (Belabed et al. 2014, Bousahla et al. 

2014, Hebali et al. 2014, Bourada et al. 2015, Hamidi et al. 

2015, Larbi Chaht et al. 2015, Bennoun et al. 2016, Draiche 

et al. 2016, Benahmed et al. 2017, Bouafia et al. 2017, 

Sekkal et al. 2017b, Bouhadra et al. 2017, Karami et al. 

2018i, j, Shahsavari et al. 2018c, d, Abualnour et al. 2018, 

Younsi et al. 2018, Benchohra et al. 2018, Zaoui et al. 

2019). 
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