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1. Introduction  
 

In recent few decades, the study of earthquakes and 

seismic waves that move along the surface of earth and 

modeling upon surface wave propagation and interaction 

with layered anisotropic media is great challenge for both, 

theoretical and experimental seismologists and as well as 

researchers in the fields of geophysics, acoustics and non-

destructive evaluation. Any disruption inside the earth may 

deliver as the initial cause for seismic wave generation. 

Among various types of seismic waves, torsional wave is 

one kind of surface wave that embroils circumferential 

displacement only, independent of the azimuthal angle. 

Being non-dispersive in nature, these are waves in which 

the particles of the strata twist clockwise and anticlockwise 

regarding the direction of motion of the waves. The 

supplement of torsional surface wave analysis and other 

surface wave propagation problems have been revealed by 

several researchers, due to their demolishing embezzlement 

ab i l i t i e s  th ro ug ho ut  ea r thq ua ke  and  p o ten t i a l 

implementations in geophysical prospecting. In first of 

twentieth century Meissner (1921) has exhibited the 

existence of torsional surface wave in a heterogeneous 

elastic substrate with linear variation of the density and for  
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shear moduli varying quadratically with depth. 

Bhattacharya (1975) has been explored the torsional wave 

propagation in a double-layered circular cylinder with 

imperfect bond. Extensive coverage and surveys on 

pertaining to surface waves can be found, for instance, in a 

monograph by Abo-El-Nour and Alsheikh 2009, Kakar and 

Kakar 2016, Lata et al. 2016, Manna et al. 2015, Ozturk 

and Akbarov 2009, Sharma and Kumar 2016, Singh et al. 

2017, Son and Kang 2012, Sahu et al. 2018 and Vinh et al. 

2016. 

The inner structure of the earth is one of the crucial 

parameters to assess the seismic activity all over the world. 

Generally, a layered medium be formed of two or more 

material constituents connected at their interface in some 

fashion. The concepts of anisotropy, visco-elastic, fiber-

composite, liquid filled poroelastic, transversely isotropic, 

elastic, plastic, sandy, granular, etc. in physical media have 

gained much attention in recent years. Some papers 

(Chattaraj et al. 2011, Chattopadhyay et al. 2009, Kumar et 

al. 2013, Islam et al. 2014, Watanabe 2014) can also be 

cited for their excellent contribution on the propagation of 

torsional waves in a elastic medium with various types of 

circumstance. Kakar (2015) studied the effect of rigid 

boundary on torsional wave transmission in an initially 

stressed heterogeneous elastic layer overlying an 

heterogeneous elastic half-space. Selim (2010) inquired into 

the torsional vibration in a single-walled carbon nanotubes 

under the effect of initial compression stresses. Torsional 

wave generation in a viscoelastic medium over an 

heterogeneous substratum under the effect of magnetic field 

was rendered by Kumari et al. (2016). 

Manna et al. (2015) considered the impact of initial 

stress, anisotropy, reinforcement, and inhomogeneity on 

Love wave transference. Fiber-reinforced composite 
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medium are one class of composite medium in that the 

polymer matrix is reinforced by highly oriented polymer 

fibers, compose of fibers of high potency and modulus 

embedded in or bonded to a matrix with individual 

interfaces within them. In reality, the fibers might be nylon, 

boron, carbon, silicon carbide, or, conceivably, metal 

whiskers. Basically, the features of a fiber-reinforced 

composite confide dynamically on the direction of 

measurement, and hence, they are anisotropic materials. 

Thus, the modulus and tensile strength of a undirectionally 

aligned fiber-reinforced polymer are minimum when these 

characteristic are computed in the transverse direction of 

fibers and maximum value is perceived when they are 

computed in the longitudinal direction of fibers. Chaudhary 

et al. (2005) deliberated propagation of shear waves 

through a self-reinforced layer enclosed by two 

heterogeneous elastic semi-infinite media.  

Biot (1962) was the first who devised the governing 

equations for surface wave propagation in poroelastic strata. 

A porous layer or a porous substance is a structure 

involving pores or voids. Vinh et al. (2016) discussed 

Rayleigh wave propagation in orthotropic fluid-saturated 

porous media. A porous material is very often distinguished 

by its porosity. Porous substances are envisaged precisely 

entirely in nature, in technology and in everyday life. 

Numerous natural elements suchlike various dense rocks, 

and soil (e.g., petroleum reservoirs, aquifers), biological 

tissues and several plastics, virtually all solid and semi-solid 

materials can be contemplated as porous media to varying 

degrees, usually consist of some fluid, such as water, air, oil 

or a mixture of miscellaneous fluids. Son and Kang (2012) 

performed shear wave propagation in a poroelastic layer 

sandwiched by two elastic media. Transversely 

isotropic material those elemental features that, plane of 

each strata is the plane of isotropy and the vertical axis is 

the axis of symmetry. Transversely isotropic solid 

associated with the class of hexagonal system, due to the 

circular symmetry around the hexagonal axis. This 

transverse plane has infinite planes of symmetry and thus 

among this plane, the material peculiarities are the same in 

every directions. Therefore, certain substances are also 

familiar as polar anisotropic substances. Kundu et al. (2017) 

remarkably studied shear waves in magneto-elastic 

transversely isotropic medium constrained between two 

inhomogeneous elastic layers. 

Since earth is a gravitating medium, the force due to 

gravity, has a prominent significance in describing the static 

and dynamic complications of the earth. The reaction of 

gravity on wave propagation in an elastic solid media was 

first executed by Bromwich (1898), dealing the force of 

gravity as a category of body force. The phrase initial stress 

mentions to the stress subsisting in a body and not bounded 

by the operation of external forces. The influence of initial 

stresses on the transmission of torsional surface waves, 

emerged cause to natural incidence or through any artificial 

action is principally existent in the crustal layer as a effect 

of variation in temperature, external loading, atmospheric 

pressure, gravitation, weight dropping, overburden layer, 

slow process of creep, and largeness, can’t be ignored. The 

works done by Ben-Hador and Buchen (1999), Carcione et 

al. (1988), Gupta et al. (2018), Shekhar and Parvez (2016) 

and Wang and Zhang (1998) can’t be connivance as their 

endowments are adorable towards surface wave 

propagation. 

