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1. Introduction  
 

Thin-walled structures have widely used in various 

structural components such as aerospace structures. Plates 

which are made from the fiber reinforced composite 

materials have been preferred than other materials because 

they are lightweight and strong. These structures are mostly 

subjected to in-plane compressive loads. Composite plates 

can withstand under mechanical loads more than the 

buckling load and for this reason many researchers have 

investigated the behavior of these structures after the 

buckling which is called post-buckling regime. However, 

applying these loads may cause failures such as cracks, 

which will reduce the ultimate strength of the composite 

plates. Understanding the nonlinear and post-buckling 

behaviors of these structures that contain crack are very 

important in the design procedure.  

In the field of plates without the cracks, extensive 

research has been done to study the post-buckling behavior 

of various kinds of plates that is rapidly developing. A 

comprehensive review in the field of buckling and post-

buckling until 1988 can be found in Chia (1988) and Leissa 

(1987). Many researchers have recently analyzed the 

buckling, post-buckling and nonlinear behaviors of  
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functionally graded and composite structures under 

different loading conditions using finite element method 

(FEM), finite strip method (FSM) and some semi-analytical 

methods. For example, one can refer to the works done by 

Panda and Singh (2013a), Cetkovic and Vuksanovic. 

(2011), Ghannadpour et al. (2018) and Ovesy and 

Ghannadpour (2009, 2011). Also, Panda and Singh (2009, 

2010a, b, 2011, 2013b, c), Panda and Katariya (2015) and 

Katariya and Panda (2016) have investigated the buckling 

and post-buckling behavior of composite panels, spherical 

and cylindrical shells under thermo-mechanical loading 

using nonlinear finite element method. Katariya et al. 

(2017a, b, 2018) have studied on thermal buckling strength 

of laminated sandwich composite panels with or without 

shape memory alloy. Kar and Panda (2016, 2017) have 

analyzed the post-buckling behavior of FG curved shells 

under edge compression and non-uniform thermal loading. 

Also, Kar et al. (2016, 2017) and Panda et al. (2017) have 

studied on thermal buckling and post-buckling of FG 

doubly curved shells and FG panel structures using finite 

element method. Ghannadpour and his co-workers (2015, 

2016) developed a new exact finite strip based on First-

order Shear Deformation plate Theory (FSDT) to study the 

buckling and post-buckling behavior of shear-deformable 

composite plates. Kandasamy et al. (2016) analyzed the 

buckling and post-buckling behavior of moderately thick 

laminated rectangular plates by FSDT and Panda and 

Ramachanda (2011) has studied the buckling and post-
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buckling of cross-ply composite plates subjected to non-

uniform in-plane loads.   

Composite plates are prone to suffer various types of 

defects such as delaminations and cracks (Liu et al. 2015). 

The cracks may affect the load carrying capacity of the 

laminated plates and plate structures. The presence of 

cracks in the structure may also cause stiffness reduction of 

the structure. This reduction in stiffness becomes more 

pronounced especially after buckling and in the post-

buckling region. Therefore, it is necessary to investigate the 

buckling, post-buckling and geometrically nonlinear 

behaviors of cracked composite plates. A few studies have 

also been conducted in this regard, which can be 

summarized as follows. It should be emphasized that most 

analyses of composite plates are usually carried out using 

FEM in which the storage required is extremely large, and 

the computational time is too lengthy (Rangarajan and Gao 

2015). Only a limited number of such analyses have been 

implemented by other numerical or semi-analytical methods 

(Kress and Lee 2003, Monfared 2017). Cao and Liu (2012) 

developed isoparametric element method to solve 3-D crack 

problem by constructing a new displacement modeling. In 

some research studies, the generalized differential 

quadrature finite element method is introduced and used to 

examine the static and dynamic behavior of cracked 

structures such as Viola et al. (2013a, b), Fantuzzi et al. 

(2016) and Shahverdi and Navardi (2017). Alinia et al. 

(2007) investigated the linear and non-linear buckling 

behavior of shear panels that have cracks edge; cracks are 

parallel or normal to the boundary. Nasirmanesh and 

Mohammadi (2015) have shown the effects of crack length 

and angle, fiber directions and boundary conditions on the 

buckling behavior of cracked composite plate with 

compressive, tensile and shear loadings. In some references 

such as Yuan and Dickinson (1992), cracks have been 

modeled as a series of line springs.  

Experimental and numerical buckling analyses of 

cracked plates under various loadings conditions were 

performed by Seifi and Khodayari (2011) and Seifi and 

Kabiri (2013). More recently, Milazzo and Oliveri (2015) 

investigated the post-buckling behavior of cracked 

composite plates without initial imperfection effects by 

using plate assembly technique and also delaminated 

stiffened panel (Milazzo and Oliveri 2017). Dimitri et al. 

(2017) using numerical extended finite element method 

(XFEM) have predicted the fraction direction of 

propagation within a specimen, and calculated the stress 

intensity factor for cracked plate under different loading 

conditions. Some researchers used mesh less formulation to 

solve cracked problems. Batra and Ching (2002) have 

analyzed transient deformation near a crack by meshless 

local Petrov-Galarkin (MLPG) method. Peng et al. (2017) 

have simulated the stiffened plate with edge crack by FSDT 

and MLS1 approximation based on mesh less formulation.  

The aim of this paper is to study the effects of crack 

length and location, various boundary conditions, load 

direction and initial imperfection on the nonlinear and post-

buckling behaviors of composite plates by a novel semi- 
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Fig. 1 Plate geometry model and loading 
 

 

analytical method. The laminated plates are decomposed 

into six sub-plates and therefore the plate decomposition 

technique is used in this research. The connection between 

the sub-plates is established by the penalty technique. The 

Ritz method is used to model the problem and the strain-

displacement relationships are written based on the FSDT. 

In order to approximate the primary variables, Legendre 

basis functions are used here. Different out-of-plane 

essential boundary conditions such as clamp, simply 

support and free conditions will be assumed in this research 

by defining the relevant displacement fields. For in-plane 

boundary conditions, lateral expansion of the unloaded 

edges is free while the loaded edges are assumed to move 

straight but restricted to move laterally. The laminated 

plates are assumed to be subjected to biaxial compressive 

loads, therefore a sensitivity analysis is performed with 

respect to the applied load direction, along the parallel or 

perpendicular to the crack axis. By using the principle of 

minimum of total potential energy, the nonlinear 

equilibrium equations are obtained and solved by Newton-

Raphson technique. It is noted that the integrals of potential 

energy are numerically computed by Gauss-Lobatto 

quadrature formulas to get adequate accuracy. 

 

 

2. Model geometry and boundary conditions 
 

Laminated plates with dimensions 𝐴 × 𝐵  and total 

thickness ℎare considered in this study as shown in Fig. 1. 

As it can be seen, an initial geometric imperfection 𝑤0 at 

the center of the plate and in the z-direction is also assumed 

in the plate under consideration. In accordance with the aim 

of this study, a crack with length 𝐿𝑐 has been located at 

(𝑥𝑐 , 𝑦𝑐)  from the origin of the coordinates and in the 

domain Ω .The laminates are subjected to in-plane 

compressive load 𝑃𝑥 along the x-direction (or 𝑃𝑦 along the 

y-direction which is not shown in the figure due to 

simplicity). The laminates are assumed to be moderately 

thick, thus the formulations are based on the first order 

shear deformation theory (FSDT). 

Different out-of-plane essential boundary conditions 

such as clamp, simply support and free conditions will be 

assumed in this research by defining the relevant 

displacement fields in the next section. However, for in-

plane boundary conditions, lateral expansion of unloaded 

edges is free while the loaded edges are assumed to move 

straight (Fig. 2). It is also noted that the loaded edges of the  

604



 

Domain decomposition technique to simulate crack in nonlinear analysis of initially imperfect laminates 

 

 

Fig. 2 Plate decomposition configurations 

 

plates are restricted to move laterally. 

