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1. Introduction  
 

The seismic behavior of concrete dams subjected to 

earthquake loading cannot be accurately evaluated by only a 

nonlinear dynamic analysis. The results of such an analysis 

for concrete dams depend on such different factors as 

earthquake records, dam and foundation materials, 

interaction effects, reservoir depth and other factors. So, in 

evaluation of dam safety, we need to take a lot of uncertain 

factors into account. In addition to a nonlinear analysis, a 

probability analysis on dam safety seems to be necessary. 

Seismic fragility curve is a probabilistic damage analysis 

method which shows the effect of uncertainty on results. 

The fragility curves have been previously extracted in 

the studies of power plant tanks, steel and concrete frames 

and bridges, but these curves are newly employed for 

concrete dams, and especially arch concrete dams. 

Ellingwood, and Tekie (2001) evaluated fragility curves for 

Bluestone gravity concrete dam. They extracted the curves  
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for 12 different earthquake records, and evaluated the 

uncertain effects such as the interaction ratio of pressure 

and friction between the dam and its foundation on these 

curves. They used concrete damage in dam neck, 

foundation around the dam toe, foundation and dam sliding, 

and crown to toe displacement as four damage indexes. Lin 

and John (2008) evaluated the seismic vulnerability of 

concrete gravity dams, earth fill dams and rock fill dams in 

Canada according to their fragility curves. The most 

obvious results obtained from the curves were showed that 

for an equivalent seismic movement, earth fill and rock fill 

dams have a higher vulnerability probability than concrete 

gravity dams. Ghaemian and Mirzahossein Kashani (2008) 

conducted a fragility analysis using nonlinear analyses on 

Pine Flat concrete gravity dam. They used six near field 

earthquake records and two foundation models (mass-less 

and massive). They employed the log normal statistical 

distribution to extract fragility curves. The crack lengths 

between the foundation and dam base and the total area of 

the cracked elements in the dam body were selected as 

damage indexes. The results of the study indicated that the 

probability of the first structural limiting state-i.e., the 

limitation of the crack length at the base of the dam-was 

about 23% in mass-less foundation model and in a massed 

one it was 10%. When using the second structural limiting 

state-i.e., the area of cracked elements in the dam body-the 

probabilities of the second structural limiting state in the 

model with a mass-less foundation and a massed foundation 
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Abstract.  In the present study, a methodology for developing fragilities of arch concrete dams to assess their performance 

against seismic hazards is introduced. Firstly, the probability risk and fragility curves are presented, followed by implementation 

and representation of the way this method is used. Amirkabir arch concrete dam was subjected to non-linear dynamic analyses. 

A modified three dimensional rotating smeared crack model was used to take the nonlinear behavior of mass concrete into 

account. The proposed model considers major characteristics of mass concrete. These characteristics are pre-softening behavior, 

softening initiation criteria, fracture energy conservation, suitable damping mechanism and strain rate effect. In the present 

analysis, complete fluid-structure interaction is included to account for appropriate fluid compressibility and absorptive reservoir 

boundary conditions. In this study, the Amirkabir arch concrete dam is subjected to a set of 8 three-component earthquakes each 

scaled to 10 increasing intensity levels. Using proposed nonlinear smeared crack model, nonlinear analysis is performed where 

the structure is subjected to a large set of scaled and un-scaled ground motions and the maximum responses are extracted for 

each one and plotted. Based on the results, fragility curves were plotted according to various and possible damages indexes. 

Discrete damage probabilities were calculated using statistical methods for each considered performance level and incremental 

nonlinear analysis. Then, fragility curves were constructed based on the lognormal distribution assumption.  Two damage 

indexes were introduced and compared to one another. The results indicate that the dam has a proper stability under earthquake 

conditions at MCE level. Moreover, displacement damages index is more conservative and impractical in the fragility analysis 

than tensional damage index. 
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model are closer to one another. Kang and Lee (2016) 

proposed a new structural damage index for seismic 

fragility analysis of reinforced concrete columns. The 

proposed damage index is formulated based on the 

nonlinear regression of experimental column test data. 

Mehan et al. (2013) presented the assessment of seismic 

fragility curves for reinforced concrete buildings. Analytical 

seismic fragility curves for RC buildings were determined 

based on post-earthquake survey. The information about the 

damaged RC buildings was investigated and evaluated by 

experts. Using the field observed damage data, the Japanese 

Seismic Index Methodology, and the capacity design 

method, seismic fragility curves were developed for those 

buildings. Karim and Yamazak (2001) are the pioneers of 

presenting fragility curves for bridges. They assumed the 

bridge column as a free one degree system and evaluated 

the effect of two accelerations from two different codes. 

The analytical fragility curves were compared with the 

empirical ones. The empirical fragility curves cannot 

introduce various structural parameters and characteristics 

of input motion, and they require a large amount of actual 

damage data for a certain class of structures. Hence, the 

analytical method employed in this study may be used in 

constructing the fragility curves for a class of bridge 

structures, which are not affected by earthquake so often. 

The results showed that the damage probabilities for both 

codes were nearly equal and the damage probabilities for 

codes were more than that of 1998 earthquake in Japan. 

Shinozuka et al. (2007) improved the fragility curves for 

multi-span reinforced concrete bridges. They used time 

history dynamic analyses in their research and fragility 

curves were produced based on two assumptions: 1) bridge 

was symmetric and all the piers were located on the same 

soil type 2) the soil under the piers was not homogenous. 

The fragility curves were improved by altering the soil type 

under the bridge piers. This report integrates statistical and 

analytical methods for the seismic performance evaluation 

of highway transportation networks. In this report, the 

application of fragility curves in the performance-based 

design of bridges was demonstrated. The design-acceptance 

criteria were suggested that verified the target performance 

of a newly designed bridge under a prescribed level of 

seismic hazard. Borekci and Kircil (2011) investigated 

fragility of R/C frame buildings. They considered different 

types of hysteretic models. Discrete damage probabilities 

were calculated using elastic spectral displacement. 

Furthermore, the effect of hysteresis model parameters on 

the damage probability was investigated. Last but not least, 

Jovanoska (2000) obtained the fragility curves for 

reinforced concrete structures. As a result of the analytical 

research, the values of the global damage index were 

determined. Using the data from the nonlinear dynamic 

analyses, the two sets of fragility curves and damage 

probability matrices were defined. Kadkhodayana et al. 

