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1. Introduction  
 

The consistent demand for advanced materials in the 

various engineering field is being witnessed to have better 

durability and performance of the structure under severe 

conditions. From last few decades, layered composites are 

being utilised in many weight-sensitivity industries. But, 

under critical thermal environment, layered structures 

demonstrate their incapability of enduring the structural 

integrity due to the delamination type of failure. Therefore, 

Japanese space scientists conceptualised an advanced form 

of the composite, called functionally graded material 

(FGM), by amalgamating two unlike materials with smooth 

gradation (Koizumi 1993). Several research articles have 

already been published in the past to investigate the  
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mechanical structural responses of FGM structures 

subjected to either individual or the combined loading 

conditions. In this regard, the nonlinear frequency and 

dynamic bending responses of FG plate structure under the 

influence of the unlike temperature loading evaluated by 

Huang and Shen (2004) using the higher-order shear 

deformation mid-plane theory (HSDT) including von-

Karman strain. Also, the lower-order displacement 

kinematics say, first-order shear deformation theory (FSDT) 

implemented by Sundararajan et al. (2005) to compute the 

responses of heated FG plate including the large 

deformation behaviour. In addition, a series of analysis 

related to the eigenfrequency responses are reported (Patel 

et al. 2005, Uymaz and Aydogdu 2007, Haddadpour et al. 

2007 and Pradyumna and Bandyopadhyay 2008) for the 

variable geometrical configurations (flat and curved panel) 

using different polynomial based kinematic theories and 

numerical techniques. Similarly, few models are derived for 

the frequency analysis extended further to explore the 

stability behaviour of FG curved panels (Pradyumna and 

Bandyopadhyay 2008) under the elevated thermal field.  

Additionally, the linear and the nonlinear eigenfrequency 

responses of the graded structure for the different 

geometrical configurations are reported using 3D elastic 

theory (Santos et al. 2009) finite element (FE) method 

(Talha and Singh 2011) including the analytical technique 

(Baferani et al. 2012) in the framework of variable 

displacement kinematics (HSDT and Kirchhoff’s model). 
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Likewise, the static and time-dependent deflection values of 

the FG skew structures are reported using the HSDT 

kinematics (Taj and Chakraborty 2013) and 3D-elasticity 

theory (Asemi et al. 2014). In addition, the nonlinear 

frequency responses of the heated FG cylindrical panel 

structure is examined by Shen and Wang (2014) using the 

HSDT and von Karman type of large deformation relations. 

The FSDT type of mid-plane displacement including von 

Karman nonlinear strain and the local meshless techniques 

employed by Zhu et al. (2014) in combination to investigate 

the nonlinear thermoelastic responses of the FG plate 

structure. The differential quadrature method is adopted to 

investígate various structural responses for different 

material constituents  (FGM, carbón nano tube and 

concrete) and geometrical configurations including the 

midplane kinematics (Hajmohammad et al. 2018, 

Hajmohammad et al. 2018, Hajmohammad et al. 2018, 

Hajmohammad et al. 2018, Amnieh et al. 2018, Kolahchi 

and Cheraghbak 2017, Kolahchi et al. 2017, Kolahchi et al. 

2017, Kolahchi 2017, Zarei et al. 2017, Kolahchi et al. 

2016, Arania and Kolahchi 2016, Kolahchi and Bidgoli 

2016, Kolahchi et al. 2016). Yousfi et al. (2018) examined 

the free vibration responses of FGM plate analytically using 

Navier solution and high-order hyperbolic shear 

deformation theory. Bouiadjra et al. (2018) employed a new 

3D shear deformation theory to examine the bending 

behaviour of simply supported FGM plate using Navier 

solution, analytically. Ghannadpour and Kiani (2018) 

proposed a spectral collocation approach using Legendre 

basis function to investigate the nonlinear behaviour of FG 

plates. Pathak et al. (2018) developed a novel and simple 

finite element approach to examine the concrete beam 

strength by introducing the fiber-reinforced polymer 

reinforcement. Kiani et al. (2016) used Ritz method to 

investigate the free vibration of a skew FG carbon nanotube 

reinforced composite using FSDT and Donnell’s kinematic 

assumptions. Additionally, a considerable number of 

research articles are reported on the advanced composite 

structure by modifying the available kinematic theories to 

reduce the total number of unknowns for the mathematical 

simplicity (Belabed et al. 2018, Mokhtar et al. 2018, 

Mouffoki et al. 2017) and the solution techniques 

(Mehrparvar and Ghannadpour 2018, Ovesy et al. 2015, 

Sherafat and Ovesy 2013, Ghannadpour et al. 2012a, 

Ghannadpour et al. 2012b) including the geometrical large 

deformation behavior (Ovesy and Ghannadpour 2007, 

Ghannadpour and Alinia 2006, Alinia and Ghannadpour 

2009, Ghannadpour et al. 2012).  
The previously published articles related to the analysis 

