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1. Introduction  
 

Nowadays, one of the main issues for scientists and 

engineers is to minimize uncertainty which is the behavior 

discrepancy between the model and real operation of the 

system. This minimization leads to increase reliability 

(Jafari et al. 2015, Liu et al. 2016, Muscolino et al. 2016) 

and fatigue life (Paolino et al. 2013), improved fault 

detection (Petryna et al. 2005), diagnosis and prognosis of 

systems (Mirzaee et al. 2015, Gobbato et al. 2012, Wei et 

al. 2015) and robust optimization (Guo et al. 2015, Zhao et 

al. 2014). The causes of the discrepancy are due to the 

aleatory uncertainty (e.g., parameter uncertainty, temporal 

and spatial variability known as natural variability) and 

epistemic uncertainty (e.g., model reduction or 

simplification known as modeling error). Inevitability of 

these causes makes uncertainty analysis crucial in the 

designing process of delicate systems.  

Many studies have been conducted in the field of 

uncertainty analysis by statisticians and engineers (Paté-

Cornell 1996, Faber 2005). From them, several studies have  
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been conducted in the area of stochastic analysis of 

vibrating structures, which are summarized in Table 1. 

Uncertainty analysis. methods used in previous studies can 

be classified into two main categories: statistical techniques 

(e.g., crude Monte Carlo simulation in non-intrusive way 

and other sampling based methods) and non-statistical 

techniques (e.g., Neumann expansion method (Benaroya et 

al. 1988) and other stochastic finite element methods (Minh 

et al. 2016). 

In the field of uncertainty analysis, from the real-life 

application viewpoint it is remarkable to determine which 

uncertainty sources are the most influential (factor 

prioritization strategy) and which of them are the least or 

non-influential (factor fixing strategy). The study of 

uncertainty influence (variation of input factors) on the 

output of a model can be accomplished by sensitivity 

analysis. 

Rotor dynamic systems are among the important 

industrial cases which are exposed to a variety of 

uncertainty sources. Therefore, stochastic analysis of these 

systems is necessary, especially in high speed rotors.  This 

study aimed to derive an efficient algorithm for sensitivity 

analysis (SA) of comprehensive rotordynamic systems to 

improve the computation time of the SA and sensitivity 

indices as an objective value. 

In this paper, this objective is achieved by implementing 

an optimal form of stratified and non-overlapping sampling-

based method (LHS), known as GBLHS.  Development of 

this will be mainly focused in the SA phase and compared 

with classical methods (crude MCS). Among all of the 

sampling strategies, LHS is an orthogonal array sampling  
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Table 1 Some outstanding studies in the field of Uncertainty 

Analysis (UA) of structural dynamic system 

Contributor 
Case Study and  

(uncertainty sources) 
Methodology 

Sinou et al. (2015) 

Didier et al. (2012a) 
Rotor-shaft system 

Polynomial chaos expansion 

(Iooss et al. 2000a) (PCE) 

Didier et al. (2012b) 

Nonlinear rotor system 

(misalignment, rotor bow, 

unbalance and rotor 

asymmetry) 

Harmonic balance method and 

polynomial chaos expansion 

Gan et al. (2015) 
Jeffcott rotor with disc 

offset 

Nonparametric modeling using 

random matrix theory  

(Saltelli et al. 2000a) 

Ritto et al. (2011) 

Robust optimization of a 

flexible rotor-bearing 

system 

(module of elasticity and 

shaft diameter) 

Monte Carlo simulation 

Stocki et al. (2012) 

Rotor-shaft system  

(residual unbalances and 

bearing stiffness) 

Optimal LHS 

Szolc et al. (2009) 
Rotor-shaft system  

(Crack detection) 
Monte Carlo simulation 

Liao et al. (2014) 

Nonlinear rotor system 

(module of elasticity and 

asymmetric dimensions) 

Harmonic balance method and 

polynomial chaos expansion 

Sepahvand et al. (2013) 

Orthotropic plate (Poisson’s 

ratio and module of 

elasticity) 

Extraction of Pdf of uncertain 

parameters using generalized 

PCE and inverse Pearson model 

Kundu et al. (2014) 

structural vibration of a 

corrugated panel (Elastic 

parameters) 

Hybrid spectral and meta-

modeling approach 

Soize et al. (2000) 
Vibration of linear structural 

dynamics 

Nonparametric model of 

random uncertainties by random 

matrix theory 

Duchereau et al.  

(2003) 

Dural plates connected 

together considering random 

distributions of bolt 

prestresses 

Constructing random 

uncertainties matrix model 

using nonparametric 

probabilistic method 

 

 

method that ensures each subspace is evenly sampled. 

While MCS method are entirely random so that any given 

sample may fall anywhere within the range of the input 

distribution. This is the reason of excellence of LHS respect 

to MCS. However, LHS array can be optimized by different 

objectives that are given in next sections. In this paper, a 

novel strategy is presented to improve the LHS arrays using 

a new algorithm that maximize the minimum distance in a 

LHS array. The methodology is based on the genetic 

algorithm and the genetic operators are applied on the 

arrays indices with a new approach.  