(2015) applied IDA approach to analyze a thin high arch 

dam. The parameters of Sa, PGA and PGV were used as 

intensity measures and the overstressed area was utilized as 

engineering demand parameter. Then, three limit states 

were assigned to the considered structure using the IDA 

curves. Subsequently, fragility curves were calculated. It 

was showed that the PGA is a better parameter to measure 

intensity. Moreover, it was found that-utilizing the proposed 

methodology-quantifying the qualitative limit states is 

possible. Hariri-Ardebili and Saouma (2016) presented the 

probabilistic seismic demand model (PSDM) which 

demonstrated the relationship between the intensity and the 

engineering demand parameter (EDP) (such as 

displacement and crack ratio-ratio of crack length to total 

crack pat). Then, cloud analysis is performed where the 

structure is subjected to a large set of un-scaled ground 

motions and the maximum responses were extracted for 

each one and plotted as a cloud of results. When the results 

of the cloud analysis were aggregated, it became possible to 

plot the seismic fragility curve which was the probability of 

EDP exceedance in terms of the IM parameter. Alembagheri 

and Ghaemian (2013) presented seismic damage of concrete 

arch dams by applying the Incremental Dynamic Analysis 

method. The performance and various limit-states of the 

structure are evaluated and simple damage indices were 

proposed through comparison of response demands in 

earthquake analysis with the determined structural 

capacities. It was found that the proposed damage indices 

can properly indicate state of damage in the dam body. 

Pekau et al. (1991) used a model, based on linear elastic 

fracture mechanics theory, to simulate the nonlinear 

behavior of gravity dams. The boundary element method 

was used to discretize dam and reservoir domain. It was 

concluded that procedures proposed to simulate the impact 

effect of crack-closing predicted complete penetration of the 

crack through the upper part of the dam, which is consistent 

with the observed prototype behavior. Feng and Pekau 

(1996) investigated cracking of gravity dams using linear 

elastic fracture mechanics and boundary element method. 

The Kolnbrein arch dam was considered for case study. It 

was also noted that the bonded condition at the interface 

between the dam and the upstream elevated foundation was 

responsible for producing the distinctive profile of the 

observed crack, which daylights on the upstream face at an 

acute angle. Al-Eidi and Hall’s (1996a, b) studies were 

probably the first to employ nonlinear fracture mechanics to 

simulate concrete dam behavior. The considered nonlinear 

behaviors involved concrete cracking and fluid cavitations 

in the reservoir. The pore pressure was considered in the 

cracks. The results showed that cavitation had a negligible 

effect on the dam response, while cracking was significant 

in dam response. Gunglun et al. (2000) proposed a smeared 

crack model based on bezant’s crack band theory. 

Furthermore, a technique of finite element re-mesh was 

presented for a better accommodation of the crack 

extension. In addition, several features of the present 

analysis, influencing the predicted concrete fracture 

process, were also studied. Battacharjee and Leger (1992) 

used a smeared crack model to conduct a seismic analyze of 

concrete gravity dams. A review of the past finite element 

seismic fracture analyses of concrete gravity dams reveals 

that reliable numerical models for safety evaluation of the 

structures during severe ground motions have not been 

satisfactorily developed yet. Ghrib and Tinawi (1995) 

proposed a new model based on continuum damage 

mechanics for seismic fracture analysis of gravity dam. 
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Only one damage variable was considered for tensional 

damage. A constitutive model for plain concrete, subjected 

to tensile stresses, was presented. The mesh‐dependent 

hardening technique was adopted so that the fracture energy 

dissipation could not be affected by size of the finite 

element mesh. The results confirmed the importance of 

accounting for the initial state for the seismic safety 

evaluation of an existing dam. Faria et al. (1998) proposed a 

3-dimensional damage mechanics model for analysis of 

gravity and arch concrete dam. Concrete was modeled by an 

isotopic model that capable of incorporating tensional and 

compression damage. The efficiency of numerical 

predictions made by the constitutive model was illustrated 

through numerical applications. Among the possible outputs 

from the model, the structural distributions of both tensile 

and compressive damage variables provided helpful tools 

for the identification of the most affected concrete domains. 

Mizabozorb (2005) used a three dimensional damage 

mechanics model to investigate nonlinear behavior of 

concrete arch dam. Morrow Point dam was analyzed in a 

case study to consider its nonlinear seismic behavior. The 

deduced results showed that the resulting crack profiles 

were in good agreement with the contour of maximum 

principal stresses and no numerical instability occurred 

during the analysis. Oudni and Bouafia (2015) investigated 

the earthquake damage response of the concrete gravity 

dams. The proposed damage model took the dissymmetry 

of the behavior of concrete, cracking in tension, and rupture 

in compression into account. Two dimensional seismic 

analysis of Koyna gravity dam was presented using the 

1967’s Koyna earthquake records. The results were shown 

on the time history graphs of the horizontal and vertical 

displacements in the crest of the dam. Hariri-Ardebili et al. 

(2013) proposed an improved 3D co-axial rotating smeared 

crack model with the ability of updating the variable shear 

transfer coefficient. It was found that the proposed model 

led to less diffused cracks in concrete dams and matched 

reasonably with the results obtained from experimental 

tests. Omidi et al. (2013) utilized two different damping 

mechanisms to examine the seismic cracking response of 

concrete gravity dams by a plastic-damage model. It was 

concluded that employing the damage-dependent damping 

mechanism led to more extensive damages and also 

predicted more reliable crack patterns than the constant 

damping mechanism in seismic analysis of concrete dams. 

Lu et al. (2016) proposed a three-dimensional elastoplastic 

constitutive model for concrete using hardening and 

softening functions which were determined from the 

uniaxial compressive stress-strain relationship. The 

simulations showed that the proposed constitutive model 

was able to describe the nonlinear mechanical behavior 

under complex stress states with high computational 

efficiency.  

In the upcoming sections of this paper, the basic 

concepts and employed models will be briefly explained. In 

the present study, a modified three-dimensional smeared 

crack model was used to take the nonlinear behavior of 

mass concrete into account. The proposed model considered 

major characteristics of mass concrete under three-

dimensional loading conditions. These characteristics were 

pre-softening behavior, softening initiation criteria, fracture 

energy conservation, suitable damping mechanism and 

strain rate effect. After model verification, the nonlinear 

dynamic analysis of Amirkabir arch concrete dam was 

carried out and seismic fragility curves was extracted, based 

on deduced results and proposed models. Finally, safety 

evaluation of dam was presented, based on the fragility 

curves. Seismic fragility curves were plotted according to 

various and possible damages for arch concrete dams. Two 

damage indexes were introduced and compared to one 

another. The deduced results showed that displacement 

damages index was a more conservative and impractical 

index in the fragility analysis compared to tensional damage 

index. 

