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1. Introduction  
 

The anisotropy of rocks is considered in most of mining, 

petroleum, civil and environmental engineering projects. 

The mechanical, thermal and hydraulic properties of many 

rock masses can be changed due to the loading directions 

and anisotropic characteristics of rocks. Therefore, in many 

engineering applications it is important to consider the 

anisotropic behavior of rocks in order to decrease the errors 

of different magnitudes depending on the degree of 

anisotropy (Amadei 1982, 1983, 1996, Barla 1974, Pinto 

1966, 1970, 1979, Rodrigues 1966, Salamon 1968). The 

anisotropy in rocks is mostly due to the existence of layers, 

planes of weakness, cracks, bedding planes, schistosity, 

foliations, joints, fault and fault zone in the rock mass 

(Goodman 1993). The existence of a weak plane with in a 

rock sample may significantly affect the compressive and 

tensile strength of this anisotropic rock known as the 

transversely isotropic material (Chen 1998, Chou 2008, 

Exadaktylos 2001, Nasseri 1997, 2003, Ramamurthy 1993, 

Tien 2000). The failure modes of rock mass may also be 

different for various degrees of anisotropy due to weakness 

planes (Tien 2006, Tavallali 2010a, b). 

Two different compressive failure modes may exist for 

the layered rocks i.e. the internal shear mode of failure and 

the sliding failure mode along the bedding planes but for the  
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case of tensile failure there may exist three modes of failure 

including the pure tensile, pure shear or the mixed tensile 

and shear modes. However, the experimental studies 

performed on various rock types mainly the metamorphic 

and sedimentary rocks have shown that they have some 

inherent or structural anisotropy (Saeidi et al. 2013, Hoek 

1964, McLamore and Gray 1967, Horino and Ellickson 

1970, Kwasniewski 1993, Nasseri et al. 2003, Al-Harthi 

1998). For example, sedimentary rocks can be considered as 

isotropic, transversely isotropic or anisotropic depending on 

the spacing and orientations of the bedding planes or 

lamination inherently exist due to their formation. On the 

other hand, the metamorphic rocks are anisotropic because 

they are structurally with schistosity and cleavage in nature 

(Singh et al. 1989, Ramamurthy 1993). Many researchers 

have been accomplished to study the cracks initiation, 

propagation and coalescence in the cracked specimens 

under different loading (Wu et al. 2010, Lancaster et al. 

2013, Ramadoss 2013, Pan et al. 2014, Mobasher et al. 

2014, Noel and Soudki, 2014, Haeri et al. 2014, Oliveira 

and Leonel, 2014, Kim and Taha, 2014, Tiang et al. 2015, 

Wan Ibrahim et al. 2015, Lee and Chang 2015, Kequan and 

Zhoudao 2015, Silva et al. 2015, Gerges et al. 2015, Liu et 

al. 2015, Haeri 2015a, b, c, Haeri et al. 2015a, b, c, 

Wasantha et al. 2015, Fan et al. 2016, Li et al. 2015, 2016, 

Sardemir 2016, Sarfarazi et al. 2016, Shuraim 2016, Yaylac 

2016, Haeri et al. 2016a, b, c, Haeri and Sarfarazi 

2016,Wang et al. 2016, 2017, Akbas 2016, Rajabi 2016, 

Mohammad 2016, Khodayar and Nejati 2018, Nazerigivi et 

al. 2018, Kim et al. 2018, Imani et al. 2017, Najigivi 2017). 

Tw identified in these research, wing crack and shear crack. 
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Abstract.  This research presents the effect of anisotropy of the hollow disc mode under Brazilian test using PFC3D. The 
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shown that for layers angles below 25° the tensile cracks produce in between the layers and extend toward the model boundary 

till interact and break the specimen. The failure process of the specimen may enhance as the layer angle increases so that the 

Brazilian tensile strength reaches to its minimum value when the bedding layers is between 50° and 75° but its value reaches to 

maximum at a layer angle of 90°. The number of tensile cracks decreases as the layers thickness increases and with increasing 

the layers angle, less layer mobilize in the failure process.  
 