The Global Sensitivity Analysis (GSA) has been 

implemented which can overcomes the limitations of local 

methods (linearity, normality assumptions and local 

variations) (Iooss et al. 2015). It examines the whole 

variation in the input domain and the effect of one or 

several input factors (design variables) on the state variables 

or system outputs (Saltelli et al. 2000). As the Sobol’s 

method is an efficient technique of GSA it will be used to 

obtain sensitivity indices. This method is a sampling based 

method with sampling strategy being an influential factor in 

the performance of the Sobol’s method. In this paper the 

GBLHS strategy is presented and compared with other 

strategies such as: MCS, LHS, OLHS based in the minimax 

objective. 

 

 

2. Sensitivity analysis 
 

Factor fixing and factor prioritization as well as 

computing interactions and nonlinearity among factors are 

the most common strategies pursued in the field of GSA. A 

great deal has been done to develop different GSA fields 

and achieve higher computational efficiency, robustness and 

accuracy through different methodologies (Saltelli 2004, 

Saltelli 2008, Sobol 1993, Jourdan 2012). Among them, the 

most important methods are: 1) Local approach which is the 

derivative of output with respect to input factor. This 

method does not cover the whole variable domain (Saltelli 

et al. 2000). 2) Regression based approach which is a 

mapping between the input factors and system output. Then, 

metamodels regression is constructed and the output is 

expressed by a linear or nonlinear combination of input 

factors (Tondel et al. 2013, Lozzo et al. 2015). 3) Analysis 

of variance (ANOVA) which is based on the variance 

decomposition of the outputs (Krishnaiah 1981). Interaction 

between factors and nonlinearity effects of the metamodels 

can be exploited in this approach. 4) Screening approach 

which aims to analyze large dimensional models with a 

computationally cheap property. This approach is based on 

the computation of elementary effect and only the most 

important factors in a complex model are specified 

(Campolongo et al. 2007). 

 

2.1 Qualitative SA base on the Morris method 
 

Morris method is a prevalent screening approach which 

refer to as a one-factor-at-a-time (OAT) technique in the 

field of qualitative SA and applied in cases where there is a 

large number of inputs or heavy computation burden in the 

qualitative SA process. The method involves the ability to 

cope with the influence of scale and shape, 

multidimensional averaging, model independency and 

grouping factor analysis (Saltelli 2004). Two sensitivity 

measures are calculated in this method: The first is called 

mean (𝜇∗) which estimates the overall effect of a factor on 

the model output. The second is standard deviation (𝜎) 

which estimates interaction and nonlinearity of a factor with 

respect to other factors.  This method has been presented 

in details by Saltelli et al. (Saltelli 2004, Saltelli 2008). In 

this method first the orientation matrix 𝑻  which is a 

random sequence of 𝑁  normalized samples 

𝑠1, 𝑠2, … , 𝑠𝑁+1  , is constructed. This matrix is a trajectory 

where   these samples (𝑠i) have the following constraints: 

1) Two consecutive sampling points have changed in one 

dimension only. 2) At least, every dimension has changed 

once in the trajectory. The randomized orientation matrix, 

𝑻∗, is given by (Morris 1991) 

( ) )* * * *

1,1 1, 1,

Δ
2B )

2
N N N N NJ G J D J P+ + +

   = + − +     
T  (1) 

Where 𝐽𝑁+1,1  is an N+1 -by-1 unit matrix, 𝐺∗ 

represents a sample point from the set, B denotes an N+1-

by-N matrix in which elements are 0s and 1s, and for every 

column, two rows of it are different only in the jth entry 

(Saltelli 2004). 𝐷∗ is an N-dimensional diagonal matrix 

made by either +1 or -1 with equal probability, Δ is step 

size in the trajectory, and finally 𝑃∗ is an N-by-N random 

permutation matrix which is described in (Saltelli 2004). 

After extracting the randomized orientation matrix, input  
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Table 2 Several important researches in the field of OLHS 

Contributor(s) Methodology Objective(s) 

Morris and Mitchell 

(1995) 
simulated annealing 

Maximin and Maximize 

entropy 

Jin et al. (2005) 
enhanced stochastic 

evolutionary (ESE) 

Intersite distance 

evaluation based on the 

new 𝜑𝑝 criteria 

Grosso et al. (2009) 
Iterated Local Search 

heuristics (ILS) 

Maximin based on the 

𝜑𝑝 criteria 

Rennen et al. (2010) 
Nested Latin hypercube 

designs 

Maximin (space-filling 

nested design) 

Ye et al. (2000) 

A new columnwise-

pairwise (CP) algorithm 

for searching optimal 
design within the SLHD 

Maximize entropy and 

the minimum distance 

Shields et al. (2016) 
Latinized partially 

stratified sampling 
Variance reduction 

 

 

variables are generated. The sensitivity measures of input 

variables are evaluated by (Saltelli 2004) 