 

 

2. Basic concepts and methodology 
 

2.1 Proposed crack model 
 

A comprehensive numerical model in fracture 

mechanics analysis of mass concrete should be able to 

simulate the behavior of concrete in three different 

conditions: Pre-softening, softening and crack 

closing/reopening. Based on previous studies, a reliable 

smeared crack model must possess some minor but 

important components such as: softening initiation criteria, 

fracture energy conservation, damping mechanism for 

cracked element, characteristic length and dynamic 

magnification factors for concrete parameters. 

 

2.1.1 Pre-softening behavior modeling 
In this study, linear elastic behavior is considered at the 

pre-softening stage of mass concrete. 

 

2.1.2 Softening initiation criterion 
The uniaxial strain energy has been used as the 

softening initiation criterion. This criterion considers the 

effects of other components of stress and strain and it is 

successfully used in the static and dynamic analysis of 

concrete dams (Moradloo 2007, Omidin et al. 2013, Harir et 

al. 2013, Mirzabozorg 2005, Gunglun et al. 2000). Based 

on this criterion, the crack initiates when the uniaxial strain 

energy density is greater than material parameter 

0UU   (1) 

Where U is uniaxial strain energy density and equals to 

112
1 =U  (2) 

σ1, ε1 are the first principal stress and strain of an 

integration point, respectively. U0 is material parameter and 

equals to 

000 2
1 =U  (3) 

Where 𝜎0 ,𝜖0  are the apparent tensile strength and its 

corresponding strain, respectively. Since the pre-peak stress 

-strain relationship is assumed to be linear, the apparent 

tensile strength is calibrated in such a way that a linear 

elastic uniaxial stress-strain relationship up to σ0 will  
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 The Integration  point has 

not already  experienced 

cracking

Indcr = 0 

Calculate internal forces

Select one integration point 

to cracking or allowing  all  

candidate points to cracking

Correct stresses 

Calculate Ds Matrix from 

Eq. 9

The integration Point   has 
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Determine Point state from Fig. 2
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Elastic Behavior
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Fig. 1 Stress, stiffness matrix and internal forces calculation 

algorithm 

 

 

preserve the value of U0. The above relations are valid 

under static loading conditions. For dynamic loading, 

material parameter is multiplied by a dynamic 

magnification factor DMFt. 

 

2.1.3 Softening behavior 
After Crack initiation, the isotropic constitutive matrix 

is replaced with an orthotropic constitutive matrix, while 

their components are determined by stiffness degradation 

levels corresponding to three principal direction stresses. In 

present study, the SMS (Secant Module Stiffness) approach 

is employed to formulate stiffness in which the constitutive 

relation is defined in terms of total stress and strain. Based 

on SMS formulation, the total strains on crack plane {Δε} is 

decomposed into elastic {Δεco} and cracking {Δεcr} 

components 

     crco  +=  (4) 

The superscript ‘co’ corresponds to the elastic 

components of total strain and superscript ‘cr’ corresponds 

to cracked portion of total strain. The cracked strain is 

related to the corresponding cracked stress using the 

cracked constitutive matrix [Dcr] as follows 

     crTcrcr D  =  (5) 

After some algebraic operations cracked constitutive matrix 

[Ds] in the global coordinates system is given based on 

Moradloo (2007), Harir et al. (2013), Mirzabozorg (2005) 

                  coTcoTcrcoco

s DTTDTDTDDD
1−

+−=  (6) 

Where [Dco] is the intact module matrix and [T] is the 

transformation matrix which transforms the vector of 

cracked strain to the global coordinate direction. This 

matrix in rotating crack model (RCM) is changed in every 

iteration, but in fixed crack model (FCM) it is constant after 

first crack initiation. In a special case, where normal crack 

plane is parallel to the global x direction and the two other 

tangential local directions are parallel to the other global 

directions, the total secant matrix in local co-ordinates is 

given as 
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The constitutive matrix in global coordinate system can 

be obtained as follows 

       TDTD nst

T

s =  (9) 

Matrix [T] was introduced earlier. Based on the 

maximum strain reached in each principal direction, the 

secant module matrix is determined as shown in figure 1. 

Increasing the normal strain in each direction leads to 

reduction of corresponding softened young’s modules. 

Finally, when the maximum strain reaches the fracture 

strain, integration point in the corresponding direction is 

fully cracked and the softened young modules are set at 

zero.   

In above equations, βij are shear retention factors. In the 

earliest three-dimensional smeared crack models, it was 

assumed that the softened shear module in two tangential 

directions was zero. In some situations, it could lead to 

numerical problems. Some of the scholars assumed various 

empirical descending relations for shear module versus 

normal strain. In the proposed formulation, based on the 

concept of co-axially of fracture plane and principal stress, 

shear retention factors can be calculated easily 

)(2 21

21





−

−
=sG  (10) 

Where Gs is the softened shear module corresponding to 

i-j axes on the fracture plane and σi, εi are principal stresses 
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and strains corresponding to the principal directions of j and 

j. Using Eqs. (7) and (10), the stress-strain relationship in 

three-dimensional space is given as follows 
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Combining Eqs. (10) and (11), the shear retention 

factors in Eq. (7) are determined as follows 
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(12) 

 

2.1.4 Crack closing/reopening behavior 
Various models are proposed to model 

loading/unloading in smeared crack approach (Moradloo 

2007, Hariri et al. 2013, Mirzabozorg 2005, Gunglun et al. 

2000). In the present study, the closing/reopening criterion 

is based on value of the principal strains. It has been shown 

that under cyclic loads there is residual strain in the closed 

crack. Based on this concept, the total strain can be 

decomposed into two components of recoverable elastic and 

residual strain given as 

max +=+= erese  (13) 

Where εmax is the maximum principal strain that point 

has experienced during the previous loading and λ is the 

ratio between residual strain in the closed crack and the 

maximum principal strain and is usually assumed to be 0.2. 
 