Keywords:  bedding layer; Brazilian test; anisotropy; crack; PFC3D 

 

mailto:h.haeri@bafgh-iau.ac.ir
mailto:haerihadi@gmail.com
http://www.sciencedirect.com/science/article/pii/S0141029613005452
http://www.sciencedirect.com/science/article/pii/S0141029613005452
http://www.sciencedirect.com/science/article/pii/S0955799714000046
http://www.sciencedirect.com/science/article/pii/S0955799714000046


 

Vahab Sarfarazi and Hadi Haeri 

 

The results show that the wing types of cracks have been 

cracks disappeared by increasing the confining pressure. 

Several researchers studied the effects of scistisity on 

the indirect tensile strength of metamorphic rocks 

(Berenbaum and Brodie 1959, Hobbs 1963, Debecker and 

Vervoort 2009). They concluded that the Brazilian tensile 

strength (BTS) of different metamorphic rocks have been 

affected by the schistosity orientations. For the case of 

sedimentary rocks, the effect of layers orientation on the 

tensile strength of such rocks have been studied by 

performing the standard Brazilian tensile strength test on 

various rock samples. For example, Hobbs (1963) 

investigated the BTS of siltstone, McLamore and Gray 

(1967) of shale, Chen et al. (1998) as well as Tavallali and 

Vervoort (2010a, b) of sandstone. However, various modes 

of rocks failure have been studied and classified in the 

literature. Chen et al. (1998) studied the tensile failure of 

sandstone and proposed two modes of failure for this rock 

type i.e., the tensile splitting along the loaded diameter of 

sandstone disc samples and shear failure along the 

sandstone layers. On the other hand, Tavallali and Vervoort 

(2010b) also performed some Brazilian tensile tests on 

sandstone specimens and observed three types of failure in 

this rock type. They classified these failure modes as: (i) 

activation of rock layers (the fractures are formed and 

propagated parallel to the layers orientation), (ii) the central 

fractures produced at the central part of the specimen 

parallel to the loading direction, (iii) the fractures produced 

out of the center part of the specimen.   

In this research, the indirect tensile tests on Brazilian 

disc specimens of layered rocks or laminated concretes are 

numerically modeled by a discrete element method (DEM) 

implemented in a two dimensional particle flow code 

(PFC3D) to study the effects of weak laminations on the 

failure strength and fracture patterns of concretes.  

 

 

2. Numerical modeling with PFC3D 
 

Particle flow code represents a rock mass as an 

assemblage of bonded rigid particles (Cundall 1971, 

Potyondy and Cundall 2004). In the two dimensional particle 

flow code (PFC3D), the cohesive and frictional bonds are 

considered to connect the circular discs which in turn are 

confined with planar walls to form a particle assembly. The 

particle contacts are simulated by the parallel bond model. 

The macro mechanical properties of the samples and the 

nature of the cracking and failure process during the loading 

can affect the bonding strengths of the particles with in the 

assembly. The particles friction can be adopted by specifying 

a suitable friction coefficient then the particles can be 

mobilized as long as they remain in contacts with one another 

in the particle assembly. As the applied normal stress exceeds 

that of the specified normal bond strength of the particles, the 

tensile cracks initiate with in the assembly. On the other 

hand, the shear cracks can be produced when the applied 

shear stress surplus that of the specified shear bond strength 

due to particle rotation or direct shearing of the particles. 