To model the crack, the entire domain of the laminates is 

partitioned into several sub-plates and therefore, a plate 

decomposition technique is used. In this technique and in 

the present research, the laminated plates under 

considerations are decomposed into six sub-plates as shown 

in Fig. 2(a). As it can be seen, in this decomposition 

configuration where the six sub-plates are arranged 

laterally, the direction of the applied load 𝑃𝑥 is orthogonal 

to the crack axis. To investigate the nonlinear behavior of 

cracked plates with cracks along the loading direction, one 

can change the direction of the applied load from 

longitudinal to lateral direction (𝑃𝑦) with transferring the 

boundary conditions between two directions or model the 

plate as shown in Fig. 2(b). In this type of decomposition, it 

is observed that the six sub-plates have been arranged 

longitudinally. Both methods are used in this paper. 

In the above figures, the sub-plates with domains Ω(𝑖) 

have dimensions 𝑎(𝑖) × 𝑏(𝑖), 𝑖 = 1,2, … ,6 and thickness ℎ. 

After decomposition, with regard to the specified boundary 

conditions of the plate, the displacement fields should be 

considered for each sub-plate. It is noted that for the edges 

shared between contiguous elements, since the 

displacements are unknown, therefore free boundary 

conditions should be assumed. After selecting appropriate 

displacement fields, the sub-plates should be assembled by 

using a relevant technique to model the crack in the 

laminated plates. In this study, penalty technique is used to 

enforce interface continuity between the sub-plates. As it is 

known, in arrangement A, sub-plates 3 and 4, and in 

arrangement B, sub-plates 2 and 5 have no connection to 

each other to accurately model the crack in the plate. 

The development of the formulation of this study, 

including the approximation of displacement fields for each 

sub-plate, calculating the total potential energy of the sub-

plates and using the penalty technique, are presented in the 

next section. 

 

3. Formulations 
 

As mentioned before, the imperfect laminated plates in 

this study are under compressive loads and therefore they 

undergo deformations. Each point in the domain of the 

plates with the position vector 𝒙 = 〈𝑥 𝑦 𝑧〉𝑇 is 

transferred to a new coordinate value 𝒙∗ =
〈𝑥∗ 𝑦∗ 𝑧∗〉𝑇by 

 

 

Fig. 3 Plate and sub-plates geometry models 

 

𝒙∗ = 𝒙 + 𝒖 (1) 

Where 𝒖 = 〈�̅� �̅� �̅�〉𝑇 is displacement vector and 

describes the deformation of a laminated plate whose 

components are given by 

�̅�(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦) + 𝑧𝜑𝑥(𝑥, 𝑦) 
�̅�(𝑥, 𝑦, 𝑧) = 𝑣(𝑥, 𝑦) + 𝑧𝜑𝑦(𝑥, 𝑦) 

�̅�(𝑥, 𝑦, 𝑧) = 𝑤(𝑥, 𝑦) + 𝑤𝐼(𝑥, 𝑦) 
(2) 

According to the FSDT, 𝑢, 𝑣 and 𝑤 are in-plane and 

out-of-plane displacements of mid-plane, and 𝜑𝑥and 𝜑𝑦 

denote the rotations of a transverse normal about axes 

parallel to thex and y axes, respectively. As it is seen, since 

the plates have initial geometric imperfection 𝑤𝐼  in the z-

direction, therefore the effect of this imperfection is also 

included in the third equation of relations (2).  

In order to investigate the behavior of laminated plates, 

all above displacement fields𝑢, 𝑣, 𝑤,𝜑𝑥and 𝜑𝑦should be 

approximated in the domain of the plates and since the 

entire domain is partitioned into several sub-plates, 

therefore the above displacement fields should be 

approximated separately for each sub-plate. According to 

the mentioned boundary conditions in section 2, 

displacement fields can be written as 

𝜏(𝑖)(𝑥, 𝑦)

= 𝔹𝜏
(𝑖)(𝑥, 𝑦) ∑∑𝛿𝑚𝑛

𝜏(𝑖)𝑃𝑚−1 (
2𝑥

𝑎(𝑖)
) 𝑃𝑛−1 (

2𝑦

𝑏(𝑖)
)

𝑁𝑡

𝑛=1

𝑁𝑡

𝑚=1

+ 𝑓𝜏
(𝑖)(𝑥, 𝑦)𝛿𝑐

𝜏(𝑖) ,   𝑖 = 1,2, … ,6 

(3) 

Where 𝜏 ∈ {𝑢, 𝑣, 𝑤, 𝜑𝑥 , 𝜑𝑦} is a selected displacement 

field for (𝑖)𝑡ℎ sub-plate and𝑁𝑡is the number of terms in 

series expansion which is taken same for all displacement 

fields and sub-plates in this paper and 𝑚  and 𝑛  are 

positive integers. The coefficients 𝛿𝑚𝑛
𝜏 and 𝛿𝑐

𝜏 are the Ritz 

unknown coefficients of the problem for each sub-plate (𝑖) 
and the latter is for satisfying the straight conditions. It is 

noted that the origin of the coordinates for each sub-plate is 

assumed to be at its center as in Fig. 3.  

 

The so-called boundary function 𝔹𝜏(𝑥, 𝑦) is chosen to 

ensure the fulfillment of the essential boundary conditions 

of each sub-plate (𝑖). It can be defined as 

𝔹𝜏
(𝑖)(𝑥, 𝑦) = ∏ (1 + (−1)𝛽−1 (

2𝑥

𝑎(𝑖)
))

𝜇𝛽
𝜏(𝑖)

𝛽=1,2

∏ (1

𝛽=3,4

+ (−1)𝛽−1 (
2𝑦

𝑏(𝑖)
))

𝜇𝛽
𝜏(𝑖)

, 𝑖 = 1, … ,6 

(4) 

① ② 

③ 

⑤ ⑥ 
④ 
x 

y z edge 1 

2 

3 

4 

𝑎(4) 
𝑏(4) 
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Where 𝛽 denotes the edge number and the exponents 

𝜇𝛽
𝜏(𝑖) can take the value 0 for free condition and the value 1 

according to the conditions of held (or straight) for each 

displacement field 𝜏 ∈ {𝑢, 𝑣, 𝑤, 𝜑𝑥, 𝜑𝑦} and for each sub-

plate.  

The boundary function 𝑓𝜏
(𝑖)(𝑥, 𝑦)  is also chosen to 

ensure the fulfillment of the straight boundary conditions of 

the plates as mentioned in previous section. Therefore, since 

this specified boundary condition is only related to the in-

plane displacement fields 𝜏 ∈ {𝑢, 𝑣} depending on the 

direction of applied load; the value of this function is zero 

for other displacement fields 𝜏 ∈ {𝑤, 𝜑𝑥, 𝜑𝑦}. 

As it is seen in Eq. (3), the approximation of 

displacement fields is performed by Legendre basis 

functions  P. Legendre polynomials are one of the most 

powerful mathematical series of numerical methods. 

Legendre basis functions or Legendre polynomials are 

solutions to the following Legendre differential equation 

𝑑

𝑑𝑥
[(1 − 𝑥2)

𝑑

𝑑𝑥
𝑃𝑛(𝑥)] + 𝑛(𝑛 + 1)𝑃𝑛(𝑥) = 0 (5) 

Also, Legendre polynomials satisfy the three-term 

recursion as 

𝑃𝑛+1(𝑥) =
2𝑛 + 1

𝑛 + 1
𝑥𝑃𝑛(𝑥) −

𝑛

𝑛 + 1
𝑃𝑛−1(𝑥) (6) 

Where 𝑃0(𝑥) = 1and𝑃1(𝑥) = 𝑥. 