of eigenfrequency responses via the higher-order 
polynomial displacement kinematics for the FG curved 
panel under thermal environment including the temperature-
dependent properties are very few in numbers. However, 
this is the first time attempted by the authors to compute the 
free vibration frequency values of the heated shear 
deformable FG tilted panel under different thermal field 
(uniform and linear temperature rise). Additionally, the 
proposed model is derived in rectangular and tilted 
planforms to achieve the required form. Similarly, the 
model is also capable of constructing various shell 
configurations (flat, spherical, elliptical cylindrical and 

hyperbolic) with the help of variable curvature ratio. For the 
computational solution purpose, a linear finite element 
model is derived for the tilted FG structure in the 
framework of the third-order shear deformation kinematic 
theory (TSDT). The necessary frequency solutions are 
worked out via a home-made suitable MATLAB code in 
conjunction with higher-order FG model including the 
temperature effect. The proposed and derived numerical 
model validity is verified by solving the adequate numbers 
of numerical examples related to the convergence including 
the corresponding comparison behaviour. Finally, the model 
is extended to explore the influences of the geometrical 
parameters (thickness ratios, shallowness ratios, power-law 
indices, aspect ratios) on the eigenfrequencies of the tilted 
FG including the variable thermal fields and temperature 
dependent elastic properties are illustrated in details.  

 

 

2. Effective material properties of FGM  
 

In general, the structural properties affect considerably 

due to the elevated thermal environment and incurred in the 

structural modelling with the help of modified steps (Attia 

et al. 2018, Karami et al. 2018, Menasria et al. 2017, Chikh 

et al. 2017, El-Haina et al. 2017, Bousahla et al. 2016, 

Bouderba et al. 2016, Beldjelili et al. 2016). The current 

FGM panel contains smoothly graded metal and ceramic 

material from lower (metal-rich) to upper (ceramic-rich) 

surfaces. The elastic properties of the individual 

constituents are considered to be temperature-dependent 

and included in the current modelling via the following 

expression as (Reddy and Chin 1998) 

1 2 3

, 0 1 1 2 3( ) ( 1 )c m T T T T T     −

−= + + + +  (1) 

where, c  and m  are the effective elastic properties of 

the ceramic and the metal fractions, respectively, whereas 

0 , 1− , 1 , 2  and 3  are the corresponding 

temperature coefficients.  

Further, to achieve the necessary material grading 

through the spatial direction (z), the power-law distribution 

of volume fractions of FGM constituents are adopted, as 

(Shen 2009) 
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where, m  and c  are the volume fractions of the metal 

and the ceramic, respectively. Here, n represents the power-

law index and which decides the material profile across the 

spatial direction.  

Therefore, the overall material properties of FGM are 

functions of temperature and spatial coordinate. The overall 

material properties for FGM (  ) are obtained using the 

generalized Voigt’s material model (Gibson et al. 1995) 
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Fig. 1 FG shallow shell structure in two different planforms 

(i) rectangle form (ii) tilted form  

 

 

( , ) ? ) ( ) ( ) ( )c c m mT z T z T z    = +  (3) 

 

 

3. Mathematical formulations  
 

3.1 Mid-plane kinematics    
 

A general shallow shell panel structure of sides a and b, 

and thickness h, is employed in two different planforms 

(rectangular and tilted) as shown in Fig. 1. Here, Rx and Ry 

are the radii of curvature along x and y direction, 

respectively. Also, different geometrical configuration 

(Karami et al. 2018, Karami et al. 2018, Zine et al. 2018) 

plays a critical role in the structural analysis and design. 

The structural kinematics has been modelled every now and 

then via different types kinematic theories including the 

modified version of polynomial based displacement 

function to approximate the deformation behaviour (Fourn 

et al. 2018, Yazid et al. 2018, Abdelaziz et al. 2017, Bellifa 

et al. 2017, Bellifa et al. 2016). However, in this current 

study a TSDT mid-plane kinematics model is utilized to 

define the global displacements (u, v, w) at any point in 

terms of mid-plane displacements (u0, v0, w0), rotations (θx, 

θy) and higher-order ( * * * *

0 0, , ,x yu v   ) terms without 

considering the mid-plane stretching effect (Benchohra et 

al. 2018, Abualnour et al. 2018, Younsi et al. 2018, 

Bouhadra et al. 2018), as (Reddy 2004) 