1

R

ii
i

d

R
 ==

  (2) 

( )
2

1

R

ii
i

d

R


 =

−
=   (3) 

where 𝑅  is the number of iterations, and 𝑑𝑖  is the 

elementary effect of ith input variable 

( )( ) ( )1

Δ
i

f s k f s
d

 + − =  (4) 

 

2.2 Quantitative SA based on the Sobol method 
 

Sobol method is an ANOVA based SA, which defines 

variance-based sensitivity indices in the context of high-

dimensional integration (Sobol 1993). The method 

calculates sensitivity indices based on accurate calculation 

of the variance of the output, but it is more computationally 

prohibitive than Morris method. Sobol decomposition of the 

variance of the output 𝑌 is expressed as (Saltelli 2000b) 

( ) 1,2, ,

1 1

k

i ij k

i i j k

var Y D D D 

=   

= + ++   (5) 

Where 

( )( )|i iD var E Y x=  (6) 

( )( ) ( )( ) ( )( )| | Y|ij i j i jD var E Y x x var E Y x var E x= − −  (7) 

It needs to note that the sensitivity indices are the input 

parameter contribution to the output variance, the fractional 

contribution of 𝑥𝑖 to the variance of 𝑌 can be written as 

( )
i

i

D
S

var Y
=  (8) 

𝑆𝑖𝑗  measures the sensitivity of the interaction of the two 

input parameters xi and xj regardless of the effect of each 

parameter, individually 

( )
ij

ij

D
S

var Y
=  (9) 

The total sensitivity index (𝑆𝑇𝑖) is defined as the sum of 

individual and interaction effect only for the input 

parameters, xi (Saltelli et al. 2000b) 

1 2i i i ii iNST S S S S= + ++ ++  (10) 

Evaluation of 𝐷𝑖  , 𝐷𝑖𝑗 ,… is commonly performed 

using an appropriate sampling method. In the next section, 

GBLHS technique will be introduced as an improved 

version of LHS method. Then, the accuracy and 

computational time of the Sobol method will be discussed 

and compared with Monte Carlo simulation (MCS) and 

LHS methods in the next section. 

 

 

3. GBLHS strategy 
 

A host of studies have been conducted evaluating of 

high dimensional metamodels and GSA. This can be 

performed by designing simulations in the sampling way 

such as: fractional factorial sampling, Monte Carlo 

simulation (MCS), quasi-random sampling (Quasi-MCS), 

LHS and etc. LHS is noteworthy because of its non-

overlapping design among the mentioned sampling 

methods. LHS has been successfully used to generate 

multivariate samples of statistical distributions in the field 

of design of experiment (DOE). It was first proposed by 

McKay et al. (McKay et al. 1979). This method has been 

widely used in the field of computational stochastic 

mechanics (Olsson et al. 2002, Stocki et al. 2007), 

structural reliability (Olsson et al. 2003) and simulation of 

structural systems (black-box function evaluation). Various 

techniques have been presented to optimize the LHS 

method to achieve better space filling design (SFD). The 

orthogonality constraint of arrays should be considered in 

this method. Maximin distance in p-norm space (Johnson et 

al. 1990, Mitchell 1974), correlation (Vorechovsky et al. 

2009), entropy and integrated mean squared-error (IMSE) 

criterion (Park 1994), and centered 𝐿2  discrepancy 

(Hickernell 1998) are among the objective functions. Some 

of the most recent studies for generating of optimal LHS are 

presented in Table 2. 

Under the variety of objectives, the optimal LHS can be 

achieved using evolutionary algorithms such as genetic 

algorithm (Crombecq et al. 2006), ESE (Jin et al. 2005) and 

simulated annealing (Morris et al. 1995). In this study, the 

generation of M optimal samples in N-dimensional space 

(N input factors) is accomplished based on the GBLHS 

algorithm. The details of the proposed algorithm is provided 

in a flowchart demonstrated in Fig 1. The genetic operators 

in each generation (mutation, crossover and elitism) are 

applied on the orthogonal sample arrays which are extracted 

by classical LHS method.  The main contributions of this 

algorithm are given as follows: 

1) After exploitation of the closest sample points in 

LHS array, their indices are extracted and then are 

introduced as chromosome in genetic algorithm. 

Considering this point, convergence speed of the minimax 
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value because of maintaining effective indices in the next 

generations, is increased significantly. This approach is one 

of the novelties of the proposed technique. 

2) Crossover and mutation operations, which are 

performed with a novel strategy and are given in Sections 

3.1 and 3.2, differing from other studies (e.g., (Jin et al. 

2005)). 

3) In this method, the objective function is the 

minimum distance of the sampling points in LHS array 

which has to be maximized. 

4) There are some differences between the proposed 

algorithm and GA, in which the population size increases 

by crossover and mutation operations.  It decreases to 

initial population size once the elitism and random 

generation (for avoiding local optimum stucking) are 

performed (Fig 1, step 13).  Crossover, mutation and 

elitism processes are explained in sections 3.1 through 3.3.  