By approximating the displacement functions as 

described above, the in-plane strain vectors for each sub-

plate can be represented by the following relationships. 

�̅�(𝑖) = {

𝜀�̅�𝑥
(𝑖)

𝜀�̅�𝑦
(𝑖)

𝜀�̅�𝑦
(𝑖)

} = 𝜺(𝑖) + 𝑧𝝍(𝑖),      𝜺(𝑖) = {

𝜀𝑥𝑥
(𝑖)

𝜀𝑦𝑦
(𝑖)

𝜀𝑥𝑦
(𝑖)

}

= 𝜺𝒍
(𝑖)
+ 𝜺𝒏𝒍

(𝑖)
+ 𝜺𝑰

(𝑖)
 

(7) 

where 𝜺𝒍
(𝑖)
, 𝜺𝒏𝒍
(𝑖)

and 𝜺𝑰
(𝑖)

are respectively linear and nonlinear 

strain vectors and strain vector for initial geometric 

imperfection for (𝑖)𝑡ℎ  sub-plate. Also, the vectors 𝝍(𝑖) 

and 𝜺𝒔
(𝑖)

are curvature and shear strains vectors, 

respectively, and they can be defined as 

𝜺𝒍
(𝑖) =

{
  
 

  
 

𝜕𝑢(𝑖)

𝜕𝑥
𝜕𝑣(𝑖)

𝜕𝑦

𝜕𝑢(𝑖)

𝜕𝑦
+
𝜕𝑣(𝑖)

𝜕𝑥 }
  
 

  
 

,   𝜺𝒏𝒍
(𝑖) =

{
 
 
 

 
 
 1

2
(
𝜕𝑤(𝑖)

𝜕𝑥
)

2

1

2
(
𝜕𝑤(𝑖)

𝜕𝑦
)

2

𝜕𝑤(𝑖)

𝜕𝑥

𝜕𝑤(𝑖)

𝜕𝑦 }
 
 
 

 
 
 

,  

    𝜺𝑰
(𝑖)
=

{
 
 

 
 

𝜕𝑤(𝑖)

𝜕𝑥

𝜕𝑤𝐼
(𝑖)

𝜕𝑥

𝜕𝑤(𝑖)

𝜕𝑦

𝜕𝑤𝐼
(𝑖)

𝜕𝑦

𝜕𝑤(𝑖)

𝜕𝑥

𝜕𝑤𝐼
(𝑖)

𝜕𝑦
+

𝜕𝑤(𝑖)

𝜕𝑦

𝜕𝑤𝐼
(𝑖)

𝜕𝑥 }
 
 

 
 

  

 

(8) 

And 

𝝍(𝑖) =

{
 
 
 

 
 
 𝜕𝜑𝑥

(𝑖)

𝜕𝑥

𝜕𝜑𝑦
(𝑖)

𝜕𝑦

𝜕𝜑𝑥
(𝑖)

𝜕𝑦
+
𝜕𝜑𝑦

(𝑖)

𝜕𝑥 }
 
 
 

 
 
 

, 𝜺𝒔
(𝑖)
=

{
 
 

 
 𝜑𝑦

(𝑖)
+
𝜕𝑤(𝑖)

𝜕𝑦

𝜑𝑥
(𝑖)
+
𝜕𝑤(𝑖)

𝜕𝑥 }
 
 

 
 

 (9) 

With the assumption that each layer is in a condition of 

plane stress, stress-strain relationships for each lamina at a 

general point and for each sub-plate are written as below 

𝝈(𝑖) = {

𝜎𝑥𝑥
(𝑖)

𝜎𝑦𝑦
(𝑖)

𝜏𝑥𝑦
(𝑖)

} = [

�̅�11 �̅�12 �̅�16
�̅�12 �̅�22 �̅�26
�̅�16 �̅�26 �̅�66

]

(𝑖)

{

𝜀�̅�𝑥
(𝑖)

𝜀�̅�𝑦
(𝑖)

𝜀�̅�𝑦
(𝑖)

}

= �̅�(𝑖)�̅�(𝑖) 

(10) 

𝝈𝒔
(𝑖)
= [

�̅�44 �̅�45
�̅�45 �̅�55

]

(𝑖)

{
 
 

 
 𝜑𝑦

(𝑖)
+
𝜕𝑤(𝑖)

𝜕𝑦

𝜑𝑥
(𝑖)
+
𝜕𝑤(𝑖)

𝜕𝑥 }
 
 

 
 

= �̅�𝒔
(𝑖)
𝜺𝒔
(𝑖)

 (11) 

Where�̅�(𝑖)is transformed reduced stiffness matrix and 

�̅�𝒔
(𝑖)

 is transformed shear stiffness matrix for (𝑖)𝑡ℎ  sub-

plate. Each composite sub-plate has its stiffness matrices 

𝑨(𝑖), 𝑩(𝑖), 𝑫(𝑖), 𝑨𝒔
(𝑖)

that their coefficients can be obtained by 

(𝑨𝑝𝑞
(𝑖)
, 𝑩𝑝𝑞

(𝑖)
, 𝑫𝑝𝑞

(𝑖)
) = ∫ �̅�𝑝𝑞

(𝑖)
ℎ/2

−ℎ/2

(1, 𝑧, 𝑧2)𝑑𝑧,   𝑝, 𝑞

= 1,2,3 
(12) 

𝑨𝒔𝑝𝑞
(𝑖) = 𝑘𝑠∫ �̅�𝒔𝑝𝑞

(𝑖)
ℎ/2

−ℎ/2

𝑑𝑧,   𝑝, 𝑞 = 1,2 (13) 

where 𝑘𝑠 is the shear correction factor and it is assumed to 

be equal to 5/6 in this study. With the above definitions, the 

total potential energy of (𝑖)𝑡ℎ sub-plate can be obtained. 

At first, the strain energy associated with the in-plane 

stresses for (𝑖)𝑡ℎ sub-plate with volume 𝑉(𝑖)and surface 

area Ω(𝑖)and by using the Eqs. (7) and (10) can be written 

as 

𝑈(𝑖) =
1

2
∭ �̅�(𝑖)

𝑇
𝝈(𝑖)d𝑉(𝑖)

𝑉(𝑖)

=
1

2
∬ ∫ �̅�(𝑖)

𝑇
�̅�(𝑖)�̅�(𝑖)d𝑧 dΩ(𝑖)

−ℎ/2

−ℎ/2Ω(𝑖)
 

=
1

2
∬ ∫ (𝜺𝒍

(𝑖)
+ 𝜺𝒏𝒍

(𝑖)
+ 𝜺𝑰

(𝑖)
−ℎ/2

−ℎ/2Ω(𝑖)

+ 𝑧𝝍(𝑖))
𝑇
�̅�(𝑖)(𝜺𝒍

(𝑖)
+ 𝜺𝒏𝒍

(𝑖)
+ 𝜺𝑰

(𝑖)

+ 𝑧𝝍(𝑖))d𝑧 dΩ(𝑖) 

(14) 

By integrating through the thickness with respect to z 

from the Eq. (14) and substituting Eqs. (12) into Eq. (14), 

the strain energy can be rewritten as 
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𝑈(𝑖) =∬ (
1

2
𝜺𝒍
(𝑖)𝑇

𝑨(𝑖)𝜺𝒍
(𝑖)
+ 𝜺𝒍

(𝑖)𝑇
𝑨(𝑖)𝜺𝒏𝒍

(𝑖)

Ω(𝑖)

+
1

2
𝜺𝒏𝒍
(𝑖)𝑇

𝑨(𝑖)𝜺𝒏𝒍
(𝑖)
+ 𝜺𝒍

(𝑖)𝑇
𝑨(𝑖)𝜺𝑰

(𝑖)

+ 𝜺𝒏𝒍
(𝑖)𝑇

𝑨(𝑖)𝜺𝑰
(𝑖)
+
1

2
𝜺𝑰
(𝑖)𝑇

𝑨(𝑖)𝜺𝑰
(𝑖)

+ 𝝍(𝑖)𝑇𝑩(𝑖)𝜺𝑰
(𝑖)
+ 𝜺𝒍

(𝑖)𝑇
𝑩(𝑖)𝝍(𝑖)

+ 𝜺𝒏𝒍
(𝑖)𝑇

𝑩(𝑖)𝝍(𝑖)

+
1

2
𝝍(𝑖)𝑇𝑫(𝑖)𝝍(𝑖)) dΩ(𝑖) , 𝑖

= 1, … ,6 

(15) 

In the next step, shear strain energy 𝑈𝑠 for (𝑖)𝑡ℎ sub-

plateshould be computed. It can be obtained by the 

following relation and by using the Eqs. (9), (11) and (13). 