2 * 3 *
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v v z z v z

w w
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 (4) 

This kinematic model can be again rewritten in the 

matrix form as  

    0f =  (5) 

where,  
T

u v w =     and 

  * * * *

0 0 0 0젨 0 0 
T

x y x yu v w u v     =  
are the global and mid-plane displacement vectors. [ ]f

contains the thickness coordinate functions as expressed 

here.  
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The rectangular and tilted (tilted angle ϕ with respect to 

y-axis) planforms are shown in Fig. 1 with sides a and b. To 

constraint the oblique edges, the local displacement vector 

is required to transform to global via transformation matrix 

[H] which comprises cosine (l) and sine (m) terms. The 

displacement transformation can be expressed as  
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(7) 

Eq. (7) can also be written as 

   '0 0[ ]H =  (8) 

where,  '0  is the displacement field defined in the local 

coordinates.  

The strain-displacement equation for any general 

shallow shell structure can be written as  

xx

T
yy

xy

x y x y

xz

yz

u w v w u v u w u v w v

x R y R y x z x R z y R











 
 
                    

= + + + + − + −                               
 
  

 

(9) 

By imposing the displacement terms (4) in the strain-

displacement Eq. (9), the global strain tensor can be 

modified as 
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(10) 

0 1 2 2 3 3zk z k z k = + + +  (11) 

where, ɛ0, k1, k2 and k3 are the mid-plane strain, curvature 

and higher-order terms, respectively and presented in Kar 

and Panda (2015). 

Eq. (11) can be again rearranged as  

   [ ]T =  (12) 

where,   0 1 2 3
T

k k k  =    is the mid-plane 
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strain, and 
2 3T I zI z I z I =    is the thickness-

coordinate matrix, in which I is the unit matrix of size 5×5.  

 

3.2 Constitutive equations  
 

The stress-strain equation for the FG shallow shell 

structure is given by  
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(13) 

Eq. (13) can also be written as 

       ( )thQ  = −  (14) 

where, [ ]Q and  th are the material matrix and the 

thermal strain.  

The strain energy of the FG shallow shell structure can 

be presented as 
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By imposing Eq. (12) in Eq. (15), the strain energy can 

be modified as   
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where,       
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D T Q T dz

+

−

=   is the rigidity matrix.  

The membrane strain energy due to the temperature rise 

through the spatial direction of FG shallow shell structure 

can be written in Green-Lagrange sense, as (Cook et al. 

2009)  
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(17) 

where, Nx, Ny and Nxy are the thermal force resultants. 

   
1

[ ]
2

T

G Gm GU D dxdy  =
    (18) 

where, [ ]GD  and  G  denote the material property 

matrix and the geometrical mid-plane strain, respectively. 

The total kinetic energy of the FG shallow shell 

structure can be written as  
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1

2

T

V

T dV  = 
 

(19) 

where,   and   represent the global velocity vector 

and the mass density, respectively.  

Now, by imposing Eq. (5) in Eq. (19), the total kinetic 

energy of the FG shallow shell structure can be modified 

and expressed as   
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where, 
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=   denotes the inertia matrix.  

 

3.3 Finite element approximations 
 

In this section, the present FG shallow shell panel in 

rectangular/tilted planform is discretized using a nine-noded 

element with eighty-one degrees-of-freedom. The 

displacements defined in the mid-plane can be written in 

nodal form as  

   
9

0 0

1
ii

i

N 
=

=  (21) 

where,  0 i
  and iN  are the nodal displacement vector 

and the approximation function at ith node (Cook et al. 

2009). 

Now, the total and geometric mid-plane strain vectors 

can be expressed using Eq. (21) as  

    0  
i

B =  and      0  
G

iGB =  (22) 

where, [B] and [BG] are the differential operators of the total 

and geometrical mid-plane strains, respectively. 

To obtain the governing equation of the thermally 

vibrated FG shallow shell structure, Hamilton’s principle is 

employed, as   

2

1

( ( )) 0

t

m

t

T U U dt − + =  (23) 

By imposing Eqs. (16)-(22) in the above governing 

equation, the equilibrium equation of the thermally vibrated 

FG shallow shell structure is achieved and expressed in 

global form, as  

 ( )2[ ] [ ] 0GK K M− −  =  (24) 

where,       
T

M N m N=  is the global mass matrix, 

[ ] [ ] [ ][ ]TK B D B= is the global stiffness matrix, 

[ ] [ ] [ ][ ]T

G G G GK B D B=  is the geometric stiffness 

matrix and ω and ∆ are the eigenvalues and the 

corresponding eigenvectors, respectively.  
 