5) The GBLHS algorithm that are depicted in Fig. 1 

through 3, is elicited based on the performance examination 

of the different scenarios using tree-based genetic 

programing (GP) method. In tree-based GP, the 

mathematical expressions are represented in tree structures 

that are evaluated recursively to produce the resulting 

algorithm. 

 
3.1 Crossover operation 

 

In the GBLHS method, Crossover operation is applied 

to N𝑐 number of the closest sample point pair in the LHS 

arrays in every iteration, where N𝑐  is equal to floor 

function of 𝐶𝑐N𝑝 

  c c p
 =  N C N  (11) 

Where 𝐶𝑐  is the crossover coefficient and 𝐍𝑝 is the 

number of LHS arrays population. As indicated in Fig. 2, 

the distances between the projected closest sample point 

pairs in each dimension are computed and sorted. In the 

next step, the best 𝑅𝑐 number of the dimensions is selected 

to apply crossover operation (Fig. 2). The main objective of 

this operation between sample pairs is to recombine worse 

indices which have minimum distances. 

 

3.2 Mutation operation 
 

Mutation is applied to 𝐍𝑚  number of the closest 

sample point pair in the LHS arrays in every iteration, 

where 𝐍𝑚 is equal to floor function of 𝑪𝑚𝐍𝑝 

m m p
 =  N C N  (12) 

Where 𝑪𝑐  is the crossover coefficient. The mutation 

strategy is demonstrated in Fig 3. The Jth nearest sample 

pair (J=1: 𝐍𝑚) will be mutated with two random selected 

samples from the LHS array. Comparison of the random 

index selection and proposed index selection (i.e., step 2 of 

crossover operation, Fig. 2) is demonstrated in Fig. 3.  

 

3.3 Elitism operation 
 

In every iteration, appropriate arrays with high objective  

 

Fig. 1 GBLHS algorithm 

 

 

Fig. 3 Mutation operation 

 

 

Fig. 4 Convergence of the best minimum distance using 

GBLHS method (Number of population: N_p=4, number of 

iterations=2000)-Effect of mutation and crossover 

operations to maximize objective (minimum distance) 

 

 

values (i.e., maximum of minimum distance criteria) are 

maintained for the next iteration by applying elitism 

operation. The number of the best arrays is 
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Fig. 2 Crossover operation 

 

Table 3 Performance of the GBLHS method with different 

operator’s coefficients 

No. 

Test 

No. 

pop. 
Ce Cc Cm 

Mean value 

computation time 
(sec.) 

Expected value 

of the min. dist. 

1 6 0.75 0.25 0.25 111 1.22 

2 6 0.75 0.75 0.75 154 1.13 

3 4 0.75 0.25 0.25 67 1.11 

4 4 0.75 0.75 0.75 111 1.13 

5 2 0.5 0.5 0.5 51 1.12 

 

 

( )[ ]g e p c m= + +N C N N N  (13) 

 

3.4 Convergence investigation 
 

The effect of the operators applied in GBLHS method in 

comparison with the random search (considering elitism) is 

presented in Fig. 4, for an example in which the aim is to 

generate optimal LHS array with  sample size 1000 (𝑁) 

and four variables (𝑀) . 

Each test is repeated 20 times with the results given in 

the boxplot form. Fig. 4 reveals that the GBLHS method 

(𝐂𝑒 = 0.75, 𝐂𝑐 = 0.25, 𝐂𝑚 = 0.75) is superior to random 

search strategy ( 𝐂𝑒 = 0.75, 𝐂𝑐 = 0, 𝐂𝑚 = 0 ) and the 

minimum distance is converged with a high convergence 

rate. 

The performance of the proposed method was 

investigated by examining the effects of the operator's 

coefficient values to generate OLHS arrays with  𝑁 =
300 𝑎𝑛𝑑 𝑀 = 20 (Table 3). Every test was repeated 10 

times and the number of iterations is equal to 500. The 

results indicated that the crossover coefficient greater than 

0.5 is not an efficient value for the algorithm and increasing 

initial population has major effect on the computation time 

while a minor effect on the objective value. 

 

3.5 Efficiency evaluation by high dimensional function 

computation 
 

The performance of the proposed method (GBLHS) was 

compared with LHS and Monte-Carlo simulation methods 

through evaluating high-dimensional function and  

Table 4 Estimation of Rosenbrock function using different 

sampling methods 

Method 

Standard deviation of the evaluations 

(Rosen rock function), Mean 

Value=175.5 

Monte Carlo simulation 3.51 

LHS 3.07 

OLHS (maximin, 

random search, 1200 

iterations)- using 

MATLAB Software 

R2013b. 