𝑈𝑠
(𝑖)
=
1

2
∭ 𝜺𝒔

(𝑖)𝑇
𝝈𝒔
(𝑖)
d𝑉(𝑖)

𝑉(𝑖)

=
1

2
∬ ∫ 𝜺𝒔

(𝑖)𝑇
�̅�𝒔
(𝑖)
𝜺𝒔
(𝑖)
d𝑧 dΩ(𝑖)

−ℎ/2

−ℎ/2Ω(𝑖)
 

=
1

2
∬ (𝜺𝒔

(𝑖)𝑇
𝑨𝒔
(𝑖)
𝜺𝒔
(𝑖)
) dΩ(𝑖)

Ω(𝑖)
, 𝑖 = 1, … ,6 

(16) 

With regard to the above relations, the total strain 

energy of the plate can be computed by the summation of 

the strain energies of sub-plates. In order to calculate the 

total potential energy of the cracked plates in this study, it is 

also required to compute the potential energy of the applied 

loads. Therefore, the type of sub-plates layout (arrangement 

A or B) is very important, since some sub-plates may not be 

subjected directly to the applied load. In other words, the 

potential energy of applied loads for whole plate is affected 

by the loads applied on the external boundaries of the plate 

only. The potential energy of the applied loads for (𝑖)𝑡ℎ 

sub-plate in both arrangements A and B can be obtained by 

the following relations.   

 

For arrangement A with applied load𝑃𝑥 

𝑉(𝑖) =

{
 

 
𝑏(𝑖)

𝐵
𝑃𝑥𝑢

(𝑖)|
𝑥=−𝑎(𝑖) 2⁄

 𝑖 = 1,3,5

−
𝑏(𝑖)

𝐵
𝑃𝑥𝑢

(𝑖)|
𝑥=𝑎(𝑖) 2⁄

 𝑖 = 2,4,6

 (17a) 

 

For arrangement A with applied load 𝑃𝑦  

𝑉(𝑖) =

{
 
 

 
 
𝑎(𝑖)

𝐴
𝑃𝑦𝑣

(𝑖)|
𝑦=−𝑏(𝑖) 2⁄

𝑖 = 1,2

−
𝑎(𝑖)

𝐴
𝑃𝑦𝑣

(𝑖)|
𝑦=𝑏(𝑖) 2⁄

𝑖 = 5,6

0 𝑖 = 3,4

 (17b) 

 

For arrangement B with applied load 𝑃𝑥 

𝑉(𝑖) =

{
 
 

 
 
𝑏(𝑖)

𝐵
𝑃𝑥𝑢

(𝑖)|
𝑥=−𝑎(𝑖) 2⁄

𝑖 = 1,4

−
𝑏(𝑖)

𝐵
𝑃𝑥𝑢

(𝑖)|
𝑥=𝑎(𝑖) 2⁄

𝑖 = 3,6

0 𝑖 = 2,5

 (17c) 

As a result, the total potential energy for each sub-plate 

is equal to the summation of the strain energies of that sub-

plate with the potential energy of the applied load 𝑉(𝑖). The 

total potential energy of the cracked laminated plates can 

also be computed by the summation of the total potential 

energies of the sub-plates. However, since the entire domain 

of the laminates in this study has been partitioned into 

several sub-plates using the plate decomposition technique, 

therefore the interface continuity between the sub-plates 

should be enforced wherever it is needed. Actually, the 

displacement continuity conditions for different types of 

sub-plates layout (arrangement A or B) read as 

For arrangement A 

𝜏(1)(𝑎(1) 2⁄ , 𝑦) = 𝜏(2)(−𝑎(2) 2⁄ , 𝑦) 

𝜏(1)(𝑥, 𝑏(1) 2⁄ ) = 𝜏(3)(𝑥, −𝑏(3) 2⁄ ) 

𝜏(2)(𝑥, 𝑏(2) 2⁄ ) = 𝜏(4)(𝑥, −𝑏(4) 2⁄ ) 

𝜏(3)(𝑥, 𝑏(3) 2⁄ ) = 𝜏(5)(𝑥, −𝑏(5) 2⁄ ) 

𝜏(4)(𝑥, 𝑏(4) 2⁄ ) = 𝜏(6)(𝑥, −𝑏(6) 2⁄ ) 

𝜏(5)(𝑎(5) 2⁄ , 𝑦) = 𝜏(6)(−𝑎(6) 2⁄ , 𝑦) 

(18a) 

Where𝜏 ∈ {𝑢, 𝑣, 𝑤, 𝜑𝑥, 𝜑𝑦} and for arrangement B 

𝜏(1)(𝑎(1) 2⁄ , 𝑦) = 𝜏(2)(−𝑎(2) 2⁄ , 𝑦) 

𝜏(1)(𝑥, 𝑏(1) 2⁄ ) = 𝜏(4)(𝑥, −𝑏(4) 2⁄ ) 

𝜏(2)(𝑎(2) 2⁄ , 𝑦) = 𝜏(3)(−𝑎(3) 2⁄ , 𝑦) 

𝜏(3)(𝑥, 𝑏(3) 2⁄ ) = 𝜏(6)(𝑥, − 𝑏(6) 2⁄ ) 

𝜏(4)(𝑎(4) 2⁄ , 𝑦) = 𝜏(5)(−𝑎(5) 2⁄ , 𝑦) 

𝜏(5)(𝑎(5) 2⁄ , 𝑦) = 𝜏(6)(−𝑎(6) 2⁄ , 𝑦) 

(18b) 

As it can be seen, for arrangement A, sub-plates 3 and 4 

have no connection to each other to accurately model the 

crack in the plate as well as sub-plates 2 and 5 for 

arrangement B. As mentioned before, penalty technique is 

used here to enforce displacement continuity along the 

edges shared between the sub-plates. Therefore, the 

equilibrium equations of the cracked plate are obtained by 

imposing the stationary of total potential energy under the 

constraints presented in Eq. (18). The enforcement of these 

constraints is accomplished by introducing the following 

penalty terms into the total potential energy functional. 