2.1.5 Damping mechanism for cracked element 
It has been shown that conventional Rayleigh damping 

model could lead to numerical problems in seismic crack 

analysis. It is mainly evident from mass proportional 

component of damping. In the present study, the Elasto-

Brittle Damping (EDM) and Linear Damping models 

(LDM) are employed. In EDM model, damping of cracked 

point equals zero, and in LDM model damping of cracked 

point is proportional to current stiffness of material. 
 

2.1.6 Characteristic length  
In the present study, it is assumed that the mesh size 

property- measured by the characteristic length- is equal to 

the cubic root of volume affected by integration point as 

Jwwwh kjic det3=  (14) 

 

2.1.7 Fracture energy conservation 
Fracture energy conservation is preserved once the 

following fracture strain is used 
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Fig. 2 The proposed algorithm for state determination of 

integration point 

 

 

Where: εf, Gf, hc, ft are ultimate uniaxial strain, fracture 

energy, characteristic length and uniaxial tensile strength, 

respectively. In dynamic loading, material parameters are 

magnified by related dynamic magnification factors. 
 

2.1.6 Dynamic magnification factors for concrete 

parameters  

It is shown that material parameters of concrete in 

dynamic loading are different from static values. It mainly 

originates from fact that in dynamic loading crack passes 

across aggregate and because of its strength, module of 

elasticity and fracture toughness will increase. A few studies 

were carried out based on viscoelastic models to consider 

strain rate effects on concrete behavior (Faria et al. 1998, 

Omidi et al. 2013). In the present study, strain rate effects 

are modeled by proper dynamic magnification factors. In 

this way, dynamic material parameters are given as 

ff GDMFgG = , 
tt fDMFtf =  , 

EDMFeE =  
(16) 

Where primed parameters relate to dynamic values.  
 

2.1.7 Proposed crack algorithm 
In the present paper, a rotating smeared crack model, 

based on above relations, is presented. Cracking is 

considered in integration points. The implementation of the 

proposed smeared crack constitutive model is illustrated by 

Figs. 1 and 2 which show all the operations needed to 

evaluate the stiffness matrix, residual internal forces and 

state of integration points. Fig. 1 represents the calculation 

of stiffness matrix and internal forces. Crack state 

determination flowchart is presented in Fig. 2. 
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2.2 Fluid structure interaction  
 

The governing equation for fluid domain is the 

Helmholtz equation for hydrodynamic pressure 

P
C

P 
2

2 1
=  (17) 

Where P, C are the hydrodynamic pressure and the 

acoustic wave velocity in water, respectively. The above 

equation implies small displacements of inviscid 

compressible fluid with an irrotational motion. Water 

compressibility has a significant influence on the fluid-

structure interaction for a wide range of ratio of natural 

frequencies of structure to fluid domain, including the case 

of higher and stiffer dams (Ghaemian et al. 1998). Thus, for 

general applicability and completeness of the dam-reservoir 

formulation, one needs to include the reservoir water 

compressibility.  

Boundary conditions for Helmholtz equation in a 

concrete dam-reservoir interaction problem are expressed as 

0
1

=







+





=y

P
gy

P   (18) 

That is called Cauchy Boundary Condition for the 

reservoir-free surface, 

t

P

C
v

n

P
gn




−−=








1
  

(19) 

For the reservoir bottom partial absorption and normal 

component of earthquake records  

t

P

C
P

hx

P




−−=



 1

2


 (20) 

For the reservoir upstream face radiation of acoustic 

waves, and 

n

P
ans




−=


  (21) 

For the interaction boundary between dam and reservoir. 

In the above equations, z is the vertical coordinate, β is 

the acoustic impedance ratio of rock to water, n is the vector 

perpendicular to the boundary, ρ is the mass density of 

water, g is the gravitational acceleration, and nsa


 is the 

absolute acceleration of dam upstream face in the normal 

direction. Here, we have assumed that the hydrodynamic 

waves satisfy the 1-D wave propagation Eq. (20), through 

the upstream reservoir near-field truncation surface. If we 

ignore the first term at right hand of Eq. (20), this 

boundary-sometimes known as the Sommerfeld or viscous 

boundary-performs well in time domain analysis when 

applied sufficiently far from the structure. The above 

equations along with the governing equation for the 

structure would lead to a simultaneous differential 

equations set for the coupled dam–reservoir system. These 

equations are discretized by the finite element method in a 

standard way similar to that of Ref (Ghaemian et al. 1998). 
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values  of normal acceleration   in previous 

iteration 

Construct of fluid 
domain equations

No

 

Fig. 3 The proposed staggered algorithm for fluid-structure 

interaction calculations 

 

 

To avoid prohibitively high number of nonsymmetrical 

equations with a large bandwidth, the modified staggering 

solution method is employed (Moradloo 2007). 

The implementation of the proposed staggered method 

is illustrated in Fig. 3 which shows all the operations 

needed to evaluate the necessary vectors and matrixes for 

fluid and structure domain, as well as needed iteration and 

criterion for terminating calculations. Here, the 

displacement and the pressure fields are solved alternatively 

in each time step to meet the “inter-domain compatibility” 

or convergence criteria (Fig. 3). 

 

2.3 Computer implementation 
 

The proposed models were implemented by finite 

element code GFEAP (Generalized Finite Element Code 

Program). GFEAP has capabilities of time history nonlinear 

dynamic analysis of arch dam, considering material, 

geometrical and construction joint nonlinearity and fluid 

structure interaction. It was prepared by writers fora 

complete nonlinear dynamic analysis of gravity and arch 

concrete dams, and it was developed based on the 

framework of FEAPpv program (Zienkiewicz and Taylor 

2000) 

 

2.4 Verification of models  
 

The validity of the proposed models and numerical 

algorithms was checked using the available numerical 

results. Only one test is provided here. This model is a 

tension beam in which the ultimate load resistance is 

checked under direct displacement control approach in 

order to verify proposed smeared crack model. The three- 
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Fig. 4 Geometry and finite element mesh of the tension 

beam 

 

 

Fig. 5 Displacement distribution for prescribed 

displacement equal to 0.00004 m 

 

 

Fig. 6 Strain distribution for prescribed displacement equal 

to 0.00004 m 

 

 

dimensional tension beam with unit thickness was tested 

under tension prescribed displacement (Fig. 4). The values 

used for material parameters module of elasticity, poison 

ratio, tensile strength and the specific fracture energy were 

assumed as 20 GPa, 0, 2.0 MPa and 40 N/m, respectively. 