3.01 

GBLHS (min.dist., 400  

iterations) 
2.84 

 

 

sensitivity analysis considering the interaction between the 

parameters (input factors). Initially, evaluation of the 

Rosenbrock function will be estimated, which is expressed 

as 

( ) ( )
1

2
2 2

1

1

(100 ( 1) )
n

i i i

i

f x x x x
−

+

=

= − + −  (14) 

With generation of each array (300×10 dimensions), the 

mean value of fitness of the test functions was evaluated by 

300 samples in a high-dimensional case (n=10) in every 

practice, with each input factor being generated from 

uniform distribution as 𝑥𝑖   ∈ 𝑈(0,1). Performance of each 

method was estimated by evaluating the standard deviation 

of mean values of 180 practices. Lower values of standard 

deviation demonstrated better estimation of the test 

function. GBLHS has given low standard deviation 

compared to other methods (Table 4). The performance of 

the Rosenbrock function improved by about 7.5% and 5.9% 

compared to LHS and OLHS (Proposed algorithm in 

MATLAB Software: lhsdesign command) respectively. 

Performance of the GBLHS method in the SA using 

Sobol method compared with other techniques with the 

results tabulated in Table 5. A 10-dimensional function is 

given as 

2 2 2 2

1 2 3 4 1 5 6 7 8 9 10f x x x x x x x x x x x= + + + + + + + + +  (15) 

Where 𝑥𝑖 ∈ 𝑼(0,3) . The SA indices of different 

techniques are shown in Fig 5. It is clear that parameters 

𝑥1 , 𝑥2 , 𝑥5  and 𝑥8  are more effective than the other 

parameters because of their higher degrees of polynomial 

( 𝑥1 , 𝑥2,  𝑥8 ) and the interactive effects between 𝑥1  

and 𝑥5. 

Here, the relative error is introduced as a criterion to 

estimate the performance of each technique. It express the 

difference of the sensitivity indices with respect to MCS 

considering 4,000,000 simulations. The relative error 

parameter is defined as 

 1

 1

| |
 

M

i MCS ii

M

i MCSi

S S
E

S

=

=

−
=



 (16) 

Where 𝑆𝑖 𝑀𝐶𝑆 is the extracted sensitivity index of ith 

factor using MCS and 𝑆𝑖  is the sensitivity index of ith 

factor using intended method. According to relative error  
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Table 5 Relative error in estimation of sensitivity indices 

using MCS, OLHS and GBLHS 

Method and control 
parameters 

No. of the 
simulations 

Relative error 

Monte Carlo simulation 

(reference case) 
4,000,000 - 

OLHS (Minimax,2000 
iterations) 

2,000 0.12 

GBLHS (10 iterations) 2,000 2.48 

GBLHS (100 iterations) 2,000 0.46 

GBLHS (2000 iterations) 2,000 0.03 

 

Table 6 Computational time of different sampling 

techniques to achieve relative error (E=0.02) 

Sampling technique Computational time (sec.) 

Monte Carlo simulation  

(reference case) 
- 

LHS 184.1 

OLHS (Minimax Citeria) 59.1 

OLHS (ESE) 56.1 

GBLHS 54.4 

 

 

Fig. 5 Comparing different sampling methods to estimate 

SA indices 

 

 

values presented in Table 5 and the results presented in Fig 

5, the closest result to the reference mode (MCS with 4.0e6 

simulations) has been achieved using GBLHS method with 

2000 simulations and 2000 iterations. 

Efficiency of the GBLHS algorithm is investigated by 

computational time. Taking into considering equal relative 

error as an objective (𝐸 = 0.02) in estimation of sensitivity 

indices of the multidimensional function 𝑓, computational 

time of different methods are given in Table 6 for 25 

experiments.  The results show that the GBLHS technique 

as an optimal stratified and non-overlapping samples is 

faster than OLHS (Minimax criteria, ESE), for the reason 

that the convergence criteria is achieved by fewer samples 

than other techniques. 

 

 

4. Rotordynamic modeling 
 

Rotordynamic systems are among the important 

industrial cases which are exposed to a variety of 

uncertainty sources, hence stochastic analysis of these 

systems is necessary, especially in high speed rotors. In this  

 

Fig. 6 Rotor element considering interaction of torque and 

axial force 

 

 

paper, many uncertain physical and dimensional factors are 

considered by introducing of Eshleman-Eubanks 

assumption. Improved GSA by GBLHS algorithm is 

applied on the rotor-bearing system to omit non-influential 

factors. The partial differential equation of motion of the 

rotor system was extracted using a continuous model, while 

taking into account the effect of the gyroscopic moment, 

rotary inertia, and shear deformation.  

To have a more reliable analysis in this model, the 

interaction of the axial torque ( 𝑇 ) (Eshleman-Eubank 

assumption) and axial force (𝐹) on whirling behavior of the 

rotor was considered, simultaneously. The force and 

momentum components of rotor-shaft element are indicated 

in Fig. 6 with  𝑢  and 𝑣  representing the whirling 

amplitudes of the rotor and 𝜃𝑖 and 𝛽𝑖   denoting bending 

and shear angles, respectively. Therefore, the governing 

differential equations of motion for the rotor can be 

described by the following relations 
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Using the weighted residual method, the residual terms 

( ℛ𝑖)  can be extracted from the continuous partial 

differential equations as 
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Where �̃� = 〈𝐮,̃  �̃�, �̃�𝑥 , �̃�𝑦 〉  is the approximate solution 

of the 𝐐 = 〈𝐮, 𝐯, 𝛉𝑥 , 𝛉𝑦 〉 which is calculated according 

to the following equations 

.?

x

y

x

y

 
 
 = =
 
 
  

Q Q QS ?