 

4. Results and discussion 
 

The thermoelastic eigenfrequency responses of the 

simply supported rectangular/tilted FG shallow shell panel  
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Fig. 2 Dimensionless frequency parameters of a simply-

supported tilted FG panel 
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Fig. 3 Dimensionless frequency parameters of tilted FG 

panels under simply supported and clamped support 

conditions 

 

 

structures are obtained under the influence of variable 

thermal field (uniform and linear temperature rise). For the 

computational purpose, a suitable computer algorithm has 

been prepared (MATLAB environment) using the proposed 

higher-order finite element formulations. Firstly, the 

convergence and subsequent model validity are performed 

to display model accuracy. Later, the frequency responses of 

FG rectangle/tilted panels are explored via solving different 

numerical examples with the help of the currently derived 

higher-order finite element model.  

 

4.1 Convergence and comparison study  
 

Firstly, the model engaged to comply with the steadiness 

of the numerical solution by varying the mesh densities. 

Hence, an example problem of simply supported FG 

(Al/ZrO2) tilted (θ=30°) panel (a/h=10) is carried out. The 

computed dimensionless frequency parameters 

( )2( / ) / cca h E  =  versus the power-law indices 

(n = 0, 0.2, 0.5, 2, 3) for the different mesh divisions are 

provided in Fig. 2. From the figure, it is understood that the 

frequency responses of the FG tilted panels following good 

convergence rate with the element densities and a (6×6), 

mesh sufficient for the evaluation of new results.  

To display the correctness of the FE based frequency 

solution of the FG panel structure, the results are obtained 

and compared with the published data. Fig. 3 exhibits the 

dimensionless frequencies of the tilted (θ=15o, 30o, 45o) FG  

Table 1 Temperature-dependent properties of the FGM 

constituents (Huang and Shen 2004) 

Materials Properties 0
 

1−
 

1  
2  

3
 

ZrO2 
E (Pa) 2.4427×1011 0 -1.3710×10-3 1.2140×10-6 -3.6810×10-10 

Α (K-1) 12.766×10-6 0 -1.4910×10-3 1.0060×10-5 -6.7780×10-11 

Ti-6Al-4V 
E (Pa) 1.2256×1011 0 -4.5860×10-4 0 0 

α (K-1) 7.5788×10-6 0 6.6380×10-4 -3.1470×10-6 0 

 

Table 2 Influence of power-law index on the dimensionless 

frequency parameters of FG rectangular and tilted flat/curved 

panels under uniform and linear temperature rise  

Shell 

Configurations 
T (K) 

Uniform temperature rise Linear temperature rise 

n=0.5 n=5 n=0.5 n=5 

ϕ = 0° ϕ = 30° ϕ = 0° ϕ = 30° ϕ = 0° ϕ = 30° ϕ = 0° ϕ = 30° 

Flat 

(Rx=Ry=∞) 

300 7.554 14.743 6.350 12.362 7.554 14.743 6.350 12.362 

400 7.232 14.120 6.127 11.939 7.363 14.389 6.211 12.110 

500 6.961 13.594 5.925 11.549 7.202 14.085 6.091 11.887 

600 6.738 13.158 5.740 11.190 7.070 13.831 5.988 11.693 

700 6.556 12.802 5.571 10.857 6.965 13.625 5.902 11.527 

Spherical 

(Rx=Ry=R) 

300 32.035 36.742 26.294 30.305 32.035 36.742 26.294 30.305 

400 30.635 35.152 25.404 29.282 31.187 35.803 25.733 29.676 

500 29.467 33.821 24.582 28.334 30.457 34.995 25.233 29.115 

600 28.516 32.732 23.819 27.455 29.842 34.315 24.789 28.620 

700 27.761 31.859 23.107 26.634 29.335 33.755 24.397 28.184 

Cylindrical 

(Rx=R, Ry=∞) 

300 20.690 26.043 17.298 21.334 20.690 26.043 17.298 21.334 

400 19.811 24.915 16.707 20.627 20.185 25.391 16.943 20.910 

500 19.070 23.971 16.162 19.967 19.752 24.829 16.629 20.529 

600 18.458 23.199 15.659 19.349 19.391 24.352 16.355 20.190 

700 17.961 22.581 15.194 18.766 19.097 23.956 16.118 19.888 

Hyperbolic 

(Rx=R, R=-Ry) 

300 29.782 31.119 24.166 25.364 29.782 31.119 24.166 25.364 

400 28.489 29.788 23.386 24.554 29.054 30.411 23.714 24.922 

500 27.407 28.669 22.649 23.786 28.422 29.795 23.304 24.521 

600 26.524 27.748 21.951 23.053 27.881 29.266 22.931 24.157 

700 25.819 27.003 21.283 22.349 27.424 28.820 22.594 23.829 

Elliptical 

(Rx=R, Ry=2R) 