For arrangement A, the penalty terms associated with 

Eqs. (18a) can be obtained by 

𝑃1,2
〈𝜏〉 =

𝛾1,2
〈𝜏〉

2
∫ (𝜏(1)(𝑎(1) 2⁄ , 𝑦)
𝑏(1) 2⁄

−𝑏(1) 2⁄

− 𝜏(2)(−𝑎(2) 2⁄ , 𝑦))
2

d𝑦 

𝑃1,3
〈𝜏〉 =

𝛾1,3
〈𝜏〉

2
∫ (𝜏(1)(𝑥, 𝑏(1) 2⁄ )
𝑎(1) 2⁄

−𝑎(1) 2⁄

− 𝜏(3)(𝑥, −𝑏(3) 2⁄ ))
2

d𝑥 

(19) 
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𝑃2,4
〈𝜏〉 =

𝛾2,4
〈𝜏〉

2
∫ (𝜏(2)(𝑥, 𝑏(2) 2⁄ )
𝑎(2) 2⁄

−𝑎(2) 2⁄

− 𝜏(4)(𝑥, −𝑏(4) 2⁄ ))
2

d𝑥 

𝑃3,5
〈𝜏〉 =

𝛾3,5
〈𝜏〉

2
∫ (𝜏(3)(𝑥, 𝑏(3) 2⁄ )
𝑎(3) 2⁄

−𝑎(3) 2⁄

− 𝜏(5)(𝑥, −𝑏(5) 2⁄ ))
2

d𝑥 

𝑃4,6
〈𝜏〉 =

𝛾4,6
〈𝜏〉

2
∫ (𝜏(4)(𝑥, 𝑏(4) 2⁄ )
𝑎(4) 2⁄

−𝑎(4) 2⁄

− 𝜏(6)(𝑥, −𝑏(6) 2⁄ ))
2

d𝑥 

𝑃5,6
〈𝜏〉 =

𝛾5,6
〈𝜏〉

2
∫ (𝜏(5)(𝑎(5) 2⁄ , 𝑦)
𝑏(5) 2⁄

−𝑏(5) 2⁄

− 𝜏(6)(−𝑎(6) 2⁄ , 𝑦))
2

d𝑦 

Where  𝜏 ∈ {𝑢, 𝑣, 𝑤, 𝜑𝑥 , 𝜑𝑦}  and 𝛾 are penalty 

coefficients. Finally, a single relation can be written for the 

penalty terms.  

𝑃 = ∑ (𝑃1,2
〈𝜏〉 + 𝑃1,3

〈𝜏〉 + 𝑃2,4
〈𝜏〉 + 𝑃3,5

〈𝜏〉 + 𝑃4,6
〈𝜏〉

𝜏∈{𝑢,𝑣,𝑤,𝜑𝑥,𝜑𝑦}

+ 𝑃5,6
〈𝜏〉) 

(20) 

The same relations can be written for arrangement B.  

With the above descriptions, the total potential energy of 

a cracked plate is equal to the summation of the strain 

energies of the sub-plates (i.e., Eqs. (15) and (16)) with 

potential energies of the applied load for sub-plates (i.e., 

Eq. (17)) and penalty terms associated with constraints 

presented in Eq. (18). 

Π =∑(𝑈(𝑖) + 𝑈𝑠
(𝑖)
+ 𝑉(𝑖))

6

𝑖=1

+ 𝑃 (21) 

By using the Eqs. (15) and (16), the total potential 

energy of the cracked laminate can be rewritten in an 

appropriate category as follows. 

 

(22) 

By looking at the above expression, it is easy to see that 

there is a clear division. The first term in the right-hand side 

of the above equation is linear function of the unknowns 

while the rest of the terms is quadratic, cubic and quartic 

functions of the unknowns, respectively. The linear term 

arises from the potential energy of applied loads. The 

quadratic energy comprises contributions from the linear 

strain vector, from the curvature strain vector, from 

coupling between these two vectors due to the material 

effects (i.e. 𝑩 matrix), from shear strain vector and from 

initial imperfection effects. The cubic energy originates 

from coupling between linear and nonlinear strain vectors, 

from coupling between curvature and nonlinear strain 

vectors again due to material effects and also from initial 

imperfection effects. The quartic energy arises from the 

nonlinear strain vectors alone. 

The above equation can ultimately be rewritten in a 

matrix form by using the Hessian technique. 

Π = −𝒅𝑇𝑽𝐹 +
1

2
𝒅𝑇(𝑲0𝑃 + 𝑲0 + 𝑲0𝑠 + 𝑲0𝐼)𝒅

+
1

6
𝒅𝑇(𝑲1 + 𝑲1𝐼)𝒅 +

1

12
𝒅𝑇𝑲2𝒅 

(23) 

where 𝑽𝐹 is a column matrix of constants, including the 

effects of the applied loads. The column matrix 𝒅 contains 

the unknown of the problems. Subscripts 𝑃 and 𝐼denote 

the effects of penalty terms and initial imperfection, 

respectively. Subscript 0 is for symmetric square stiffness 

matrices whose coefficients are constant whilst subscript 1 

and 2 are for matrices with linear and quadratic functions of 

the unknown coefficients, respectively. Therefore, the 

quantities on the right-hand side of the Eq. (23) represent 

linear, quadratic and cubic energy terms. Solution of the 

nonlinear problem is sought through the application of the 

Principle of Minimum Potential Energy. Therefore, the 

unknown coefficients of the problem can be found by 

solving the following nonlinear equilibrium equations 

𝑭(𝒅) = −𝑽𝐹 + ((𝑲0𝑃 + 𝑲0 + 𝑲0𝑠 + 𝑲0𝐼)

+
1

2
(𝑲1 + 𝑲1𝐼) +

1

3
𝑲2)𝒅 = 𝟎 

(24) 

To obtain the solution of the above nonlinear algebraic 

equations, the well-known Newton-Raphson technique is 

used. In this study, in order to obtain the accurate results, 

the relevant convergence criteria are defined based on both 

the vector containing the unknown coefficients (𝒅) and all 

equations containing these coefficients i.e., 𝑭(𝒅) . The 

iterative procedure is repeated until the following 

conditions be satisfied. 

‖∆𝒅𝑟‖

‖𝒅𝑟+1‖
< 5 × 10−5,       ‖𝑭(𝒅𝑟)‖ < 5 × 10−5 (25) 

where 𝑟  is the iteration counter in Newton-Raphson 

technique and ‖. ‖ denotes the 2-norm. Once the nonlinear 

equilibrium equations are solved and the unknown 

coefficients are found, it is possible to calculate the 

displacements, strains and stresses at any point in the 

cracked plate. 
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4. Results and discussions 
 

In this section, in order to implement the presented 

formulations for analyzing the nonlinear behavior of 

internally and edge cracked composite plates, a computer 

program is developed based on Fortran 77 software 

package. To reduce the execution time on multicore 

processors, a parallel programming technique is used using 

Open Multi-Processing (OpenMP) interface. The program 

is executed on a computer with TYAN FT48-B8812 

mainboard, four AMD CPU by 2.20 GHz frequency (4×16 

cores) and with 128.00 GB RAM.  

The presented formulations should be verified through a 

number of comparisons and this is done by comparing the 

results with those obtained by ABAQUS software. 

Wherever the results are compared with finite element 

method, S4R shell element has been used. To obtain 

converged results, in most cases, 2500 elements have been 

used. 

To investigate the effects of boundary conditions on 

post-buckling behavior of cracked laminates, three different 

types of boundary conditions are assumed as follows: 

• Type A: Simply supported boundary conditions on all 

edges.  

• Type B: Two loaded edges simply supported and one 

unloaded edge clamped and the other simply supported. 

• Type C: Two loaded edges simply supported and one 

unloaded edge clamped and the other free. 

In the extraction of the results, some sensitivity analyzes 

have been made with respect to the crack location and 

length. To do this, the crack is considered to be located at 

three different distances from the one side (𝑥𝑐 = 𝐴/4, 3𝐴/
8, 𝐴/2)  and in each of these locations, four different 

lengths of crack are assumed(𝐿𝑐 = 𝐴/5, 𝐴/3, 𝐴/2, 2𝐴/3). 
To investigate the effects of loading direction, as already 

mentioned, the plate is decomposed into two different 

configurations, and thus, the crack is placed either along the 

load direction or in the perpendicular direction (see Figure 

2). To obtain the above results, square laminated plates 
(𝐴 = 𝐵) with thickness to length ratio (ℎ 𝐴⁄ ) of 0.1 are 

considered in this study. The lay-up configuration for the 

laminates under consideration, is assumed to be[0,90]3 . 