N

N

M

M

 (19) 

554



 

Global sensitivity analysis improvement of rotor-bearing system based… 

 

The relation ∑ 𝑅𝑖 = 0 is used to extract weak form of 

the equation of motion. 
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The shape functions, 𝒮, are given in Appendix A. The 

weak form of Eq. (17) based on the weighted residual 

method and Bubnov-Galerkin approach are given as 
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eq el f TK K K= + +K  (22) 

       
0

[2 ( )]

l
T T

eq y x x yI ds = −C M M M M  (23) 

       ' ' ' '

0

[ ( )]

l
T T

f y y x xF ds= +K N N N N  (24) 

       ' '

0

[ ( )]

l
T T

T y x x yT ds= +K M W M M  (25) 

       ' ' ' '

0

[ ( )]

l
T T

EI y y x xEI ds= +K M M W W  (26) 

el EI shK K K= +  (27) 

The above matrices are calculated and given in 

Appendix B. The details of the calculated matrices above 

are given in Appendix B. Using the above weak forms and 

the relation, the general equation of rotor motion can be 

expressed as 

¨ ˙

eq eq eq+ + =Q Q QM C K F  (28) 

Where  Meq , 𝑪𝑒𝑞  and 𝐾𝑒𝑞  are the equivalent mass, 

damping and stiffness, respectively. The rotor systems are 

under the influences of several uncertainty sources such as 

structural damping, stiffness and damping of the supports, 

centrifugal forces, blade mistuning, density and module of 

elasticity of the material etc. Investigating the effect of the 

uncertain parameters of a rotor-bearing system will be done 

by two SA method through a case study. 

 

4.1 Rotor-bearing case study  
 

The SA of rotordynamic system was performed at 

different speeds with the objective of studying the whirling 

frequencies of the rotor in different modes. Axial torque and 

force, module of elasticity, density, Poisson's ratio, rolling  

 

Fig. 7 Rotor-bearing case study 

 

Table 7 Uncertain parameters in rotor-bearing case study 

Element name Properties 

Rotor shaft 

Diameter 𝑈(30,30.5) (mm) 

Length (L) 𝑈(680,684) (mm) 

Density  𝜌 𝑈(7700,7854) (kg/m3) 

Poisson’s ratio 𝜗 𝑈(0.30,0.33) 

Module of elasticity E (with the 

consideration of random field) 
𝑈(1.9𝑒11,1.938𝑒11) Gpa 

Excitations 
Torque (T) 𝑈(0,2000) (N.m) 

Axial force (F) 𝑈(0,2000) (N) 

Disk #1 

Station: 10 cm 

Radius (rd1) 𝑈(100,101) (mm) 

Mass (md1) 𝑈(1,1.01) (kg) 

Disk #2 

Station: 30 cm 

Radius (rd2) 𝑈(100,101) (mm)  

Mass (md2) 𝑈(1,1.01) (kg) 

Disk #3 

Station: 50 cm 

Radius (rd3) 𝑈(100,101) (mm) 

Mass (md3) 𝑈(1,1.01) (kg) 

Bearings #1 and #2 

Station: two ends of 

the rotor shaft 

Stiffness 

𝐾𝑥𝑥 = 𝑈(1.5𝑒8,3𝑒8) (N/m)   
𝐾𝑦𝑦 = 𝑈(1.5𝑒8,3𝑒8) (N/m) 

𝐾𝜃𝑥𝜃𝑥 = 𝑈(1500,2250) (N/m)   
𝐾𝜃𝑦𝜃𝑦 = 𝑈(1500,2250) (N/m) 

 

 

element bearing (REB) stiffness and rotor shaft and disc 

dimensions were the uncertain parameters whose effects 

were investigated using SA strategies. Since the probability 

density function (PDF) of the uncertain parameters is 

essential to obtain validated results, it would be 

implemented in the algorithm using Sobol method. Initially, 

using Morris method, which is a screening based technique, 

the minor influential parameters were omitted and defined 

as deterministic parameters.  

Next, the major influential parameters were analyzed 

precisely using Sobol method to compute sensitivity indices 

considering PDF of the parameters. The uncertain 

parameters were then applied to the case study as shown in 

Fig. 7, with the parameter value with their PDF’s given in 

Table 7. 

 

4.2 Initial SA using Morris method 
 

All the proposed uncertain parameters in Table 7 are 

considered to be analyzed using Morris method. Although 

this method gives qualitative and approximate results, it can 

be applied to decide on removing the minor effect 

parameters. The domain of the parameter variation in the 

case of SA using Morris method is given in Table 7. 