300 24.328 30.297 20.172 24.753 24.328 30.297 20.172 24.753 

400 23.274 28.972 19.478 23.927 23.687 29.507 19.733 24.241 

500 22.391 27.867 18.841 23.158 23.138 28.825 19.353 23.781 

600 21.670 26.968 18.255 22.441 22.679 28.249 19.002 23.371 

700 21.093 26.254 17.713 21.767 22.304 27.769 18.705 23.006 

 

 

panels for two types of end constraints (clamped and simply 

support). The present results are closely aligned with the 

reported results of the source (Zhao 2009) almost every 

case. However, the reported results of the source (Zhao 

2009) are evaluated using the FSDT type of displacement 

kinematics, hence, the reference values are comparatively 

higher than the derived TSDT results.  

 

4.2 Numerical examples 
 

The influences of various parameters of rectangular 
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Table 3 Influence of thickness ratio on the dimensionless 

frequency parameters of FG rectangular and tilted flat/curved 

panels under uniform and linear temperature rise 

Shell 

Configurations 
T (K) 

Uniform temperature rise Linear temperature rise 

a/h=10 a/h=50 a/h=10 a/h=50 

ϕ = 0° ϕ = 30° ϕ = 0° ϕ = 30° ϕ = 0° ϕ = 30° ϕ = 0° ϕ = 30° 

Flat 

(Rx=Ry=∞) 

300 6.440 9.030 6.699 12.304 6.440 9.030 6.699 12.304 

400 6.200 8.699 6.448 11.856 6.289 8.830 6.539 12.037 

500 5.987 8.403 6.226 11.454 6.159 8.657 6.404 11.804 

600 5.798 8.140 6.030 11.095 6.051 8.509 6.291 11.606 

700 5.632 7.904 5.857 10.773 5.960 8.386 6.200 11.441 

Spherical 

(Rx=Ry=R) 

300 7.466 9.701 18.018 19.739 7.466 9.701 18.018 19.739 

400 7.165 9.328 17.319 18.991 7.243 9.449 17.539 19.250 

500 6.905 9.000 16.708 18.331 7.052 9.232 17.121 18.823 

600 6.685 8.716 16.180 17.753 6.892 9.048 16.761 18.458 

700 6.500 8.469 15.723 17.247 6.762 8.895 16.456 17.148 

Cylindrical 

(Rx=R, Ry=∞) 

300 6.897 9.319 12.656 15.619 6.897 9.319 12.656 15.619 

400 6.627 8.970 12.157 15.041 6.708 9.096 12.304 15.260 

500 6.392 8.660 11.724 14.525 6.547 8.903 11.999 14.947 

600 6.189 8.387 11.353 14.069 6.413 8.740 11.739 14.679 

700 6.016 8.147 11.035 13.664 6.303 8.603 11.521 14.453 

Hyperbolic 

(Rx=R, R=-Ry) 

300 6.910 9.324 14.294 17.076 6.910 9.324 14.294 17.076 

400 6.653 8.986 13.771 16.473 6.749 9.123 13.980 16.744 

500 6.424 8.682 13.303 15.925 6.611 8.950 13.705 16.452 

600 6.222 8.410 12.886 15.428 6.496 8.801 13.466 16.197 

700 6.043 8.165 12.513 14.975 6.400 8.676 13.261 15.978 

Elliptical 

(Rx=R, Ry=2R) 

300 7.115 9.464 14.746 17.119 7.115 9.464 14.746 17.119 

400 6.831 9.104 14.163 16.473 6.909 9.227 14.332 16.701 

500 6.586 8.787 13.658 15.902 6.734 9.022 13.974 16.337 

600 6.376 8.510 13.225 15.401 6.587 8.849 13.667 16.026 

700 6.199 8.268 12.855 14.961 6.468 8.705 13.408 15.764 

 

 

tilted FG flat and curved panels subjected to uniform and 

linear thermal field on the frequency responses are 

examined and discussed here. Various shell configurations 

such as flat (Rx=Ry=∞), singly-curved (cylindrical: Rx=R 

and Ry=∞), doubly-curved (hyperbolic: Rx=R, Ry=-R, 

spherical: Rx=Ry=R, elliptical: Rx=R, Ry=2R) in rectangular 

and tilted planform are considered throughout the 

investigations. Titanium alloy (Ti-6Al-4V) and zirconia 

(ZrO2) are considered as FGM constituents, and the 

temperature-dependent properties are mentioned in Table 1. 