Importance of initial stresses and gravitational forces in 

the mechanics of elastic solids and also understanding the 

subterranean response of surface wave generation in 

expressions of the material characteristic of the earth, 

geophysicsts and seismologists usually considered non 

homogeneous gravitating elastic models in semi infinite 

domains. Abo-El-Nour and Abo-Dahab (2008) explained 

the reflection and transmission of waves at the interface 

between magneto-viscoelastic materials subjected to the 

viscosity and the magnetic field. These ineluctable 

peculiarities and geophysical concepts towards the inward 

structure of the earth impelled the authors to examine the 

dispersion behaviour of torsional surface wave in a simple 

three layer model, consisting of a pre-stressed fiber 

reinforced layer overlying an pre-stressed gravitating dry 

sandy half space, whereas in the topmost layer for case–I, 

taken as pre-stressed fluid saturated porous and for case-II, 

it is pre-stressed transversely isotropic solid. 

Due to notable applications in geophysical and 

geological fields such as soil dynamics, earthquake 

engineering, petroleum engineering, underwater acoustics 

and several subsurface geological inspection and 

exploration, and scheming miscellaneous civil engineering 

and marine structures such as dams, tunnels, bridges, 

highways, platforms and sub-surface development, the 

study of surface waves for inhomogeneous layered media 

over inhomogeneous half space has been of eminent 

attention to the theoretical and experimental seismologists, 

geophysicists and earth scientist. In present contribution, we 

study theoretically and analytically for obtaining secular 

equation of torsional wave generation incorporates 

determinating the solution of a partial differential equation 

or a system of partial differential modeling under 

admissible suitable boundary conditions. Variable 

separation technique is applied to obtained displacement 

components for mediums. Secular relation contains 

Whittaker function and its derivative where asymptotic 

expansion of Whittaker function and its derivatives has 

been accepted up to second order. The confined form of 

velocity equation has been obtained and some particular 

cases have been concluded by changing the thickness of the 

layers, reducing initial stress to be zero and by changing the 

inhomogeneity parameters of layers and half space. 

However, to our knowledge, a comparative study to shows 

an effect of the topmost layer of finite thickness on 

propagation of a torsional wave in a fiber reinforced 

medium of finite thickness lying on anisotropic gravitating 

dry-sandy infinite substratum have not been studied up till 

now. Comparative analysis has been carried out to examine 

and highlighting some significant peculiarities of the 

problem such as effect of initial stresses, width ratio of the 

layers, sandy parameter, porosity, reinforcement, Biot’s 

gravity parameter and other heterogeneity parameters 

associated with layers and substratum on the common wave 

velocity of torsional surface wave.  
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Fig. 1 Geometry of the problem 

 

 

2. Formulation of the problem 
 

We consider a medium consisting of a initially stressed 

fiber reinforced composite layer (M2) of thickness 1H , 

resting on a initially stressed gravitating dry-sandy Gibson 

half space (M3) and under an initially stressed anelastic 

layer (M1) of thickness ( )2 1H H− . Two different cases have 

been discussed. In case-I, we consider topmost layer (M1) 

as a fluid saturated homogeneous porous layer where as in 

case-II, it has been taken as transversely isotropic layer. We 

consider cylindrical coordinate system ( ), ,r z  in such a 

way that r − axis is in the direction of wave propagation 

and z − axis is taken in the direction of increasing depth 

and 0z =  is chosen as the interface between two layers, 

fiber reinforced layer (M2), (occupies the region 

,r−   ,  −  
1 0H z−   ) and non-

homogeneous anisotropic dry-sandy half space (M3), 

(occupies the region  ,0r z−   ),  where initial 

stress and rigidities vary linearly and also in the upper 

topmost layer (M1) , (occupies the region ,r− 

,  −  
2 1H z H−   − ) as shown in the Fig. 1.  

 

 

3. Solution of the problem 
 

3.1 Solution for the initially stressed topmost layer 
(M1) 
 

3.1.1 Solution for the initially stressed homogeneous 
fluid saturated porous layer (M1), (for case -I) 

The upper medium for case-I, is considered as fluid 

saturated homogeneous porous layer under initial stress. 

Ignoring the liquid viscosity and body force, dynamical 

equations for poroelastic medium subjected to initial stress

1FP , are stated by Biot (1962) as 
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where ( )(1) , , ,ij i j r z = = incremental stress components, 

( , , )r zu v w
= components of the displacement vector of the 

solid, ( , , )r zU V W
= component of the displacement vector of 

the liquid and  = stress vector due to liquid and 
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are components of the rotational vector   and the 

‘comma’ in the subscripts represents the partial 

differentiation with respect to the variables. 