After the particle bonds break, the shear strength at the 

contact points immediately drops to zero while the bonding 

Table 1 Micro properties used to represent the intact rock 

Parameter Value Parameter Value 

Type of particle disc Parallel bond radius multiplier 1 

Density (kg/m3) 3000 
Young modulus of parallel bond 

(GPa) 
40 

Minimum radius (mm) 0.27 Parallel bond stiffness ratio 1.7 

Size ratio 1.56 Particle friction coefficient 0.4 

Porosity ratio 0.08 
Parallel bond normal strength, 

mean (MPa) 
70 

Damping coefficient 0.7 
Parallel bond normal strength,  

SD (MPa) 
2 

Contact young modulus 
(GPa) 

40 
Parallel bond shear strength,  

mean (MPa) 
70 

Stiffness ratio 1.7 
Parallel bond shear strength, SD 

(MPa) 
2 

 

 
(a) 

 
(b) 

Fig. 1 Failure pattern in (a) physical sample, (b) PFC3D 

model 

 

 
shear strength reduces to that of the residual frictional value 

(Itasca Consulting Group Inc. 2004, Cho et al. 2007, 2008, 

Potyondy and Cundall 2004, Sarfarazi 2014). All the micro 

mechanical properties of the particle assembly in PFC3D 

should be assigned at the first stage to describe the contact 

properties, contact friction, bond strength and bond 

stiffness. All these properties should satisfy the macro 

mechanical properties provided by considering the macro-

behavior of real material samples in the laboratory tests. 

Therefore, PFC3D code uses a repeatable trial and error  
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Table 2 Brazilian tensile strength of physical and numerical 

samples 

Physical tensile strength (MPa) 4.5 and 4.7 

Numerical tensile strength (MPa) 4.5 

 

 

algorithm to adjust these two micro and macro properties. 

This sophisticated computer code uses an explicit finite 

different algorithm for solving the equations of motions 

predicted by the Newton’s second law. Therefore, this 

procedure can readily predict the initiation and  

 

Table 3 Micro properties used to represent the bedding 

interfaces 

Parameter Value Parameter Value 

n_bond 1e3 s_bond 1e3 

fric 0.25   

 

 

propagation of cracks produced with in the assembly due 

to bond breakage and formation of fracture patterns 

during the failure process of the modeled sample 

(Potyondy and Cundall 2004). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 2 Anisotropic concrete with layers thicknesses of 5 mm and layer angle of (a) 0°, (b) 25°, (c) 50°, (d) 75°, (e) 90° 
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2.1 Preparing and calibrating the numerical model 
 

The Brazilian test was used to calibrate the tensile 

strength of specimen in PFC3D model. The standard 

process of generation of a PFC3D assembly to represent a 

test model involves four steps: (a) particle generation and  

 
 

packing the particles, (b) isotropic stress installation, (c) 

floating particle elimination, and (d) bond installation.  

Adopting the micro-properties listed in Table 1 and the 

standard calibration procedures (Potyondy and Cundall 

2003), a calibrated PFC particle assembly was created. The 

diameter of the Brazilian disk considered in the numerical  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 3 Anisotropic concrete with layers thicknesses of 10 mm and layer angle of (a) 0°, (b) 25°, (c) 50°, (d) 75°, (e) 90° 
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tests was 54 mm and its thickness was 27 mm. The 

specimen was made of 11,615 particles. The disk was 

crushed by the lateral walls moved toward each other with a  

 

 

 

low speed of 0.016 m/s. Figures 1a, b illustrate the failure 

patterns of the numerical and experimental tested samples, 

respectively. The failure planes experienced in numerical  

 
(c) 

 
(d) 

 
(e) 

Fig. 4 Anisotropic concrete with layers thicknesses of 20 mm and layer angle of (a) 0°, (b) 25°, (c) 50°, (d) 75°, (e) 90° 

 
(a) 

 
(b) 
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and laboratory tests are well matching. The numerical 

tensile strength and a comparison of its experimental 

measurements were presented in Table 2. This table shows a 

good accordance between numerical and experimental 

results.  