However, the Poisson’s ratios (υ) and densities (ρ) are 

presumed to temperature-independent and taken as 0.3 (for 

both materials), 3000 kg/m3 (for ZrO2) and 4427 kg/m3 (for 

Ti-6Al-4V). The dimensionless frequency parameters (

2 2

0( / ) (1 ) /m ma h v E  = − ), where, E0 represents the 

Young’s modulus of metal at ambient temperature, are 

computed for different set of parameters by varying 

shallowness ratio (R/a), thickness ratio (a/h), aspect ratio 

(a/b), power-law index (n) and temperature variations  

Table 4 Influence of aspect ratio on the dimensionless 

frequency parameters of FG rectangular and tilted flat/curved 

panels under uniform and linear temperature rise 

Shell 

Configurations 
T(K) 

Uniform temperature rise Linear temperature rise 

a/b=1 a/b=3 a/b=1 a/b=3 

ϕ = 0° ϕ = 30° ϕ = 0° ϕ = 30° ϕ = 0° ϕ = 30° ϕ = 0° ϕ = 30° 

Flat 

(Rx=Ry=∞) 

300 6.713 13.053 33.577 45.545 6.713 13.053 33.577 45.545 

400 6.462 12.577 32.312 43.837 6.553 12.767 32.762 44.456 

500 6.239 12.150 31.193 42.325 6.417 12.519 32.073 43.532 

600 6.042 11.769 30.211 40.992 6.304 12.309 31.503 42.765 

700 5.869 11.428 29.347 39.818 6.212 12.135 31.040 42.140 

Spherical 

(Rx=Ry=R) 

300 28.125 32.302 48.787 57.442 28.125 32.302 48.787 57.442 

400 27.069 31.104 46.787 55.101 27.450 31.556 47.266 55.681 

500 26.135 30.038 45.076 55.095 26.863 30.906 45.962 54.179 

600 25.312 29.093 43.638 51.402 26.360 30.349 44.867 52.923 

700 24.587 28.256 42.440 49.987 25.933 29.879 43.963 51.893 

Cylindrical 

(Rx=R, Ry=∞) 

300 18.297 22.799 40.070 49.988 18.297 22.799 40.070 49.988 

400 17.627 21.959 38.519 48.081 17.890 22.285 39.013 48.725 

500 17.027 21.210 37.164 46.403 17.538 21.837 38.112 47.650 

600 16.492 20.544 35.988 44.939 17.239 21.450 37.357 46.753 

700 16.015 19.951 34.972 43.661 16.991 21.120 36.736 46.018 

Hyperbolic 

(Rx=R, R=-Ry) 

300 25.914 27.084 40.828 50.331 25.914 27.084 40.828 50.331 

400 24.971 26.119 39.440 48.615 25.355 26.542 40.149 49.481 

500 24.126 25.246 38.159 47.032 24.861 26.063 39.557 48.744 

600 23.369 24.457 36.974 45.571 24.430 25.644 39.046 48.114 

700 22.691 23.741 35.871 44.213 24.055 25.281 38.609 47.580 

Elliptical 

(Rx=R, Ry=2R) 

300 21.472 26.520 43.468 52.871 21.472 26.520 43.468 52.871 

400 20.666 25.531 41.716 50.786 20.956 25.897 42.175 51.358 

500 19.952 24.653 40.208 48.949 20.509 25.353 41.071 50.070 

600 19.324 23.877 38.928 47.394 20.129 24.883 40.146 48.996 

700 18.771 23.192 37.851 46.074 19.812 24.483 39.386 48.118 

 

 

(uniform and linear).  

Example 1: Table 2 demonstrates the eigenfrequency 

responses of FG (Ti-6Al-4V/ZrO2) panels (R/a=5, a/h=100 

and a/b=1) for two different power-law indices (n = 0.5 and 

5) under uniform and linear temperature rise (300 K to 700 

K). The results predict that ceramic-rich (n=0.5) FG panels 

have higher frequency parameters than the metal-rich (n=5) 

FG panels, because ceramic-rich FG panels are stiffer than 

the metal-rich.  

Example 2: Table 3 demonstrates the eigenfrequency 

responses of FG (Ti-6Al-4V/ZrO2) rectangular/tilted panels 

(R/a=5, n=2 and a/b=1) for different thickness ratios 

(a/h=10 and 50) under uniform and linear temperature rise. 

The frequency parameters are enhancing with the thickness 

ratios i.e., thin (a/h=50) FG panels have comparatively 

higher frequency parameters than the moderately thick 

(a/h=10) FG panels, in all the cases considered here.  