The porous medium constitutes volumetrically coupling 

solid-fluid aggregates; it may be modelled by the help of 

continuum porous media theories for both solid-matrix 

deformation and fluid flow so that the stress-strain relations 

for the liquid saturated anisotropic porous solids are 
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(4) 

where * * * 1, , ,A F C N and 1L  = elastic constants of the 

medium, 
1N  and 1L = shear moduli of the anisotropic 

layer in the radial and the z -direction respectively, and the 

strains ( )(1) , , ,ij i j r z =  are related by displacement 

components as 
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(5) 

Further, 
 = the measure of interacting within the 

volume change of the solid and the liquid is a positive 

quantity. The relation between stress vector   acting on 

the fluid phase of poroelastic material and the fluid pressure 
*P can be described as 

*P = −  (6) 

where   is the porosity of the poroelastic material. The 

mass coefficients ,rr r   and 
  are concerned with 

the densities , s  and f  of the layer, the solid and the 

liquid systemically as 

(1 ) ,rr r s r f       + = − + =   (7) 

So, that aggregated mass density can be represents as 

2 ( )rr r s f s       = + + = + −  (8) 
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Also, the mass coefficients fulfil the succeeding 

inequalities 

20, 0, 0, 0rr r rr r           −   (9) 

For the torsional surface wave along the radial direction, 

the mechanical displacement components for solid and 

liquid components are as following 

1

1

0, ( , , ), 0,

0, ( , , ), 0

r F z

r F z

u v v r z t w

U V V r z t W
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= = =

= = =
 (10) 

The above equation yield (1)

z  and (1)

r  strain 

components are non-zero and the other strain components 

will be zero. Therefore, useful stress-strain relations are  

(1) (1) (1) (1)

1 12 , 2z z r rL N      = =  (11) 

Now, Eq. (11) makes the Eqs. (1)-(2) as follows 
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and 

1 1 ,( ) 0r F F ttv V  + =  (13) 

Using stress-strain relations of Eq. (4), Eq. (12) can be 

written as 
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From Eq. (13), let us assume *

1 1r F Fd v V  = +  i.e., 

( )*

1 1F r FV d v  = −  

Now, 

1 1 , 1 ,( )rr F r F tt F ttv V dv + =  (15) 

where 
2

rr rd    = − . 

Using Eq. (15) in Eq. (14), we get 
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For the wave propagating along r - direction, the time 

harmonic solution of Eq. (16) can be assume as, 

(1)

1 10 1( ) ( ) i t

Fv z J kr e =  (17) 

where the angular wave number k  is expressed in terms 

of the angular velocity as ( )ck = ; c  is the phase 

velocity of the torsional surface waves; and 1(.)J is the 

Bessel’s function of first kind with order one. 

Therefore, Eq. (16) can be presented as, 

2 (1)

2 2 (1)10 1
1 1 1 102

( )
( ) 0

2

F
d z P

k N L c L z
dz


 

  
− − − =  

  
 (18) 

where 

2 2

12

11

22

1 r

rr

d 



 
  

   

 
= = − = − 

 
is a non-

dimensional parameter also 11 ,rr  = 12 r  =  and 

22   =  are non-dimensional parameter. 

Inserting solution of Eq. (18) into Eq. (17) yields a 

single equation, giving displacement of upper fluid 

saturated homogeneous porous layer as 
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and 

1 1Fc N = is the shear wave velocity along the radial 

direction, corresponds to the initial stress free poroelastic 

layer and 11Y and 21Y are arbitrary constants. 

 

3.1.2 Solution for initially stressed transversely 
isotropic layer (M1), (for case -II) 

The upper medium for case-II, is considered as 

transversely isotropic layer under initial stress. Assume 

* *,u v and *w as the displacement components in radial, 

azimuthal, and axial directions, consequently for initially 

stressed transversely isotropic layer. In the layer, assuming 

that the torsional surface wave transmits in radial direction 

and that of all the mechanical properties related with it are 

not dependent of , so for torsional surface wave, 

* * 10, ( , , )Tu v v r z t= =  and
* 0w = . 

The only non-vanishing equation of motion for initially 

stressed transversely isotropic layer is provided by Ding et 

al. (2006) 
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in layer and 1T is the density of the layer and also 

1 , 2r T rv = . 

For transversely isotropic elastic medium the stiffness 

matrix are given as 
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 (21) 

where ( )(2) , , ,ij i j r z =  = stress components,
11 12, ,c c  

13 33 55, ,c c c  = elastic constant, ( )(1) , , ,ij i j r z = = strain 

components and the conditions of existence for a 

transversely isotropic medium are 

( )2 2 2

11 12 11 12 33 13 55, 2 , 0c c c c c c c +    

and nonzero strain components related to the displacement 

component 1Tv  by 
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( )(2) 1 (2)

1 , 1 1 ,2, 2r T r T z T zv r v v  −= − =  (22) 

Using Eq. (22) and Eq. (21) in Eq. (20) we get, 
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We assume the harmonic wave solution with amplitude 

of displacement as a function of depth may be taken as 
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Tv z J kr e = ; which lead Eq. (23) to 
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0T

d

dz


− =  (24) 

where 

( ) ( )

( )

11 12 1

2 2

55 1552 2

2
11 12 1 1

2

55 1 1

1

2 ( )2

( )

2 ( )

T

T

T

c c kJ kr

rc J krk r c
k

c c P J kr c

c J kr c

 −   
−  

   
 =  

− − 
− − 
 

 

and 1 55 1T Tc c = is the shear wave velocity in the 

medium, and the ‘dash’ in the superscripts denotes the 

differentiation with respect to the variables. 

Inserting solution of Eq. (24), giving the displacement 

for torsional wave in the upper transversely isotropic layer 

with the axis of symmetry coinciding with the vertical axis 

as 

( )1 12 22 1( , , ) ( )T Tz z i t

Tv r z t Y e Y e J kr e − 
= +  (25) 

where 12Y and 22Y are arbitrary constants.  

 

3.2 Solution for intermediate initially stressed fiber-
reinforced composite layer (M2) 
    

The Cauchy’s stress tensor in fiber-reinforced linearly 

elastic anisotropic model with preferred direction 

( )1 2 3
ˆ , ,   = , are given by Spencer (1972) may be 

written as, 

( )

3 3 3 3

1 1 1 1

3 3

1 1

3 3

1 1

2 2

; , , ,

ij kk ij k m km ij kk i j

k k m k

T ij L T i k kj j k ki

k k

i j k m km

k m

d e a e e

f e f f e e

b e i j r z

      

   

    

= = = =

= =

= =

 
= + + 

 

 
+ + − + 

 

 
+ = 

 

  

 



 (26) 

where ij  = stress components, ij  = Kronecker delta, 

( ) , , / 2ij j i i je u u= +  = components of infinitesimal strain, 

ju  = displacement components, i  = components of  ̂ , 

such that 
2 1i = ;  , , ,Td f a b  and ( )L Tf f−  = 

elastic constants with dimensions of stress.  