Before presentation of the results, it is necessary to mention 

that in this study, no thinking has been done to simulate 

eventual contact between the crack faces. In other words, no 

contact interface has been defined between the sub-plates at 

the crack location. Therefore, for the cracked plates, 

especially when the crack is perpendicular to the loading 

direction, the crack faces may contact each other. But since 

the composite layup is assumed as unsymmetric, the 

possibility of occurrence of this phenomenon is reduced. 

However, it is avoided to present such results as far as 

possible. 

The material properties for each lamina have been taken 

from Yang et al. (2013) and are shown in Table 1. 

For imperfect laminates, an initial sinusoidal 

imperfection in both directions is assumed with amplitude 

of 10% and 50% of the plate thickness (i.e., 𝑤0 =
0.1ℎ & 0.5ℎ ). 

In the first step, it is necessary to carry out the  

Table 1 Assumed material properties for each lamina 

Component Value 

𝐸1(𝑀𝑃𝑎) 49627 

𝐸2(𝑀𝑃𝑎) 15430 

𝑣12 0.272 

𝐺12(𝑀𝑃𝑎) 4800 

𝐺13(𝑀𝑃𝑎) 4800 

𝐺23(𝑀𝑃𝑎) 4800 

 

 

Fig. 4 Convergence study for internally cracked plate with 

boundary conditions type A and arrangement A 

 

 

convergence study to calculate the appropriate number of 

terms for obtaining accurate results. For this purpose, an 

internally cracked plate with boundary conditions type A is 

considered. In order to place the crack orthogonal to the 

loading direction, plate decomposition configuration is 

selected to be arrangement A. The crack is considered to be 

placed at 𝑥𝑐 = 3𝐴/8 and the assumed length for the crack 

is 𝐿𝑐 = 𝐴/3. 

According to Fig. 4, which indicates the variation of 

force in terms of out-of-plane displacement, the convergent 

results are obtained by taking into account the 25 terms in 

series expansion of each displacement field (𝑁𝑡 = 5) and 

for each sub-plate. In the case of imperfect cracked plates, 

for the sake of confidence, the results are calculated by 36 

terms (𝑁𝑡 = 6).  As shown in this figure, the results 

obtained by the finite element method are also incorporated 

in order to validate the results. An excellent agreement 

between the results can be observed.   

Variations of load in terms of both in-plane and out-of-

plane displacements are depicted in Figs. 5-12. In these 

figures, the effects of crack length and location have been 

investigated for laminates with all simply-supported edges 

(boundary condition type A). The crack in these laminates 

have been modeled by plate decomposition arrangement A.  

The laminates have been subjected to in -plane 

compressive load 𝑃𝑥 along the x-direction and therefore the 

crack axis is orthogonal to the applied load direction. 

According to the observations, when the crack length is 

greater than𝐴/2 (𝐿𝑐 > 𝐴/2), crack opening does not occur. 

In Figs. 5 and 6, the crack has been placed at the middle of  

0

2

4

6

8

10

-2.5 -2 -1.5 -1 -0.5 0

Nt=3

Nt=4

Nt=5

Nt=6

FEM

𝑤𝐿/ℎ

⁄
𝑃
𝑥 𝐴

2
𝐸
2 ℎ

3

𝑥𝑐 = ⁄3𝐴 8𝐿𝑐 = ⁄𝐴 3

FEM
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Fig. 5 Variations of load versus end shortening 

displacement for plates subjected to 𝑃𝑥  with different 

lengths of crack (type A, arrangement A, 𝑥𝑐 = 𝐴 2⁄ ) 

 
 

 

Fig. 6 Variations of load versus out-of-plane displacement 

for plates subjected to 𝑃𝑥 with different lengths of crack 

(type A, arrangement A, 𝑥𝑐 = 𝐴 2⁄ ) 

 

 

the plate (𝑥𝑐 = 𝐴/2) while in Figs. 7 and 8, the location of 

the crack has been shifted to the left by 𝐴/4 (𝑥𝑐 = 𝐴/4) 

and this shifted amount for Figs. 9 and 10 is3𝐴/8 

(𝑥𝑐 = 3𝐴/8). As it can be seen in these figures, by 

changing the crack length, the variations of load versus both 

in-plane and out-of-plane displacements are changed in 

such a way that by increasing the length of the crack, the 

slope of the curve of load versus in-plane displacement is 

reduced and therefore the stiffness of the laminate is also 

decreased. This happens especially during the early stages 

of loading while at higher level of loading, the results will 

be closer to each other (see Figs. 5, 7 and 9).  It is also 

seen that by increasing the length of crack, the central out-

of-plane displacement of the laminates in which the cracks 

are located at the center, are increased at the same level of 

loading and this increase is more evident at the higher level 

of loading (see Fig. 6) while in the laminates in which the 

cracks are shifted to the left (see Figs. 8 and 10), the central  

Fig. 7 Variations of load versus end shortening 

displacement for plates subjected to 𝑃𝑥  with different 

lengths of crack (type A, arrangement A, 𝑥𝑐 = 𝐴 4⁄ ) 

 

  

Fig. 8 Variations of load versus out-of-plane displacement 

for plates subjected to 𝑃𝑥 with different lengths of crack 

(type A, arrangement A, 𝑥𝑐 = 𝐴 4⁄ ) 

 

 

 
 

Fig. 9 Variations of load versus end shortening 

displacement for plates subjected to 𝑃𝑥  with different 

lengths of crack (type A, arrangement A, 𝑥𝑐 = 3𝐴 8⁄ ) 
 

 

out-of-plane displacement of the laminates are slightly 

decreased. It is noted that some results obtained by finite 

element method have been also incorporated and displayed 

by points in these figures to show the verification of  
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Fig. 10 Variations of load versus out-of-plane displacement 

for plates subjected to 𝑃𝑥 with different lengths of crack 

(type A, arrangement A, 𝑥𝑐 = 3𝐴 8⁄ ) 

 

 
Fig. 11 Variations of load versus end shortening 

displacement for plates subjected to 𝑃𝑥  with different 

locations of crack (type A, arrangement A, 𝐿𝑐 = 𝐴 3⁄ ) 

 

Fig. 12 Variations of load versus out-of-plane displacement 

for plates subjected to 𝑃𝑥 with different locations of crack 

(type A, arrangement A, 𝐿𝑐 = 𝐴 3⁄ ) 

 

 

proposed formulation. 

Figs. 11 and 12 show the effect of various locations of 

crack from one edge of the plate for laminate with 

symmetric boundary conditions on all edges (type A) and 

for a specified length of crack (i.e., 𝐿𝑐 = 𝐴/3). It has been 

observed that increasing the distance between the crack 

location and the middle of the plate leads to decreasing the 

out-of-plane displacement at the center of the plate.   

Another purpose of the paper was to investigate the 

effects of cracks in the laminates with different boundary 

conditions. So, in this section, the type of boundary 

conditions is changed to boundary conditions type C. In this 

type of boundary conditions, with a free edge, the crack is 

placed at the free edge and so the possibility of 

investigating the edge crack is also provided. In this 

situation, the crack has been located perpendicularly to the 

loading direction 𝑃𝑥  and therefore the decomposition 

configuration is arrangement A. Nonlinear behaviors of the 

laminates with this geometry, are represented in Figs. 13-

20. In these figures, similar to the previous figures for type 

A, the effects of crack length and location have been 

investigated.  

In addition to the considered lengths of the crack in the 

previous figures, the results for crack length of 𝐴/2 (i.e., 

𝐿𝑐 = 𝐴/2) have been added to the results of Figs. 13 to 18. 

As it can be seen, a similar behavior with Figs. 5, 7 and 9 is 

also observed in Figs. 13, 15 and 17 in which, increasing 

the length of the crack leads to a decrease in the curve 

slope, and thus the stiffness of the plates decreases but this 

behavior, with increasing the load is more visible in this 

type of boundary condition.  