Example 3: Table 4 demonstrates the eigenfrequency 

responses of FG (Ti-6Al-4V/ZrO2) rectangular/tilted panels 

(R/a=5, n=2 and a/h=100) for two aspect ratios (a/b=1 and  
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Table 5 Influence of shallowness ratio on the dimensionless 

frequency parameters of FG rectangular and tilted curved 

panels under uniform and linear temperature rise 

Shell 

Configurations 
T(K) 

Uniform temperature rise Linear temperature rise 

R/a=5 R/a=20 R/a=5 R/a=20 

ϕ = 0° ϕ = 30° ϕ = 0° ϕ = 30° ϕ = 0° ϕ = 30° ϕ = 0° ϕ = 30° 

Spherical 

(Rx=Ry=R) 

300 28.125 32.302 11.043 15.241 28.125 32.302 11.043 15.241 

400 27.069 31.104 10.594 14.667 27.450 31.556 10.706 14.870 

500 26.135 30.038 10.208 14.159 26.863 30.906 10.415 14.550 

600 25.312 29.093 9.883 13.713 26.360 30.349 10.170 14.278 

700 24.587 28.256 9.611 13.321 25.933 29.879 9.966 14.051 

Cylindrical 

(Rx=R, Ry=∞) 

300 18.297 22.799 8.772 13.907 18.297 22.799 8.772 13.907 

400 17.627 21.959 8.419 13.396 17.890 22.285 8.512 13.596 

500 17.027 21.210 8.115 12.940 17.538 21.837 8.290 13.325 

600 16.492 20.544 7.856 12.533 17.239 21.450 8.103 13.096 

700 16.015 19.951 7.639 12.171 16.991 21.120 7.950 12.906 

Hyperbolic 

(Rx=R, R=-Ry) 

300 25.914 27.084 9.226 14.246 25.914 27.084 9.226 14.246 

400 24.971 26.119 8.886 13.740 25.355 26.542 9.017 13.961 

500 24.126 25.246 8.582 13.280 24.861 26.063 8.835 13.712 

600 23.369 24.457 8.312 12.865 24.430 25.644 8.681 13.499 

700 22.691 23.741 8.073 12.489 24.055 25.281 8.551 13.320 

Elliptical 

(Rx=R, Ry=2R) 

300 21.472 26.520 9.638 14.381 21.472 26.520 9.638 14.381 

400 20.666 25.531 9.244 13.846 20.956 25.897 9.340 14.043 

500 19.952 24.653 8.907 13.369 20.509 25.353 9.084 13.751 

600 19.324 23.877 8.622 12.948 20.129 24.883 8.869 13.502 

700 18.771 23.192 8.385 12.577 19.812 24.483 8.692 13.296 

 

 

3). The frequency parameters are following an accelerating 

path while the aspect ratio increase i.e., a/b=3 irrespective 

of the geometrical configuration and temperature loading.  

Example 4: Table 5 shows the eigenfrequency responses 

of FG (Ti-6Al-4V/ZrO2) rectangular/tilted panels (a/b=1, 

n=2 and a/h=100) for different panel shallowness ratios 

(R/a=5 and 20) under the two temperature loading (uniform 

and linear). The FG panels with small shallowness values 

exhibit the higher frequency parameters due to their high 

membrane strength in comparison to the higher one. 

Example 5:  The tilted FG panels (ϕ=30°) are 

demonstrating higher frequency parameters than the 

rectangular panels (ϕ=0°), irrespective of geometrical 

configuration and input parameter. Hence, the frequency 

responses are gradually enhancing with the tilt angle from 

ϕ=0° to ϕ=45° (refer Table 6). This is because the tilted 

panels are stiffer than the rectangular one. The FG panels 

subjected to linear temperature variation have higher 

frequency parameters, compared to the uniform temperature 

field, and the responses are continually deteriorating with 

the temperature rise. The spherical FG panels, both in 

rectangular and tilted form, are exhibiting maximum 

frequency parameter, whereas minimum for flat FG panels. 
 