The shear modulus in longitudinal shear in the preferred 

direction is identified as Lf , and the shear modulus in 

transverse shear across the preferred direction is identified 

as Tf . a  and b  are the specific stress components to 

take into account in different layers of the concrete part of 

the composite material.  

In Eq. (26), the unit vector ̂  gives the orientation of 

the family of fibers in axial ( z ), azimuthal ( ), and radial 

( r ), directions, respectively. Setting the component 2 0 = , 

gives the orientation of one’s choice, so assuming that, the 

fibers are initially lie in the surface for some fixed value of 

 , at an angle   to the radial axis. Therefore, the 

components of vector ̂  in the cylindrical polar 

coordinate system are ( ) ( )1 2 3
ˆ , , sin ,0,cos     = = . For 

torsional surface waves propagating along radial direction 

and causing displacement in an azimuthal direction only, we 

have the following displacement components 

20, ( , , ), 0r zu u v r z t u= = =  (27) 

In view of Eq. (27), strains are associated with 

displacements by the subsequent relations 

( )1

2, 2 2,

0, 0, 0 , 0,

2, 2

rr zz rz

r r z z

e e e e

e v r v e v



 

−

= = = =

= − =
 (28) 

Using Eq. (28) and Eq. (27) in Eq. (26), one may get the 

succeeding non-zero stress components 

( )

( )

1

2, 2, 2

1

2, 2 2,

;z z r

r r z

Rv Q v r v

S v r v Qv









−

−

= + −

= − +
 (29) 

where                        

( ) ( )

( )

2 2

1 3

1 3

, ,T L T T L T

L T

S f f f R f f f

Q f f

 

 

= + − = + −

= −
 (30) 

Hence, by the properties of torsional wave, we are left 

the only one characteristic equation of motion for the 

generation of a torsional wave in absentia of body force is 

obtained as 

( )1 1

, , , 2,,
2r r z z r z ttz

r r Pe v         − −+ + + − =  (31) 

where 2( )P z P= is the initial stress along radial direction 

and 2( )z =  is density of the fiber reinforced medium. 

Substituting Eq. (29) and Eq. (30), in Eq. (31) becomes 

( ) 1 1

2, 2, 2 2, 2, 2,

2

2 2 2,

2 2rr rz zz r z

tt

Sv Qv R P v r Sv r Qv

r Sv v

− −

−

+ + − + +

− =
 (32) 

Assuming the time harmonic solution, the displacement 

of wave along radial direction in the medium may be 

examined of the form 

2 20 1( ) ( ) i tv z J kr e =  (33) 

Using Eq. (33) in Eq. (32), can be express as 

2

20 20

202

( ) ( )
( ) 0

d z d z
M E z

dzdz

 
+ + =  (34) 
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where

( )2 2
11 2 2

2

1 1

( ) 1
,

( ) ( ) 2

kJ krk J kr P
E S R

J kr rJ kr rS

     
 = + + − −     

( )1 2

1

2 1
,

( ) 2

kJ kr P
M Q R

J kr r

   
= + −   

  
 and 2 2Tc f = is 

the shear wave velocity in reinforced medium along radial 

direction. 

Therefore, the displacement for initially stressed fiber 

reinforced medium in view of Eq. (34) is considered 

periodic form as 

( )2

2 3 4 1( , , ) sin( ) cos( ) ( )M z i tv r z t e Y qz Y qz J kr e −= +  (35) 

where 
2 2

34, , ,q E M M E Y= − and 4Y  are constants. 

 

3.2 Solution for initially stressed gravitating dry-sandy 
Gibson half space (M3) 
    

The constitutive equations of motion for dry sandy half 

space under influence of gravity and initially stressed and in 

the nonappearance of body forces, can be written from Biot 

(1966), as 

 

(36) 

where ( )3 , ,v v r z t= is the displacement component along 

the azimuthal direction, P̂  = initial stress along radial 

direction and ̂ = density of the medium. 

In the dry sandy Gibson half space, disparity of 

directional rigidity, initial stress and density have been 

taken as 

( ) ( )3 3 3
ˆˆ1 , , 1z P P z     = + = = +  (37) 

The stress-strain-displacement relations (non-zero) for 

the sandy half space are 

 

(38) 

Further ,T = where   is the sandy parameter and 

 is the modulus of rigidity. 

Using above relations in Eq. (36) we have 

 

(39) 

For a harmonic wave propagating along radial direction 

we execute solution of Eq. (36) as 

3 30 1( ) ( ) i tv z J kr e =  (40) 

where, 30 ( )z is the solution of 

2

30 30

2

2

2

30

ˆ ˆ( )
(z)

( ) ( )2 2
ˆ ˆ( )

( )
2 2

ˆ
( )

ˆ2
1 ( )

늿 ˆ( ) (z)( )
22 2

P z g
d z d z

dzdz P z gz
z

gz
k z

c
z

gzP z gz
z




 










 

 
 + − 

 +
 

+ − 
 

  
−     

= − 
    −+ −        

 (41) 

Substituting 30 31

ˆ ˆ( )
( ) ( ) ( )

2 2

P z gz
z z z


  = + − in 

Eq. (41), and using Eq. (37) one may get 

( )

( )

( )

( )

( )

2

3 3

32

31

312 2

3 3 3
3

2 3
3

3 3 3
3

2

3

31

3
3

1

4 2
( )

( )
1

2

1
2

( )
1

2

1 ( ) 0

1
2

P g

d
z

dz P P g z
z

gz
k z

P P g z
z

c
z

gz
z

 
 