The nonlinear behaviors of load in terms of out-of-plane 

displacements for the laminates under consideration have 

been shown in Figs. 14, 16 and 18. In these figures, the 

central point of the free edge of the laminates has been 

marked by the letter “e” and the point on the right crack 

face on the free edge of the plate has been marked by the 

letter “R” in red color. Therefore, it is noted that in some 

figures containing red curves, they represent the out-of-

plane displacement of the point on the right crack face on 

the free edge of the plate. It can be observed that by 

increasing the length of the cracks, the central out-of-plane 

displacement of the free edge of the laminates and also the 

displacement of the point on the right crack face on the free 

edge are almost increased at the same level of loading and 

this increase in the amount of displacement of points on 

right face of crack is much greater than the middle points of 

the free edge. However, a different behavior is seen for the 

case of cracks with length of 𝐴/2 especially at the early 

stages of loading.  

To study the effects of different locations of edge cracks 

with a specified length (i.e., 𝐿𝑐 = 𝐴/2), similar curves are 

depicted in Figs. 19 and 20. Looking at these figures, this 

concept is found that by moving the cracks from the middle 

of the free edge, the out-of-plane displacement of the 

middle of the free edge is significantly reduced.  

In Fig. 20, three-dimensional deformation of these plates 

is also shown at a particular load 𝑃𝑥𝐴
2 𝐸2ℎ

3⁄ = 6. The 

results of three-dimensional deformations have been plotted 

by the data extracted from the developed code and using 

Tecplot plotting software. 
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Fig. 13 Variations of load versus end shortening 

displacement for plates subjected to 𝑃𝑥  with different 

lengths of crack (type C, arrangement A, 𝑥𝑐 = 𝐴 2⁄ ) 

 

 

Fig. 14 Variations of load versus out-of-plane displacement 

for plates subjected to 𝑃𝑥 with different lengths of crack 

(type C, arrangement A, 𝑥𝑐 = 𝐴 2⁄ ) 

 

 

Fig. 15 Variations of load versus end shortening 

displacement for plates subjected to 𝑃𝑥  with different 

lengths of crack (type C, arrangement A, 𝑥𝑐 = 𝐴 4⁄ ) 

 

 

In the next step, the aim is to investigate the behavioral 

difference between the plates containing the cracks in both 

parallel and perpendicular to the loading direction. To  

 

Fig. 16 Variations of load versus out-of-plane displacement 

for plates subjected to 𝑃𝑥 with different lengths of crack 

(type C, arrangement A, 𝑥𝑐 = 𝐴 4⁄ ) 

 

Fig. 17 Variations of load versus end shortening 

displacement for plates subjected to 𝑃𝑥  with different 

lengths of crack (type C, arrangement A, 𝑥𝑐 = 3𝐴 8⁄ ) 

 

 

Fig. 18 Variations of load versus out-of-plane displacement 

for plates subjected to 𝑃𝑥 with different lengths of crack 

(type C, arrangement A, 𝑥𝑐 = 3𝐴 8⁄ ) 

 

 

implement this goal, some square laminates with boundary 

conditions type A and decomposition configuration of 

arrangement A are considered here. The laminates are  
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Fig. 19 Variations of load versus end shortening 

displacement for plates subjected to 𝑃𝑥  with different 

locations of crack (type C, arrangement A, 𝐿𝑐 = 𝐴 2⁄ ) 

 

 

Fig. 20 Variations of load versus out-of-plane displacement 

for plates subjected to 𝑃𝑥 with different locations of crack 

(type C, arrangement A, 𝐿𝑐 = 𝐴 2⁄ ) 

 

 

subjected to in-plane compressive load 𝑃𝑥 along the x-

direction or 𝑃𝑦 along the y-direction.  

Variations of load in terms of both in-plane and out-of-

plane displacements are depicted in Figs. 21-28. According 

to observations, when the crack is along the loading 

direction, the crack opening is greater than the one in which 

the crack axis is perpendicular to the loading direction. 

Unlike the loading that its directionselected lengths of the 

crack in the situation where the loading direction is parallel 

to the crack axis (i.e., 𝑃𝑦  along the 𝑦-direction) and 

therefore the graphs have been provided up to the crack 

length of 2𝐴 3⁄ . In Figs. 21-26, which are related to the 

plates containing the crack parallel to the loading direction, 

the same behaviors can be observed with the previous 

figures, but more intensely. As it is seen, in the longer 

cracks, the crack opening is greater and therefore the 

laminates are weaker. In Figs. 27 and 28, the results of both 

loadings 𝑃𝑥 and 𝑃𝑦 have been represented for laminates 

with and without crack. According to the Fig. 27, it is seen 

that the responses of the laminates without crack are the 

same for both loading due to symmetry, as is perpendicular 

to the crack (i.e., 𝑃𝑥  along the 𝑥-direction), the crack  

 

Fig. 21 Variations of load versus end shortening 

displacement for plates subjected to 𝑃𝑦  with different 

lengths of crack (type A, arrangement A, 𝑥𝑐 = 𝐴 2⁄ ) 

 

 

Fig. 22 Variations of load versus out-of-plane displacement 

for plates subjected to 𝑃𝑦 with different lengths of crack 

(type A, arrangement A, 𝑥𝑐 = 𝐴 2⁄ ) 

 

 

opening is always observed at all expected. However, when 

there is a crack in the laminates, the results are completely 

different. In Fig. 28, in addition to representing the load 

variations in terms of out-of-plane displacements, 

deformation of these plates is also shown at a particular 

non-dimensional load factor of 9. As one can see, crack 

opening is more when the crack is along the direction of 

loading (the deformation specified by point point). The 

results of deformations have been plotted by the data 

extracted from the developed code and using Tecplot 

plotting software. 

In another investigation, the boundary conditions type B 

in which one edge is clamped are used for laminates whose 

modeling is of arrangement B. As mentioned before, in this 

configuration, the laminates are subjected to in-plane 

compressive load 𝑃𝑥 along the 𝑥-direction. 

Since the effects of the change in the length of the 

cracks have already been observed in details for the plates 
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Fig. 23 Variations of load versus end shortening 

displacement for plates subjected to 𝑃𝑦  with different 

lengths of crack (type A, arrangement A, 𝑥𝑐 = 𝐴 4⁄ ) 

 

 

Fig. 24 Variations of load versus out-of-plane displacement 

for plates subjected to 𝑃𝑦 with different lengths of crack 

(type A, arrangement A, 𝑥𝑐 = 𝐴 4⁄ ) 

 

 
Fig. 25 Variations of load versus end shortening 

displacement for plates subjected to 𝑃𝑦  with different 

lengths of crack (type A, arrangement A, 𝑥𝑐 = 3𝐴 8⁄ ) 

 

 

with boundary conditions type A and C, this will no longer 

be addressed in this type of boundary conditions (type B), 

and only the examination of the crack location relative to  

 
Fig. 26 Variations of load versus out-of-plane displacement 

for plates subjected to 𝑃𝑦 with different lengths of crack 

(type A, arrangement A, 𝑥𝑐 = 3𝐴 8⁄ ) 

 

 
Fig. 27 Variations of load versus end shortening 

displacement for plates subjected to compressive loads with 

different directions (type A, arrangement A, 𝑥𝑐 = 𝐴 2,⁄  

𝐿𝑐 = 𝐴 3⁄ ) 

 

 

Fig. 28 Variations of load versus out-of-plane displacement 

for plates subjected to compressive loads with different 

directions (type A, arrangement A, 𝑥𝑐 = 𝐴 2⁄  𝐿𝑐 = 𝐴 3⁄ ) 
 

 

the clamped edge is made on these plates. Also, since the 

boundary conditions are non-symmetric along the 𝑦 -

direction, crack is modeled in more locations 𝑦𝑐 =

𝐴/4, 3𝐴/8, 𝐴/2, 5𝐴/8and3𝐴/4.  
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Fig. 29 Variations of load versus end shortening 

displacement for plates subjected to 𝑃𝑥  with different 

locations of crack (type B, arrangement B, 𝐿𝑐 = 𝐴 2⁄ ) 

 

 

Fig. 30 Variations of load versus out-of-plane displacement 

for plates subjected to 𝑃𝑥 with different locations of crack 

(type B, arrangement B, 𝐿𝑐 = 𝐴 2⁄ ) 

 

 

The variations of loads versus end shortening 

displacement and central out-of-plane displacement of the 

plate have been depicted in Figs. 29 and 30 for a prescribed 

crack length𝐿𝑐 = 𝐿 2⁄ . As it can be observed, by changing 

the location of the crack and moving it away from the 

clamped edge, the response of the plate changes. It can be 

said that when the crack is in the closest location to the 

clamped edge, the stiffness of the cracked plate is 

decreased. 