 

5. Conclusions  
 

In this investigation, the eigenvalue characteristics of  

Table 6 Influence of tilt angle on the dimensionless frequency 

parameters of FG flat/curved panels under uniform and linear 

temperature rise 

Shell 

Configurations 
T(K) 

Uniform temperature rise Linear temperature rise 

ϕ =0° ϕ =15° ϕ = 22.5° ϕ =30° ϕ =45° ϕ = 0° ϕ =15° ϕ = 22.5° ϕ =30° ϕ =45° 

Flat 

(Rx=Ry=∞) 

300 6.713 10.235 11.431 13.053 19.452 6.713 10.235 11.431 13.053 19.452 

400 6.462 9.862 11.014 12.577 18.744 6.553 10.012 11.180 12.767 19.028 

500 6.239 9.527 10.640 12.150 18.107 6.417 9.817 10.963 12.519 18.659 

600 6.042 9.229 10.306 11.769 17.539 6.304 9.653 10.779 12.309 18.346 

700 5.869 8.961 10.007 11.428 17.031 6.212 9.516 10.627 12.135 18.088 

Spherical 

(Rx=Ry=R) 

300 28.125 29.607 30.649 32.302 34.996 28.125 29.607 30.649 32.302 34.996 

400 27.069 28.507 29.512 31.104 33.687 27.450 28.921 29.941 31.556 34.166 

500 26.135 27.530 28.500 30.038 32.526 26.863 28.323 29.324 30.906 33.442 

600 25.312 26.664 27.604 29.093 31.503 26.360 27.810 28.794 30.349 32.819 

700 24.587 25.897 26.810 28.256 30.599 25.933 27.374 28.346 29.879 32.288 

Cylindrical 

(Rx=R, Ry=∞) 

300 18.297 21.681 22.042 22.799 27.032 18.297 21.681 22.042 22.799 27.032 

400 17.627 20.880 21.229 21.959 26.038 17.890 21.189 21.544 22.285 26.426 

500 17.027 20.167 20.504 21.210 25.150 17.538 20.758 21.108 21.837 25.898 

600 16.492 19.534 19.860 20.544 24.361 17.239 20.386 20.732 21.450 25.444 

700 16.015 18.970 19.287 19.951 23.657 16.991 20.068 20.411 21.120 25.060 

Hyperbolic 

(Rx=R, R=-Ry) 

300 25.914 26.289 26.568 27.084 30.175 25.914 26.289 26.568 27.084 30.175 

400 24.971 25.346 25.618 26.119 29.101 25.355 25.750 26.030 26.542 29.571 

500 24.126 24.495 24.761 25.246 28.128 24.861 25.274 25.555 26.063 29.040 

600 23.369 23.729 23.987 24.457 27.249 24.430 24.858 25.140 25.644 28.578 

700 22.691 23.036 23.285 23.741 26.451 24.055 24.496 24.779 25.281 28.181 

Elliptical 

(Rx=R, Ry=2R) 

300 21.472 25.821 26.017 26.520 29.917 21.472 25.821 26.017 26.520 29.917 

400 20.666 24.861 25.047 25.531 28.802 20.956 25.220 25.408 25.897 29.215 

500 19.952 24.007 24.187 24.653 27.811 20.509 24.694 24.876 25.353 28.603 

600 19.324 23.252 23.426 23.877 26.936 20.129 24.238 24.416 24.883 28.077 

700 18.771 22.584 22.753 23.192 26.163 19.812 23.848 24.022 24.483 27.632 

 

 

FG shallow shell panel structures in both, rectangular and 

tilted forms are investigated under uniform and linear 

thermal fields including temperature-dependent elastic 

properties. The final effective properties of the FG structure 

are computed using Voigt’s model in the framework of the 

power-law including the effect of temperature dependency. 

The eigenvalue equation of the vibrating heated FG 

(rectangular/tilted) shallow shell structure is governed 

through the generalized Hamilton’s principle. The 2D 

approximated finite element solutions for the present FG 

model are obtained using Lagrangian isoparametric Q9 

element. Finally, the dimensionless frequency parameters of 

the simply supported heated FG shallow shell panel 

structures are examined with both the rectangular and tilted 

planforms for different geometry (thickness, aspect and 

shallowness ratios), grading (power-law indices) and 

temperature field (uniform and linear temperature rise) 

related parameters. Based on the comprehensive parametric 

investigation, the following significant inferences are 

furnished in the following lines. 

• The ceramic-rich tilted FG shallow shell structures 

demonstrate larger frequency parameters compared to the 
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metal-rich FGM.  

• The frequency parameters of rectangular/tilted FG 

shallow shell panel structures are following an increasing 

trend while the aspect ratio values increase for each type of 

geometrical configurations.   

• The frequency responses are higher while the skew 

angle increases, irrespective of geometry, material profile 

and temperature variation. In addition, the spherical and flat 

the FG panels demonstrate maximum and minimum 

frequency parameters, respectively, in both the rectangular 

or tilted forms.    

• The frequency responses follow deteriorating type of 

behaviour with the enhancement in temperature values. 

However, the rectangular/tilted FG panels subjected to 

linear temperature field exemplify higher frequency 

parameters while compared to the uniform temperature 

field.  
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