 
 


 

 
 





 

− 
+ 

 
+

+ − 
+ + 

 

 
+ − 

 
−

+ − 
+ + 

 

 
 
 

 − = 
  + −    

 (42) 

Again, using a transformation 31 32( ) ( ),z  = where

( )

( )

3 3 3
3

3 3

3

( ) z
2 1

2

2

P P g
k z

P g

 
 


 

 

+ − 
+ + 

 
=

− 
+ 

 

in Eq. (42), 

following form may be instated   

2

32

322 2

( ) 1
( ) 0

4

d

d

 
 

 

 
+ + − = 
 

 (43) 

where    
2

3 33

2
3 33 3

2

3 3

3 3

4 22
,

1 12
2 2

P PP c

kc

P PG G
k k k k




 

   
 

 
++  

 
 = −

       + −  + −    
       

 

3

3

3

3

41

4 1

2

P

k

P
G

k k





 



= −
   

+ −  
   

and 
3

3

g
G

k




=  

is Biot’s gravity parameter and 3 3 3c  = is the shear 

wave velocity in the dry sandy half space.   

Eq. (43) is the famous Whittaker equation, and as the 

solution of Eq. (43) must be confined and fades away for 

large distance from the boundary surface i.e., at z →  
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for the surface wave imply  → , appropriate solution 

may be taken as 

32 5
,0

2

( ) (2 )Y W  =  

where 5Y  is arbitrary constant and 
,0

2

(2 )W 
is the 

Whittaker function (Whittaker and Watson (1991)). 

Considering Whittaker function unto linear phrase, we 

get the displacement for the torsional surface wave in the 

lower half space as 

( )

( ) ( ) 

2
5

3

3 3 3 3

2

1

2
( , , )

1
1

2

1

22
1 ( )

2

i t

Y e
v r z t

z P P g z

J kr e







   





−

=

+ + + −

  
−  

  
 − 

 
 
 

 (44) 

 

 

4. Boundary conditions and secular equation 
    

The geometry of the problem proceeds to the 

consequent conditions: 

(I) On the free surface, 2z H= −  of the topmost layer 

(M1), the shear stress is zero, so that   

(i) (1) 0,z = at
2 ,z H= − (fluid saturated porous layer) (45a) 

(ii) (2) 0,z = at 2 ,z H= −  (transversely isotropic 

layer) 
(45b) 

(II) As the width of the intermediate fiber reinforced 

layer (M2) is 1H and it is supposed that, wave is continuous 

at the boundary surface of the media, i.e., at 1 ,z H= − the 

velocity of the topmost layer (M1), is equal velocity of the 

fiber reinforced layer (M2) and also stress is same from 

either side. Mathematically, boundary conditions at 

1 ,z H= − are 

(i) 1 2Fv v= , i.e., displacement components are 

continuous (fluid saturated porous layer and fiber 

composite layer). 

(46a) 

(ii) 1 2Tv v=  , i.e., displacement components are 

continuous (transversely isotropic layer and fiber 

composite layer). 

(46b) 

and 

(iii) (1)

z z  = , i.e., stress components are 

continuous (fluid saturated porous layer and fiber 

composite layer). 

(47a) 

(iv) (2)

z z  = , i.e., stress components are (47b) 

continuous (transversely isotropic layer and fiber 

composite layer). 

(III) Again at 0,z = the common surface of the fiber 

reinforced composite layer (M2) and the dry-sandy substrate 

(M3), the displacement component is continuous and stress 

of fiber reinforced layer and dry-sandy half space are equal. 

In terms of mathematics, boundary conditions at 0,z =

may be written as 

(i) 2 3v v= , i.e., displacement components are 

continuous. (fiber composite layer and dry Sandy 

substratum). 

(48) 

(ii) ˆ
z z  = , i.e., stress components are 

continuous. (fiber composite layer and dry Sandy 

substratum). 

(49) 

Using the preceding boundary conditions with the help 

of Eq. (19), Eq. (25), Eq. (35), and Eq. (44) we get 

2 2

11 21 0F FH H
Y e Y e

 −
− =  (50a) 

2 2

12 22 0T TH H
Y e Y e

 −
− =  (50b) 

( )

( )

1 1 1 12 2

11 21 3 1 4

1

sin

cos 0

F FH H MH MH
Y e Y e Y e qH Y e

qH

 −
+ + −

 =
 (51a) 

( )

( )

1 1 1 12 2

12 22 3 1 4

1

sin

cos 0

T TH H MH MH
Y e Y e Y e qH Y e

qH

 −
+ + −

 =
 (51b) 

 ( )

( ) ( )

( ) ( ) ( ) 

1 1 1

1

11 1 21 1 3 1

1 1 4

1 1 1

sin

2 cos sin

cos 2 sin cos 0

F FH H MH

F F

MH

Y L e Y L e Y e qH

MR qR qH QJ qH Y e

qH MR qR qH QJ qH

 −
 −  − −

 − + −

 − − =

 (52a) 

( )

( ) ( )

( ) ( ) ( ) 

1 1 1

1

12 66 22 66 3 1

1 1 4

1 1 1

sin

2 cos sin

cos 2 sin cos 0

T TH H MH

T T

MH

Y c e Y c e Y e qH

MR qR qH QJ qH Y e

qH MR qR qH QJ qH

 −
 −  − −

 − + −

 − − =

 (52b) 

4 5 1Y Y=  (say) (53) 

and 

( )3 4 5 22Y qR Y MR QJ Y+ − + =  (say) (54) 

Eliminating the arbitrary constants 11 21 3 4, , ,Y Y Y Y and 

5Y from the above five equations, Eq. (50a), Eq. (51a), Eq. 