Strength of two elements near to supports was reduced for 

5% to concentrate the fracture on these elements. The 

displacement and strain distributions are illustrated in Figs. 

5 and 6, respectively. As shown in these figures, localization 

of strain and softening is evident in weakened elements. 

The displacement-load curve is presented in Fig. 7. As 

shown in these figures, the ultimate load is 95 KN (Fig. 7) 

which is equal to the analytical solution. The stress-strain 

curve of softened integration point is presented in Fig. 8. As 

shown in this figure, ultimate stress of weakened element 

(1.9 MPa) is precisely estimated. Moreover, softening 

behavior of concrete is precisely depicted. By calculating 

the area under the strain-stress curve and multiplying it by 

the characteristic length of the integration points (Eq. (14)), 

the value of specific fracture energy is calculated as 40 N/m 

which is equal to the actual value for the employed 

material. Moreover, based on the Eq. (15), the ultimate 

 

Fig. 7 Load-displacement curve for tension beam test 

 

 

Fig. 8 Stress-strain curve of softened element 

 

 

strain of concrete is estimated similar to ultimate strain in 

Fig. 8. Based on this figure, ultimate stress, crack initiation, 

fracture energy conservation and softening behavior are 

properly modeled. 
 

 

4. Case study modeling, application on concrete 
arch dams 
 

In this section, the nonlinear behavior of Karaj arch 

concrete dam is being studied by application of the models 

discussed above. The dam is 168 m high and the width of 

valley at crown elevation is 384 m on the Karaj River in 

Karaj, Iran. The thickness of the crown is 7.85 m and base 

of the dam is 32 m. This dam is an approximately 

symmetric, single-centered arch dam. Detailed geometry of 

this dam is provided in Mahab Gods (1990) and 

Rahimzadeh et al. (2003). 

Fig. 9 shows the intended system which includes the 

finite element model of dam body and the reservoir in 

which the length of reservoir in the upstream direction is 

about two times the height of the dam. Moreover, the dam-

foundation interaction is neglected. 1006 20-node solid 

elements and 7200 20-node fluid elements are used to 

model dam body and reservoir domain, respectively (Fig. 

9). The modulus of elasticity, poison ratio, density, 

compressive strength, tensile strength, fracture energy, 

dynamic magnification factors applied to tensile strength, 

modulus of elasticity, and fracture energy are 26GP, 0.17, 

2450 kg/m3, 43 MPa 4.3 MPa, 260 Nm/m, 1.5, 1.25, and 

1.8, respectively. The considered internal viscous damping 

ratio is 0.05 for the first and fifth vibration modes. The 

water  level  eleva tion for  both hydrosta t ic  and 

hydrodynamic pressure calculations is equal to the dam 

crest elevation (168 m). Acoustic wave velocity in water is 

C, 1440.0 m/s, and the acoustic impedance ratio of rock to 

0
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Fig. 9 Finite element model of reservoir and dam domain 

(dimensions are presented in meters) 

 

 

water is β=3.444. 

The loads applied on the system are self-weight, 

hydrostatic pressure and seismic load. The standard 

Newmark method is used to integrate dynamic equation into 

time domain. The Newmark parameters of α, β were 

assumed as 0.5, 0.25, respectively. The time integration 

steps were 0.01 and 0.005, alternatively. The Elasto -Brittle 

Damping (EDM) and Linear Damping model (LDM) have 

been used in dynamic analysis. The 14 points integration 

rule is used in elements volume numerical integration. It 

was found that this integration scheme compared to 

costume 3×3×3 integration rule is more economical. The 8 

selective ground motions are selected as the free-field 

ground acceleration (Figs. 10, 11 and Table 1). In Fig. 10, 

magnitude-distance diagram for selective acceleration 

gauges are presented. In Fig. 11, original components 

(without scale) of horizontal acceleration for three of 

considered events are presented as examples.   

 
 
5. Fragility analysis  
 

Fragility functions are the probability of reaching a 

defined structural limit under such loads as earthquake. 

More simply, a structural fragility curve describes the 

relation between ground seismic movement and the 

probable seismic damage. The correct selection of ground 

motions in dam site is required to determine the accurate 

relationship. The indexes which show the magnitude and 

intensity of ground motions in the fragility analysis are as 

follows: peak ground acceleration (PGA), peak ground 

velocity (PGV) and peak ground displacement (PGD). 

Fragility curves can be used to evaluate the probability of 

infrastructure failures. After determining the type of 

structural vulnerability, structural retrofit starts. To 

determine the seismic risk of a structure, it is essential to 

evaluate the severity of the damage during the earthquake 

with different scenarios. To generate fragility curves, based 

on time history analysis, the probabilistic methods are used. 

In this study, peak ground acceleration PGA is used. 

According to the PGA method, the structural fragility 

curves are defined in relation to structural limitations. 

Fragility analysis presents the probability of damage due to 

different earthquake records.  

A fragility curve presents the corresponding damage 

probability regarding a particular mode of damage to in 

relation with different levels of seismic ground motion. The 

seismic fragility curve of a structure describes the ratio 

between ground motion and the probable seismic damage 

level. Based on these curves, curves seismic reliability can 

be plotted that decreases the errors in interpreting the results 

of its fragility curve. 

The structure fragility can be expressed mathematically 

as the damage probability of a structure in an earthquake 

with the magnitude of j and damage i, as represented in Eq. 

(22) 

PFij = Prob[ di ≥ D i/ Ij ] (22) 

Where   PFij: fragility probability, ij: a certain amount 

of earthquake magnitudes for earthquake risk level, di: 

structural response due to these random events (e.g., drift of 

story in building), Di: structural capacity to deal with the 

force at an ith level of performance (e.g., life safety 

performance). 

To produce fragility curves, a distribution for damage 

index should be obtained from nonlinear dynamic analyses. 

Usually normal, log normal and beta distributions are used. 