 

 

2.2 Numerical Brazilian tests on bedding layers 
 

2.2.1 Preparing the model 
After calibrating PFC3D, Brazilian tests for anisotropic 

concrete were numerically simulated by creating a hollow  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 5 Failure pattern in anisotropic concrete with layers thicknesses of 5 mm and layer angle of (a) 0°, (b) 25°, (c)50°,  (d) 75°, 

(e) 90° 
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circular model (Figs. 2, 3 and 4). PFC specimen diameter 

was 54 mm and its thickness was 27 mm. diameter of 

pore space was 15 mm. A total of 11,179 disks with a 

minimum radius of 0.27 mm were used to make up the hollow 

disc specimen. Particles were surrounded by four walls. Upper  

 

 

and lower walls was fixed and left and right wall move toward 

each other by rate of 0.016 mm/s. Bedding layers were 

formed in the model. Layers thicknesses were 5 mm, 10 mm 

and 20 mm. in constant layer thickness, the layer angularity 

changes from 0° to 90° with increment of 25°.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 6 Failure pattern in anisotropic concrete with layers thicknesses of 10 mm and layer angle of (a) 0°, (b) 25°, (c) 50°, (d) 75°, 

(e) 90° 
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In total, 15 specimens containing different bedding layer 

were set up to investigate the influence of Layers thickness 

and layer angularity on failure behavior of models. Micro-

properties for bedding layer interfaces was chosen too low 

(Table 3). 
 
 

3. Results 

 

 

3.1 The effect of layer angel on the failure pattern of 
models 
 

Figs. 5, 6 and 7 shows the effect of layer thickness and 

layer angels on the failure pattern of models. Red line and 

black line represent the tensile crack and shear crack, 

respectively. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 7 Failure pattern in anisotropic concrete with layers thicknesses of 20 mm and layer angle of (a) 0°, (b) 25°, (c) 50°, (d) 75°, 

(e) 90° 
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Fig. 8 The effect of bedding layer angle on the Brazilian 

tensile strength 

 

 

As shown in Figs. 5(a), (b), Figs. 6(a), (b) and Figs. 

7(a), (b), when the layers angle reduces below 25° the 

tensile cracks usually starts to initiate in between the layers. 

These cracks continue their propagation toward the model 

boundary. However, the crack tracing is too high. On the 

other hand, by increasing the layers angle the failure 

process is accompanied with less layer mobilization. Also, 

the failure trace is very short in this case. As far as the 

layers thickness is considered, the number of cracks 

decreases as the layers thickness increases (Figs. 5, 6, 7). 

 

3.2 The effect of bedding layer specification on the 
Brazilian tensile strength 
 

Fig. 8 shows the effect of bedding layer angle on the 

Brazilian tensile strength. Also, the results of bedding layer 

thickness have been shown in this figure. The minimum 

Brazilian strength was occurred when layer angle is 

between the 25° and 75°. The maximum value occurred in 

90°. Also, the Brazilian tensile strength was increased by 

increasing the layer thickness. 

 

 

4. Conclusions 
 

In this work, the effect of bedding layers angle and 

layers thickness on the Brazilian failure mechanism of 

hollow disc model has been investigated using PFC3D. 

firstly calibration of PFC3D was performed using 

laboratory Brazilian tensile strength. Secondly Brazilian test 

was performed on the bedding layer. Thickness of layers 

were 5 mm, 10 mm and 20 mm. in each thickness layer, 

layer angles changes from 0° to 90° with increment of 15°. 

Totally 15 model were simulated and tested. The result 

shows that: 

• When layer angle is less than 25°, tensile cracks 

initiates between the layers and propagate till coalesce with 

model boundary. 

• When layer angle is less than 25°, the fracture trace is 

too high. 

• With increasing the layer angle, less layer mobilizes in 

failure process. Also, the failure trace is very short.  

• It’s to be note that number of cracks decrease with 

increasing the layer thickness.  

• Brazilian tensile strength is minimum when bedding 

layer angle is between 25° and 75°. The maximum one is 

related to layer angle of 90°. 
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