(52a), Eq. (53) and Eq. (54), and hence simplifying the 

obtained relation gets secular equation (dispersion equation) 

of torsional surface wave in an initially stressed fiber 

reinforced medium confined within initially stressed fluid 

saturated porous layer and initially stressed dry-sandy half 

space (for case-I) as  
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( )
( ) 
( ) 

*

1 2 2 1

1 *

3 4 2 1

tan
tan

tan

F

F

X X H H
qH

X X H H

+  −
=

+  −
 (55) 

Similarly, eliminating the arbitrary constants 

12 22 3 4, , ,Y Y Y Y and 5Y from the above five equations, Eq. 

(50b), Eq. (51b), Eq. (52b), Eq. (53) and Eq. (54), and 

hence simplifying the obtained relation gets dispersion 

equation of torsional surface wave in an initially stressed 

fiber reinforced medium confined within initially stressed 

transversely isotropic layer and initially stressed dry-sandy 

half space (for case-II) as 

( )
( ) 
( ) 

*

1 5 2 1

1 *

3 6 2 1

tan
tan

tan

T

T

X X H H
qH

X X H H

+  −
=

+  −
 (56) 

where
* *

1 2, , , , ( 1,..,6)F T jX j    = are given in the 

Appendix A. 

 

4.1 Special cases 
 

When uppermost layer makes homogeneous and 

perfectly elastic (i.e., the directional rigidities and density 

reduces to constant) and free from initial stress for both the 

cases (i.e., for case-I, 1 1 1 1, 1, 0F FN L P = = → →  and 

for case-II, 11 1 1 12 1 55 1 12 , , 2 , 0T T Tc c c P   = + = = → ) then 

dispersion equation, Eq. (55) & Eq. (56) takes the form 

respectively as 

   ( )
( ) 
( ) 

*

11 21 2 1

1 *

31 41 2 1

tan
tan

tan

F

F

X X H H
qH

X X H H

+  −
=

+  −
 and 

       ( )
( ) 
( ) 

*

11 51 2 1

1 *

31 61 2 1

tan
tan

tan

T

T

X X H H
qH

X X H H

+  −
=

+  −
 

where 
*

1( 1,..,6),j FX j =   and 
*

T  are given in the 

Appendix B. 

When uppermost layer makes homogeneous and 

perfectly elastic (i.e., the directional rigidities and density 

reduces to constant) and free from initial stress for both the 

cases (i.e., for case-I, 1 1 1 1, 1, 0F FN L P = = → → and for 

case-II, 11 1 1 12 1 55 1 12 , , 2 , 0T T Tc c c P   = + = = → ) and 

intermediate layer is without reinforcement and free from 

initial stress, isotropic elastic (i.e., 2;L Tf f = =

1 3 2, , 0P  → ) then dispersion equation, Eq. (55) and Eq. 

(56) takes the form respectively as 

   ( )
( ) 
( ) 

*

12 22 2 1

1 *

32 42 2 1

tan
tan

tan

F

F

X X H H
qH

X X H H

+  −
=

+  −
 and 

       ( )
( ) 
( ) 

*

12 52 2 1

1 *

32 62 2 1

tan
tan

tan

T

T

X X H H
qH

X X H H

+  −
=

+  −
 

where 
* *

2 ( 1,..,6), ,j F TX j =   and q  are given in the 

Appendix B. 

When uppermost layer makes homogeneous and 

perfectly elastic (i.e., the directional rigidities and density 

becomes constant) and free from initial stress for both the 

cases (i.e., for case-I, 1 1 1 1, 1, 0F FN L P = = → →  and 

for case-II, 11 1 1 12 1 55 1 12 , , 2 , 0T T Tc c c P   = + = = → ) and 

intermediate layer is without reinforcement and free from 

initial stress, isotropic elastic (i.e., 1 3 2, , 0, L TP f f  → =  

2= ) and lowermost half-space is isotropic homogeneous 

elastic, without initial stress and free from gravity (i.e., 

inhomogeneity parameters are all zero and

3 31, ; , , , 0T g P   → → → ) then dispersion equation, 

Eq. (55) & Eq. (56) takes the form respectively as 

   ( ) ( ) * *

2 1 1 2 1tan tan 0F F Fq qH H H +  − =  and 

      ( ) ( ) * *

2 1 1 2 1tan tan 0T T Tq qH H H +  − =  

where 
* *,F T   and q  are given in the appendix-B. 

When uppermost layer is initially stressed fluid 

saturated porous layer (for case-I) or initially stressed 

transversely isotropic (for case-II) and intermediate layer is 

initially stressed fiber reinforced and lowermost half space 

is isotropic homogeneous elastic, without initial stress and 

free from gravity (i.e., 3 31, , , , , 0T g P   → → → ) then 

dispersion equation, Eq. (55) & Eq. (56) takes the form 

respectively as 

( )
( ) 
( ) 

*

14 24 2 1

1 *

34 44 2 1

tan
tan

tan

F

F

X X H H
qH

X X H H

+  −
=

+  −
 and 

     ( )
( ) 
( ) 

*

14 54 2 1

1 *

34 64 2 1

tan
tan

tan

T

T

X X H H
qH

X X H H

+  −
=

+  −
 

in which 
* *

4 ( 1,..,6), ,j F TX j =   are given in the 

Appendix B. 

When uppermost layer is initially stressed fluid 

saturated porous (for case-I) or initially stressed 

transversely isotropic (for case-II) and intermediate layer is 

without reinforcement and free from initial stress, isotropic 

elastic (i.e., 2 1 3 2; , , 0L Tf f P  = = → ) and lowermost half 

space is isotropic homogeneous elastic, without initial stress 

and free from gravity (i.e., 31, ,T → → 3, , , 0g P  → ), 

then dispersion equation, Eq. (55) and Eq. (56) takes the 

form respectively as 

 ( ) ( ) * *

1 3 1 2 1tan tan 0F FqR qH k L H H+ +  − =  and 

  ( ) ( ) * *

1 3 66 2 1tan tan 0T TqR qH k c H H+ +  − =  

in which 
* *,F T   and q  are given in the appendix-B. 