Normal distribution is one of the most important statistical 

distributions. This distribution diagram is known as the 

normal curve graph, the bell-shaped and more events that 

occur in nature and scientific research will follow this 

curve. Normal curve is also called the Gaussian distribution 

curve. A random variable X, with a bell-shaped distribution 

curve, is called a normal accidental variable. The 

distribution density function in Eq. (23) is as follows 

  𝑓𝑥(𝑋) =
1

𝑠√2𝜋
𝑒−

1
2

(
𝑥−𝜇

𝜎
)
 (23) 

Where fx(X), n, μ and s2 are distribution function, 

number of data, mean and standard deviation, respectively 

𝜇 =
1

𝑛
∑(𝑥𝑖)

𝑛

𝑖=1

 (24) 

𝑠2 =
1

𝑛 − 1
∑(𝑥𝑖 − 𝑥)2

𝑛

𝑖=1

 (25) 

To calculate the probability of a normal distribution, the 

area of the normal curve called the normal cumulative 

distribution function is used.  It can be obtained from Eqs. 

(26) and (27). 

𝐹𝑥(𝑥) = 𝑓(𝑥|𝜇, 𝜎) =
1

𝜎√2𝜋
∫ 𝑒−

1
2

(
𝑥−𝜇

𝜎
)

𝑥

0

𝑑𝑥 (26) 

𝐹𝑥(𝑥) =
1

𝜎√2𝜋
∫ 𝑒−

1
2

(
𝑥−𝜇

𝜎
)

𝑥

0

𝑑𝑥 = 𝜙 (
𝑥 − 𝜇

𝜎
) (27) 

Now if we desire to use the normal logarithmic 

distribution, a natural logarithm must be employed on all 

data and average and standard deviation must be obtained 

from the new data. Consequently, if we want to convert the 

normal logarithmic distribution into the normal distribution, 

we will have:  

 

Log normal distribution (x,μ,σ) = Normal distribution (ln(x) 

– μ/σ) 
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Fig. 10 Magnitude-distance diagram for selective 

acceleration  

 

Table 1 Selective records used in nonlinear seismic analysis  

Vs 30 m/s R(km) Magnitude Year Station Earthquake 

610 7 6.9 1995 Nishi Akashi Kobe 

724 12.5 7.3 1990 Abbar Manjil 

712 8 7.01 1992 Petrolia Cape Mendocino 

2016 7.1 6.69 1994 Pacoima Dam Northridge-01 

766 2.1 7.35 1978 Tabas Tabas 

714 12 6.93 1989 Observatory Loma Prieta 

545 12.4 6.69 1994 Hills 12250 Northridge-01 

513 7 7.01 1992 Cape Mendocino Cape Mendocino 

 

Table 2 Natural frequency of dam in empty and full 

reservoir condition 

Mode Number 
 

Reservoir 

Condition 
10 9 8 7 6 5 4 3 2 1 

8.23 7.78 7.6 6.11 5.61 4.86 4.7 3.69 2.63 2.22 
Current 

Analysis 

Empty 

reservoir 
8.23 7.94 7.62 5.91 5.83 4.97 4.45 3.59 2.78 2.18 

Mahab Gods 

(1990) and 

Rahimzadeh 

et al. (2003) 

5.54 5.08 4.88 4.7 4.02 3.43 3.09 2.59 2.23 1.88 
Current 

Analysis 

Full reservoir 

5.42 5 4.59 4.13 4.04 3.32 2.93 2.67 2.3 1.86 

Mahab Gods 

(1990) and 

Rahimzadeh 

et al. (2003) 

 

 

5.1 Sampling by a time history nonlinear analysis 
 

To select earthquake records, in addition to soil features 

of the site, such factors as the type of earthquake domain, 

record duration and seismic risks should be considered. 

Because Karaj dam is located on a coarse-grained diorite, 

an igneous rock without weathering, its foundation is a 

stable rock mass according to rock mechanics.  According 

to Iran seismic design code, the dam soil type is very stiff 

and is type (I). Since the northwest fault of Tehran is near to 

the dam site, near field records of various earthquakes are 

considered in the analysis. Such parameters as Arias 

intensity, damage potential, total cumulative velocity and 

the distance from the fault are factors which are important 

in defining the field records (Hajhoseyni and Moradloo 

2014). In addition to the factors mentioned above, the 

frequency of content and pulse-like motions are effective in 

near field records. According to the above criteria, eight 

earthquake records were selected (Hajhoseyni and 

Moradloo 2014). The records contents are shown in Table 1. 

 
A: Tabas earthquake 

 
B: Northridge-01(Pacoima Dam) earthquake 

 
C: Kobe (Nishi Akashi) earthquake 

Fig. 11 Time history of horizontal acceleration components 

without scale 

 

Table 3 PGA values for Amirkabir dam site for MCE and 

DBE (Mahab Gods 1990 and Rahimzadeh et al. 2003) 

Design level 
Period 

(year) 

PGA 

Horizontal Vertical 

DBE (Design Basis 

Earthquake) 
100-1000 0.23 g 0.16 g 

MCE (Maximum 

Credible Earthquake) 
>3000 0.43 g 0.33 g 

 

 

Fig. 10 representsthe magnitude-distance diagram for 

selective accelograms. As shown in Fig. 10 and Table 1, the 

focal distance of the considered earthquake records is less 

than 13 km and their magnitude ranges from 6.69 to 7.35 

Richter. 

In order to verify the model, the modal frequency of the 

dam was calculated and compared to the results of 

references (Mahab Gods 1990 and Rahimzadeh et al. 2003). 

The natural frequencies of dam body alone and dam 

reservoir system are shown in Table 2. The obtained results 

(Table 2) are consistent with the results in references. To 

evaluate the seismic vulnerability of Karaj arch dam, 8 

near-field records, all scaled between 0.2 g to 0.8 g, were 

used. For each record seven nonlinear analyses with 0.1 g 

intervals were performed. Some of the horizontal 

components of used acceleration records are presented in 

Fig. 11. The other earthquake characteristics are presented 

in Table 1. The Raylight damping model was used in 

nonlinear dynamic analysis with 5% critical damping ratio 

taking one and third modes into account.  