Determination of the exact value of the REB stiffness 

matrix is a challenging issue. Lately, Gou and Parker (Guo 

et al. 2012) introduced a FEM based methodology to extract  
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Fig. 8 Mean value of Morris SA indices, mode 1 backward 

whirling, rotor spining: 1000 rad/s 

 

 

Fig. 9 Mean value of Morris SA indices, mode 3 forward 

whirling, rotor spining: 1000 rad/s 

 

 

Fig. 10 Mean value of Morris SA indices, mode 3 forward 

whirling, rotor spining: 5000 rad/s 
 

 

the stiffness matrix of a REB and compared it with other 

methods (e.g., COBRA (Jones et al. 1966) and REBM (Lim 

et al. 1990)). Since the modeling errors are the main source 

of uncertainty in the stiffness matrix evaluation, the range 

of the variability of stiffness values depends on the 

proposed strategies, where in this study the values 

employed in (Guo at al. 2012) have been implemented. 

Determinatio of the uncertainty range of the material 

properties and geometrical dimensions is based on the 

probable machining and assembling errors. Since the axial 

torque and forces are proportional to the loading conditions, 

their values vary within a wide range. The SA results are 

provided in Figs. 8 through 13. For extracting more reliable 

results, Morris test was repeated three times, at each rotor 

speed. It is obvious which of the parameters has a minor or 

major effect on the first (backward) and third (forward) 

whirling frequencies at different rotor speeds. It is 

concluded that at the rotation speed of 1000 rad/s, module 

of elasticity, density, rotor shaft radius and length, disc 

mass, bearing stiffness coefficients and axial force are the 

most important parameters in the mean and sigma values. 

As demonstrated in Fig 8 and 9, the effect of stiffness 

variations in the first mode is lower than in the third mode. 

Further, the parameter variations in the third rotor mode at 

different rotor speeds (1000 rad/s and 5000 rad/s) give 

similar effects, according to Figs. 9 and 10. At the rotation  

 

Fig. 11 Sigma value (σ) of Morris SA indices, mode 1 

backward whirling, rotor spinning: 1000 rad/s 

 

 

Fig. 12 Sigma value of Morris SA indices, mode 3 forward 

whirling, rotor spining: 1000 rad/s 

 

 

Fig. 13 Sigma value of Morris SA indices, mode 3 forward 

whirling, rotor spinning: 5000 rad/s 

 

 

speed of 5000 rad/s, the effect of the mass and radius of the 

discs are greater than that of rotational speed 1000 rad/s 

(because of the gyroscopic effect). However, it is not 

significant when compared to the other effective 

parameters. The mean and sigma values have the same 

results in every modes and rotor speeds, qualitatively (e.g. 

compare Figs. 8 and 11). The results of the case study 

revealed that the effect of the axial force on the whirling 

frequency of the rotor is influential only in the first whirling 

mode and the axial torque is non-influential across of the 

modes with different rotor speeds. 

It should be noted that the domain of the variation in 

parameters depends on the uniform distribution function 

given in Table 7. Next, a variance-based method namely 

Sobol method, which uses an optimized sampling method 

(GBLHS), was used to extract the measurable quantity of 

SA indices of rotor-bearing problem. 

 

4.3 SA using Sobol method 
 

Although the computational time of the variance-based 

algorithms is long, they are more accurate than the 

screening methods. Previously, 8 of the 17 parameters were 

omitted from the list of the uncertain parameters using 

Morris method. The remaining 9 parameters were analyzed 

with the PDF of each parameter given in Table 8. After 

generating a 2000×9 matrix using GBLHS, SA was  
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Table 8 Uncertain parameters with different PDF that are 

used in Sobol’s method 

Element name Properties 

Rotor shaft 

Rotor shaft diameter 𝑁(30.25,0.01) (mm) 

Rotor length (L) 𝑁(682,1) (mm) 

Density  𝜌 𝐺 (7770,900) (kg/m3) 

Module of elasticity E  

(with the consideration of 

random field) 

𝑁(1.920𝑒11,4𝑒18) (Gpa) 

Excitations Axial force (F) 𝑈(0,2000) (N) 

Bearings #1 and #2 

Station: two ends of 

the rotor shaft 

Stiffness 

𝐾𝑥𝑥 = 𝑈(1.5𝑒8,3𝑒8) (N/m)   
𝐾𝑦𝑦 = 𝑈(1.5𝑒8,3𝑒8) (N/m) 

𝐾𝜃𝑥𝜃𝑥 = 𝑈(1500,2250) (N/m)     
𝐾𝜃𝑦𝜃𝑦 = 𝑈(1500,2250) (N/m) 

 

 

Fig. 14 Convergence of the first order sensitivity index of 

the module of elasticity by increasing sampling size and 

number of iteration 

 

 

Fig. 15 Comparison of SA indices using MCS, OLHS 

(Minmax) and GBLHS methods, sensitivity of the first 

backward whirling frequency in rotor speed of 1000 rad/s 

 

 

performed on the rotor-bearing FEM-based model. 