When uppermost layer is initially stressed free fluid 

saturated porous (for case-I) or initially stressed free 

transversely isotropic (for case-II) and intermediate layer is 

without reinforcement and free from initial stress, isotropic 

elastic (i.e., 2 1 3 2; , , 0L Tf f P  = = → ) and lowermost 

dry sandy half space is without initial stress and free from 

gravity (i.e., 3, 0g P → ) then dispersion equation, Eq. (55) 

and Eq. (56) takes the form respectively as 

( )
( ) 
( ) 

*

16 26 2 1

1 *

36 46 2 1

tan
tan

tan

F

F

X X H H
qH

X X H H

+  −
=

+  −
 and 
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     ( )
( ) 
( ) 

*

16 56 2 1

1 *

36 66 2 1

tan
tan

tan

T

T

X X H H
qH

X X H H

+  −
=

+  −
 

in which 
* *

6( 1,..,6), , ,j F TX j q=    are given in the 

appendix-B.    

When intermediate layer is absent {i.e., 1 0H → } and 

uppermost layer is homogeneous and perfectly elastic and 

free from initial stress for both the cases (i.e., for case-I, 

1 1 1 1, 1, 0F FN L P = = → → and for case-II, 

11 1 1 12 1 55 1 12 , , 2 , 0T T Tc c c P   = + = = → ) and lowermost 

half-space is isotropic homogeneous elastic, without initial 

stress and free from gravity (i.e., inhomogeneity parameters 

are all zero and 3 31, ; , , , 0T g P   → → → ) then the 

dispersion equation, for case-I, Eq. (55), & for case-II, Eq. 

(56) and takes the form respectively as 

    

2 2 2

2 3 12 22

3 11

tan 1 1 1F

FF

c c c
kH

c cc
 

     
 − = − −   

    
    

 

and    

    

2 2 2

2 3 12 22

3 11

tan 1 1 1T

TT

c c c
kH

c cc
 

     
 − = − −   

    
    

 

which is a widely known classical dispersion result of Love 

wave in a homogeneous layer laying over an isotropic 

homogeneous half space and hence affirming the problem 

discussed. 

When topmost layer is absent {i.e., 2 1H H→ }, 

intermediate layer is without reinforcement and free from 

initial stress, isotropic elastic (i.e., 1 3 0, = =  

2 2, 0L Tf f P= = → ) and lowermost half space is 

isotropic homogeneous elastic, without initial stress and 

free from gravity (i.e., inhomogneity parameters are all zero 

and 3 31, , , , , 0T g P   → → → ) then the dispersion 

equation, Eq. (55) & Eq. (56) both takes the form 

2 2 2

1 3 22 22

3 22

tan 1 1 1
c c c

kH
c cc

 
     
 − = − −   

    
    

 

which is a widely known classical dispersion result of Love 

wave in a homogeneous layer laying over an isotropic 

homogeneous half space and hence affirming the problem 

discussed. 

 

 

5. Numerical computation and discussion 
 

In order to realize the impact of numerous parameters 

viz. reinforcement, sandy parameter, Biot’s gravity 

parameter, initial stresses, porosity, width ratio of the layers 

and other inhomogeneity parameters coupled with layers 

and half space and for the intent of numerical computation 

of nondimensionlize phase velocity of torsional surface 

wave generating in an initially stressed fiber reinforced 

layer, sandwiched between initially stressed porous layer 

(for case-I) or initially stressed transversely isotropic layer 

(for case-II) and a gravitating dry sandy substratum 

subjected to initial stress, we presumed the following data: 

For uppermost initially stressed fluid saturated 

homogeneous layer (M1) (for case-I): (Samal and Chattaraj 

(2011)) (Water-Saturated lime stone) 
9 2 9 2

1 1

3

3 3

2.774 10 , 1.387 10 ,

0.26, 1926.137 ,

2.137 , 215.337

rr

r

N N m L N m

kg m

kg m kg m 



 

=  = 

 = =

= =

 

where 
1 1,N L  represents shear moduli,   is the porosity 

and , ,rr r      are densities of the layer, the solid and 

the liquid respectively.    

For uppermost initially stressed transversely isotropic 

layer (M1) (for case-II): (Prosser and Green Jr (1990)) 

(T300/5208 graphite/epoxy material) 
9 2 9 2

11 12

9 2 3

55 1

14.26 10 , 6.78 10 ,

5.27 10 , 1422T

c N m c N m

c N m kg m

=  = 

=  =
 

where 
11 12 55, ,c c c  are elastic constants and 

1T is the 

density of the transversely isotropic solid. 

For intermediate, initially stressed fiber reinforced layer 

(M2): (Markham (1969)) (Carbon fiber-epoxy resin) 
9 2 9 2

3

2

5.66 10 , 2.46 10 ,

1671

L Tf N m f N m

kg m

=  = 

=
  

where ,L Tf f  are transversal shear modulus and 

longitudinal shear modulus respectively and 
2  is the 

density of the sandwiched layer.   

For initially stressed anisotropic gravitating dry-sandy 

half space (M3): (Gubbins 1990) (Anisotropic sandstone 

material) 
9 2 3

3 365.4 10 , 3409N m kg m =  =  

where 
3  are rigidity and 

3 is the density of the half 

space. 

The figures have been constructed by assuming the 

vertical axis as a dimensionless phase velocity 2( / )c c  

versus horizontal axis as a dimensionless wave number 1kH

. For graphical illustration, we have taken the fixed values 

of the parameters as 

0.90, =
1 0.2,F = 1 0.2,T = 2 0.3, = 0.5,k =

0.2,k = 1.05, = 1.0,G =
3 0.3 =  and 2.0H = ; 

unless the varying values shown in the respective figures. 