PGA values for Karaj dam site for Maximum Credible 

Earthquake (MCE) and Design Basis Earthquake (DBE) are 

presented in Table 3 (Mahab Gods 1990 and Rahimzadeh et 

al. 2003). Since three dimensional analysis of the dam is 

performed, the value of horizontal PGA in transverse 

direction is used again. In order to use the fragility curve, 

the square roots of sum of square of three PGA in vertical, 

stream line and transverse of river should be considered as a 
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Table 5 Minimum and maximum displacement of dam 

crown for selective records versus PGA values 

0.8 g 0.7 g 0.6 g 0.5 g 0.4 g 0.3 g 0.2 g 
 Records 

PGA 

16.5 10.85 6.15 3.65 2.1 0.5 -1 max 
Kobe 

-19.04 -16.65 -14.65 -13.00 -11.20 -9.30 -7.60 min 

5.35 4.30 3.10 2.00 0.70 0.00 -1.60 max 
Pacoima 

-13.20 -12.10 -11.00 -9.90 -8.60 -7.50 -6.40 min 

15.8 11.60 7.60 5.00 3.05 1.20 -0.50 max 
Pretoria 

-20.70 -16.70 -13.90 -12.01 -10.40 -8.80 -7.20 min 

11.54 7.30 4.60 3.13 1.60 0.20 -1.30 max 
Tabas 

-17.20 -15.60 -14.00 -12.50 -10.75 -9.02 -7.30 min 

3.01 2.20 1.30 0.50 -0.50 -1.40 -2.30 max 
Loma 

-11.58 -10.60 -9.70 -8.70 -7.80 -6.80 -5.90 min 

4.72 3.70 2.65 1.55 0.50 -0.70 -1.90 max 
Hills 

-14.44 -13.30 -12.20 -11.00 -9.70 -8.30 -6.80 min 

0.5 -0.50 -1.03 -1.60 -2.05 -2.60 -3.10 max 
Cape cape 

-9.45 -8.75 -8.05 -7.35 -6.75 -6.05 -5.30 min 

3.81 2.80 1.80 0.80 0.00 -1.15 -2.20 max 
Manjil 

-14.04 -12.75 -11.50 -10.20 -9.00 -7.75 -6.45 min 

 

 

Fig. 12 Percentage of damaged concrete volume for 

selective records versus PGA values  

 

 

Fig. 13 Minimum and maximum displacement of dam 

crown for selective records versus PGA values  

Table 4 Volume of damaged concrete for selective records versus PGA values (in cubic meters) 

Scale of Record Part of Dam 

Body 

Considered 

Earthquake 0.8 g 0.7 g 0.6 g 0.5 g 0.4 g 0.3 g 0.2 g 

231945 118613 54265 24185 17305 11450 8265 Dam body 

Kobe 14013 8087 3040 0 0 0 0 Crown part 

245958 126700 57305 24185 17305 11450 8265 Total 

39490 25916 18071 
 

16828 12275 9518 6255 Dam body 
Northridge-

01 

(Pacoima) 
450 0 0 0 0 0 0 Crown part 

39940 25916 18071 16828 12275 9518 6255 Total 

229238 110973 57089 24679 16065 11890 8588 Dam body 

Cape 
Mendocino 

(Pretoria) 

9791 6415 3692 148 0 0 0 Crown part 

239029 117388 60781 24827 16065 11890 8588 Total 

177337 71089 29017 18744 13346 9785 5896 Dam body 

10229 5075 0 0 0 0 0 Crown part 

Tabas 187566 76163 29017 18744 13346 9785 5896 Total 

31025 21120 14920 11804 8983 6330 4625 Dam body 

380 0 0 0 0 0 0 Crown part 
Loma Prieta 

31405 21120 14920 11804 8983 6330 4625 Total 

61954 35237 23900 16926 11392 8050 4670 Dam body 
Northridge-

01 

(Hills) 

2710 85 0 0 0 0 0 Crown part 

64664 35322 23900 16926 11392 8050 4670 Total 

17670 17068 15020 12135 9993 8120 4220 Dam body Cape 

Mendocino 

(Cape 
Mendocino) 

0 0 0 0 0 0 0 Crown part 

17670 17068 15020 12135 9993 8120 4220 Total 

28590 23155 17632 15131 11750 8950 5156 Dam body 

Manjil 0 0 0 0 0 0 0 Crown part 

28590 23155 17632 15131 11750 8950 5156 Total 
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Fig. 14 Crack distribution at upstream and downstream of 

the dam for Tabas earthquake loading (1.2 g) 

 

Table 6 Volume of damaged concrete and crown 

displacement to determine the limit state values 

Damaged 

concrete volume 

(m3) 

Crown 

displacement 

(cm) 
PGA (g) Earthquakes 

245900 19.5 0.8 Kobe 

450050 29 1 Cape (Petrolia) 

502000 38.2 1.2 Tabas 

 

 

Fig. 15 Crack distribution at upstream and downstream of 

the dam for Cape earthquake loading (1 g) 

 

 

single measure. The resultant values for DBE and MCE are 

0.36 g and 0.69 g, respectively.  

The volumes of damaged concrete for selective records 

versus PGA values are presented in Table 4 and Fig. 12. 

Moreover, the minimum and maximum displacements of 

dam crown for selective records versus PGA values are 

presented in Table 5 and Fig. 13. 

 

5.2 Limit states and damage index 
 

According to the regulations and laboratory research on 

frames and bridges, the choice of appropriate performance 

levels for such structures is not very difficult. However, the 

inaccessibility of enough laboratory results and statutory 

regulations has caused the engineering judgment play an 

influential role in determining the damage indexes and limit 

states for concrete dams. 

As performance of concrete arch dams is completely 

different from gravity concrete ones, different indexes 

should also be considered here. Considering such factors as 

sliding between the dam and its foundation and dam body 

overturning are not suitable for arch concrete dam. Since 

the model is a three-dimensional model, cracked concrete 

volume in the dam body and crest displacement relative to 

rigid foundation can be suitable damage indexes. Of course, 

stability of arch dams is highly dependent on its foundation 

stability which its failure, displacement and sliding can be 

used as suitable damage indexes. In this research the 

foundation of the dam is assumed to be rigid, so the dam 

foundation criteria will be subject to further investigation.  

To evaluate the seismic vulnerability of Karaj arch dam, 

8 near-field records which all were scaled between 0.2 g to 

 

Fig. 16 Crack distribution at upstream and downstream of 

the dam for Kobe earthquake loading (0.8 g) 

 

 
Fig. 17 Results using normal distribution 

 

 
Fig. 18 Results using log normal distribution 

 

 

Fig. 19 Seismic fragility for displacement damage (LS1-l: 

low damage limit state) 
 

 

0.8 g are used. For each record seven nonlinear analyzes 

with 0.1 g intervals were performed.  

This accelograms scaled step by step with an interval of 

0.1 g and then the dam-reservoir system was loaded until 

the dam was completely destroyed and system diverged. 