The rotor shaft diameter, rotor length and module of 

elasticity were all assumed to have normal distributions. 

The density had gamma distribution and the axial force and 

bearing stiffness had uniform distribution functions. 

Convergence of the sensitivity indices of the module of 

elasticity with increase in the number of samples is 

demonstrated in Fig. 14. The results revealed that by 

increasing the number of population and iterations (i.e., the 

H value which is the number of population multiplied by 

the number of iterations), the sensitivity indices converge to 

a constant value. Moreover, the SA indices using MCS, 

OLHS and GBLHS methods are illustrated in Fig. 15. As 

can be seen from the figure, sampling strategy based on the 

GBLHS method has faster convergence than OLHS (i.e., 

minimax criteria) and MCS. The results showed that 

GBLHS using fewer sampling data, gives better  

 

Fig. 16 SA indices values (Total and first order) using 

GBLHS (12000 samples and 100 iterations) in the first 

mode backward whirling at rotor rotation speed 1000 rad/s 

 

 

convergence in comparison with other methods. First-order 

sensitivity indices are given in Fig 15. 

One outstanding aspect of this case study is that while it 

considers different types of PDF in the input factors (i.e., 

normal, uniform and gamma distribution functions), it will 

converge faster if all input factors have the same PDF. The 

total and first order sensitivity indices for 12000 samples 

(100 iterations) are presented in Fig. 16. 

Modulus of elasticity, shaft radius, shaft length and 

bearing stiffness are the most sensitive parameters in the 

proposed domains on whirling speed of the rotor-bearing 

system. Evidently, altering the PDF of input factors and 

their parameters will change the sensitivity indices. 

 

 

5. Conclusions 
 

Sensitivity analysis was performed on a high speed 

rotor-bearing system to accomplish uncertainty analysis 

considering different types of input factor PDF's. The 

sampling strategy was developed by GBLHS method as a 

new method. The Eshleman-Eubanks assumption and axial 

force interaction effect were implemented in rotor shaft 

elements to attain more reliable result and decrease 

modeling errors. As a case study, the Morris method was 

implemented on 20 uncertain parameters to pretermit 

insensitive parameters which resulted in nine sensitive 

parameters. Use of GBLHS method as an accurate and 

efficient sampling strategy in the Sobol sensitivity analysis 

improves the results of the SA by decreasing sampling size 

needed to estimate SA indices.  The relative error of the 

GBLHS method in SA of a multi-dimensional function was 

clearly less than that of other mentioned techniques (e.g. 

LHS, OLHS the Matlab toolbox 'lhsdesign'). The 

performance of the GBLHS method was investigated by 

sensitivity analysis of the rotor-bearing system. The results 

indicated the effectiveness of the GBLHS method compared 

to the MCS, OLHS, etc. Finally, convergence conditions 

and performance of the proposed method were investigated 

and compared with MCS and OLHS (Minimax criteria) 

methods. 
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Nomenclatures 
 

A Cross section area of the rotor shaft 

Cc Crossover coefficient 

Ce Elitism coef ficient 

Cm Mutation coefficient 

Ceq Equivalent damping matrix 

D* Diagonal matrix 

di Elementary effect of ith input variable 

E Modulus of elasticity 

F External forces on the rotor-bearing system 

G* Sample point matrix 

G Shear modulus 

Kf Axial force stiffness matrix 

KT Axial torque stiffness matrix 

KEI Bending stiffness matrix 

Kel Equivalent shaft element stiffness 

Kxx Bearing stiffness in direction x 

Kyy Bearing stiffness in direction y 

𝐾𝜃𝑥𝜃𝑥  Bearing stiffness about axis x 

𝐾𝜃𝑦𝜃𝑦 Bearing stiffness about axis y 

l Shaft length 

M Number of variables 

Meq Equivalent inertia matrix 

N Sample size 

Nm 
Selected number of the closest sample point 

pair in mutation operation 

Nc 
Selected number of the closest sample point 

pair in crossover operation 

Np Initial number of LHS arrays population 

Q Rotor response 

�̃� Approximate solution of Rotor response 

Rc 
Number of selected genes in crossover 

operation 

Rm 
Number of selected genes in mutation 

operation 

Si Sensitivity index of ith input factor 

STi Total sensitivity index of ith input factor 
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T Axial torsion 

𝑇∗ Randomized orientation matrix 

u Whirling amplitude in direction x 

v Whirling amplitude in direction y 

𝜃𝑥 Bending angle about axis x 

𝜃𝑦 Bending angle about axis y 

Δ Step size in Morris method trajectory 

𝜇∗ Mean parameter of the Morris method 

𝜎 Standard deviation of the Morris method 

𝜌 Density 

𝒦 Timoshenko shear coefficient 

ℛ𝑖 Residual terms 

𝒮 Shape function 

𝜉 Non-dimensional position coordinate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A: Rotor element shape functions 
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Appendix B: Finite element matrices 
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