A comparison between the results of the laminates with 

both boundary conditions of types A and B is also made in 

Fig. 31. The crack has been modeled by using arrangement 

B and the laminates have been subjected to in-plane 

compressive load along the 𝑥-direction (𝑃𝑥) and therefore 

the crack axis is parallel to the loading direction. To better 

observation, the three-dimensional deformation of these 

plates (plates containing crack) are also included in these 

figures.  

In the last step, a comprehensive study has been done on 

the effects of crack length and location on nonlinear  

 

(a) Variation of load versus end shortening displacement 

 

(b) Variation of load versus out-of-plane displacement 

 

(c) 3D-deformation for plate with boundary conditions of 

type A at 𝑃𝑥𝐴
2 𝐸2ℎ

3⁄ = 9 

 

(d) 3D-deformation for plate with boundary conditions of 

type B at 𝑃𝑥𝐴
2 𝐸2ℎ

3⁄ = 9 

Fig. 31 Comparison between the results of laminates with 

both boundary conditions of types A and B (arrangement B) 
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Fig. 32 Variations of load versus end shortening 

displacement for imperfect plates with initial imperfection 

of −0.5ℎ subjected to 𝑃𝑥 with different lengths of crack 

(type A, arrangement A, 𝑥𝑐 = 𝐴 2⁄ ) 

 

 
Fig. 33 Variations of load versus out-of-plane displacement 

for imperfect plates with initial imperfection of −0.5ℎ 

subjected to 𝑃𝑥  with different lengths of crack (type A, 

arrangement A, 𝑥𝑐 = 𝐴 2⁄ ) 

 

 
Fig. 34 Variations of load versus end shortening 

displacement for imperfect plates with initial imperfection 

of −0.1ℎ subjected to 𝑃𝑥 with different lengths of crack 

(type A, arrangement A, 𝑥𝑐 = 𝐴 2⁄ ) 
 

 

behaviors of imperfect laminates. Some selected results,  

 
Fig. 38 Variations of load versus end shortening 

displacement for imperfect plates with initial imperfection 

of 0.5ℎ subjected to 𝑃𝑦  with different lengths of crack 

(type A, arrangement A, 𝑥𝑐 = 𝐴 4⁄ ) 

 

 
Fig. 39 Variations of load versus end shortening 

displacement for imperfect plates with initial imperfection 

of ±0.5ℎ subjected to compressive loads with different 

directions (type A, arrangement A, 𝑥𝑐 = 3𝐴 8,⁄  𝐿𝑐 = 𝐴 3⁄ ) 

 

 
Fig. 40 Variations of load versus out-of-plane displacement 

for imperfect plates with initial imperfection of ±0.5ℎ 

subjected to compressive loads with different directions 

(type A, arrangement A, 𝑥𝑐 = 3𝐴 8,⁄  𝐿𝑐 = 𝐴 3⁄ ) 
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Fig. 41 Variations of load versus end shortening 

displacement for imperfect plates subjected to 𝑃𝑥  with 

different initial imperfections (type A, arrangement A, 𝑥𝑐 =
𝐴 4,⁄  𝐿𝑐 = 𝐴 3⁄ ) 

 

 

plane displacements with prescribed values of imperfection 

and for various lengths and locations of the crack, are 

depicted in Figs. 32-41. To do this, an initial sinusoidal 

imperfection has been assumed for both directions with 

amplitude of 10% and 50% of the plate thickness (i.e., 

𝑤0 = 0.1ℎ & 0.5ℎ). 

The crack modeling is based on arrangement A and the 

boundary conditions of the laminates are assumed to be 

type A. As before, if the loading direction is along the x-

direction, the crack axis is perpendicular to the loading, and 

if the compressive load is applied in the y-direction, the 

crack has been placed along the loading direction. The 

variations of loads versus end shortening and out-of-plane 

displacements for plates including the crack located at the 

center have been depicted in Figs. 32 to 37.  

In Figs. 32 to 35, the results has been represented for 

different lengths of crack in the laminates subjected to in-

plane compressive load 𝑃𝑥 while the same study for plates 

subjected to compressive load 𝑃𝑦  has been depicted in 

Figs. 36 and 37. Since the laminates under compressive 

load 𝑃𝑥 start to deflect in negative direction, the amplitude 

of initial imperfection has been assumed to be  𝑤0 =
−0.5ℎ  or 𝑤0 = −0.1ℎ  for these laminates while these 

values are assumed to be positive for laminates containing 

the crack along the loading direction.  

In the results obtained for perfect plates, it was seen that 

when the crack axis is perpendicular to the loading 

direction, there is no significant effect on the nonlinear 

response of the laminate, while when it is along the loading 

direction, it completely affects the response of the plate. 

However, by observing the results of this section, it can be 

said that when the plates have an initial imperfection 

(especially with large amplitude), the effects of the crack 

are more evident, and these effects will also increase when 

the cracks are along the loading.  

The stiffness degradation of an imperfect laminate with 

increasing the length of the crack can be seen in Fig. 38 

when the crack is located at 𝑥𝑐 = 𝐴 4⁄  and the amplitude 

of initial imperfection is0.5ℎ.  

In order to observe the behavioral difference of the 

laminates containing crack and imperfection, under loading 

in both directions𝑃𝑥 or 𝑃𝑦, the nonlinear responses of these 

plates have been represented in Figs. 39 and 40. These 

plates have initial imperfections of ±0.5ℎ and the crack in 

these plates has been located at 𝑥𝑐 = 3𝐴 8⁄  and the length 

of the crack is assumed to be 𝐴 3⁄ . The nonlinear response 

of an internally cracked imperfect laminate with two 

different values of initial imperfection can be observed in 

Fig. 41. As it can be seen, the nonlinear behavior of this 

laminate changes greatly by changing the value of initial 

imperfection. 

 

 

5. Conclusions 
 

The purpose of this research was to investigate the 

geometric nonlinear behavior of edge and internally cracked 

composite plates with or without initial imperfection. The 

Ritz method was used by Legendre polynomials for the 

primary variable approximations. To model the crack, a 

plate decomposition technique was applied and the penalty 

technique was used to enforce interface continuity between 

the sub-plates. In this research, different types of boundary 

conditions were assumed and the laminated plates were 

subjected to biaxial compressive loads and then a sensitivity 

analysis was done with respect to the applied load direction 

along the parallel and orthogonal to the crack axis. The 

results were presented for influence of crack length, various 

locations of crack, load direction, boundary conditions and 

initial imperfection values. It was observed that when the 

crack axis is perpendicular to the loading direction, there is 

no significant effect on the nonlinear response of the 

laminate, while when it is along the loading direction, it 

completely affects the response of the plate. Also, it was 

seen that when the plates have an initial imperfection, the 

effects of the crack are more evident even if the crack axis 

is perpendicular to the loading direction.  
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