The results for concrete damage and dam crown 

displacement for each record are shown in Table 6. The 

distribution of these cracks for the ultimate state are shown 

in Figs. 14, 15 and 16 for Tabas, Cape and Kobe 

earthquakes, respectively. The values of damaged volume 

are used to determine the limit state values.  Damaged 

concrete volume and crown displacement results for 

determining the limit state values are presented in Table 6. 

The limit states are selected as follows: 50% of the ultimate 
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Fig. 20 Seismic fragility for displacement damage (LS1-m 

medium damage limit state) 

 

 

Fig. 21 Seismic fragility for displacement damage (LS1-e 

extreme damage limit state) 

 

 

Fig. 22 Seismic fragility for displacement damage (LS1-c 

complete damage limit state) 

 

 

Fig. 23 Seismic fragility for cracking damage (LS2-l low 

damage limit state) 

 

 

Fig. 24 Seismic fragility for cracking damage (LS2-m 

medium damage limit state) 
 

 

minimum damage is called complete destruction, 40% is 

called extreme destruction, 20% is called medium 

destruction and 10% is called low destruction. 
 

5.3 Fragility curves 
 

The results obtained from the nonlinear analysis are 

employed to obtain the log normal and normal statistical 

distribution. In Figs. 17 and 18, results are presented using 

normal and log-normal distributions, respectively. 

According to Figs. 17 and 18, it is evident that the results 

 

Fig. 25 Seismic fragility for cracking damage (LS2-e 

extreme damage limit state) 

 

 

Fig. 26 Seismic fragility for cracking damage (LS2-c 

complete damage limit state) 

 

Table 7 Summary of seismic fragilities results obtained 

from a nonlinear analysis 

Limit State (LS) 

Nonlinear Results 

Prob of LS at 

PGA= 0.36 g 

Prob of LS at 

PGA= 0.69 g 

LS1-l Low crown displacement 100% 100% 

LS1-m 
medium crown 
displacement 

90% 100% 

LS1-e 
extreme crown 

displacement 
20% 9% 

LS1-c 
complete crown 

displacement 
0% 28% 

LS2-l 
low tensile cracked 

Elements 
20% 100% 

LS2-m 
medium tensile cracked 

elements 
0% 60% 

LS2-e 
extreme tensile cracked 

elements 
0% 25% 

LS2-c 
complete tensile cracked 

elements 
0% 14% 

 

 

more homogeneously fit the lognormal distribution. So, the 

probability distribution function of the log normal was used 

to extract the fragility curves. 

According to defined performance levels, using the log-

normal distribution, as well as results of the dynamic non-

linear time history analysis, we draw fragility curves. The 

Step by step fragility curves drawing are as follows: 
1. The necessary data for each PGA is obtained from 

nonlinear analysis.  

2. The average and standard deviation of data is 

calculated for each PGA. 

3. According to the statistical distribution, lognormal 

distribution in this study, the probability of exceeding the 

limitations is calculated. 

The fragility curves are presented according to the 

method mentioned above.  

After obtaining the fragility curves, the probability of a 

given structural limitation is defined. One of features of this 

method is that by evaluating earthquakes with different 
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characteristics, decisions can be made about the safety, the 

probability of reaching a structural limit, strengthening and 

rehabilitation of a structure. In the other methods, you need 

to apply a lot of different earthquake records on structures. 

However, the complete structural behavior of each 

earthquake is not obtained finally. Since each earthquake is 

different from others and even in the same earthquake the 

soil type and distance can incur different degrees of 

structural damage, the earthquake modeling without proper 

statistical methods will not yield meaningful results in many 

instances. With the fragility curves, the probability of 

exceeding the structural limit can be easily calculated. Figs. 

19 to 22 represent the fragility curves of the crown 

displacement damage index for all 4 limit states. 

Furthermore, in Figs. 23 to 26, the fragility curves of the 

cracking damage index for all 4 limit states are presented. 

For a DBE earthquake level with a PGA of 0.23 g, it can 

be seen that the probability of the first structural limit i.e. 

crest displacement for low, medium, extreme and complete 

damage limit states are 0, 0, 40 and 100, respectively. For 

the MCE level, these amounts are 0, 40, 100 and 100, 

respectively. 

   The results of seismic fragilities obtained from 

nonlinear analysis are summarized in Table 7. Since the 

dam is designed for an earthquake with a 300-years return 

period, it can be seen that the dam shows a high resistance 

against earthquakes at DBE level which is only damaged in 

low function levels. By evaluating the effects of damage 

indexes on fragility curves it can be understood that there is 

a wide range of differences in the curve results, and for a 

0.36 g structural record the displacement damage index 

reaches to 100%. But for the cracked damage index, this 

value is 20%. Also, for higher function levels (extreme 

damage) as the PGA amount increases, the damage 

probability percentage of the two indexes becomes nearer to 

each other. It seems that the displacement index is more a 

conservative and impractical index in the fragility analysis.  

 

 

6. Conclusions 
 

This study presents a method to study fragilities of arch 

concrete dams and to assess their performance against 

seismic hazards. Firstly, the probability risk and fragility 

curves are presented. Then, in order to implement and 

demonstrate the usage of this method, some non-linear 

dynamic analyses are conducted on Amirkabir arch concrete 

dam (Karaj dam in Iran). The analysis takes the complete 

dynamic interaction of fluid and structure into 

consideration. The foundation is assumed as rigid.  

The non-linear behavior of dam concrete material in 

analysis is modeled according to the smeared crack model. 

A modified three dimensional smeared crack model is used 

to consider nonlinear behavior of mass concrete. The 

proposed model considers major characteristics of mass 

concrete fewer than three dimensional loading conditions. 

These characteristics are pre-softening behavior, softening 

initiation criteria, fracture energy conservation and strain 

rate effect. Results show that the proposed crack model is 

high-performance and stable. In the present analysis, 

complete fluid-structure interaction is considered 

accounting for fluid compressibility and absorptive 

reservoir boundary condition appropriately. 

Based on the analysis results, fragility curves are 

obtained according to various and probable damages. Two 

damage indexes were introduced and compared to one 

another. The results indicate that the dam has a proper 

stability for earthquakes at DBE level. And for MCE 

earthquake events, the dam retains its stability. Of course, 

extensive cracking can take place in the dam body which 

needs to be rehabilitated. Moreover, displacement damages 

index is more conservative and impractical in the fragility 

analysis than tensional damage index. 
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