Here
1 1 12 ,F FP L = 1 1 552 ,T TP c = 2 2 2 TP f = ,

3 3 3/ 2P = , 
2 1H H H=  and also in all the figures solid 

and dashed curves represent Case-I and Case-II 

respectively. 

Moreover, the following data have also been used, 

3.5,kr =
060 , =  i.e., 

1 3 2, = 2 0, =  3 1 2 = and 

we take asymptotic expansion of Bessel function of first 

kind with order one up to five terms. 

Here the following cases may be discussed for fluid 

saturated porous medium, 

(i)   For porous layer, if 1→ then f → , thus the 

bulk material becomes fluid i.e.,
2

11 12 22 0  − → , or 

0 → . It represents shear waves does not exist. 

(ii)  For non-porous layer, if 0 → and s →  
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Fig. 2 Variation of the dimensionless phase velocity 

( )2/c c  versus the non-dimensional wave number kH1 for 

different values of porosity parameter ( ) (Case–I) 

 

 

Fig. 3 Variation of the dimensionless phase velocity 

( )2/c c  against the non-dimensional wave number kH1 for 

various values of initial stress parameter 
1( )F  (Case–I) 

 

 

which proceeds to 11 12 1 + →  and 12 22 0 + → , which 

gives to 
2

11 12 22 1  − → or 1 → . Thus, for porous 

substrate 0 1  . 

Fig. 2 depicts the consequence of porosity parameter (
) for different values, associated with upper poro-elastic 

medium (case-I). In Fig. 2, the values of ( ) for curves 1, 

2, 3, 4, and 5, respectively have been taken as 0.90, 0.85, 

0.80, 0.75 and 0.70. From these figures, it has been observe 

that as the porosity of the layer decreases, the phase 

velocity ( 2/c c ) of the torsional wave number increases for 

a certain wave number 1kH . Result points out that porosity 

( ) of the layer is inversely proportionate to the phase 

velocity ( 2/c c ) of the torsional surface wave. The curves 

that are uniformly away from each other shows the 

prominant effect of the porosity on torsional wave 

propagation.  

Fig. 3 decorate the notable influence of horizontal initial 

stress (case-I) on the phase velocity of a torsional surface. 

When 1 0F  , it is designated compressive initial stress,  

 

Fig. 4 Variation of the dimensionless phase velocity 

( )2/c c  against the non-dimensional wave number kH1 for 

different values of initial stress parameter ( )1T (Case–II) 

 

 

Fig. 5 Variation of the dimensionless phase velocity 

( )2/c c versus the non-dimensional wave number kH1 for 

various values of initial stress parameter ( )2  

 

 

whereas when 1 0F  , is yclept tensile initial stress. To 

show effect of compressive and tensile stresses, values of 

1F  for curves 1, 2, 3, 4 and 5, have been taken as -0.25, -

0.15, 0.0, 0.15, 0.25 respectively. It has been noticed that as 

the value of 1( )F  increases, the phase velocity decreases 

at a certain wave number. The impact has egress more 

conspicuously at lower wave number.    

Fig. 4 describes the domination of horizontal initial 

stress 1( )T  parameter (case-II) for distinct values. This 

case is almost similar to previous one. To show effect of 

compressive and tensile stresses, values of 1( )T  for 

curves 1, 2, 3, 4 and 5, respectively have been assume as -

0.1, -0.05, 0.0, 0.05, and 0.1. It has been perceived that as 

the value of 1( )T increases, the phase velocity increases 

uniformly at a fixed wave number.  

Fig. 5 depicts the effect of the initial compressive stress 

parameter 2( )  associated with the intermediate layer on 

the phase velocity ( 2/c c ) of the torsional surface wave. The  
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Fig. 6 Variation of the dimensionless phase velocity 

( )2/c c  against the non-dimensional wave number kH1 for 

different values of inhomogeneity parameter ( )/ k  

 

 

Fig. 7 Variation of the dimensionless phase velocity 

( )2/c c  against the non-dimensional wave number kH1 for 

various values of inhomogeneity parameter ( )/ k  

 

 

values of 2( )  are taken as 0.3, 0.27, and 0.24 for Curves 

1, 2, and 3, respectively for case-I and Curves 4, 5, and 6, 

respectively for case-II. Fig. 5 demonstrates that the phase 

velocity raises as decline in the dimension less wave 

number and ratifies that as the compressive initial stress 

parameter increases, the phase velocity of the torsional type 

surface wave decreases. In the absence of initial stress, 

highest phase velocity has been detected and it validates 

noticeable effect of initial stress on wave propagation.   

Fig. 6 signifies the dispersion curve of the torsional 

surface wave subjected to inhomogeneity parameter 

( )/ k  conjoined in the rigidity of the dry Sandy Gibson 

half space. The values of ( )/ k  are taken as 0.50, 0.51, 

and 0.52 for Curves 1, 2, and 3, respectively for case-I and 

Curves 4, 5, and 6, respectively for case-II. Figure 6 shows 

that the velocity of the torsional type surface wave recedes 

(case-I) and increases (case-II) with increment in the wave 

number 
1kH , which reaffirms that the phase velocity 

( )2/c c  increases (case-I) and decreases (case-II) with an  

 

Fig. 8 Variation of the dimensionless phase velocity 

( )2/c c versus the non-dimensional wave number 1kH for 

various values of sandy parameter ( )  

 

 

Fig. 9 Variation of the dimensionless phase velocity 

( )2/c c versus the non-dimensional wave number kH1 for 

various values of Biot’s gravity parameter (G) 

 

 

increase in the inhomogeneity parameter ( )/ k  of the 

half space, for fixed values of wave number 
1kH .  

Fig. 7 delineates the impact of inhomogeneity parameter 

( )/ k . The values of ( )/ k  are taken as 0.20, 0.30, and 

0.40 for curves 1, 2, and 3, respectively for case-I and 

Curves 4, 5, and 6, respectively for case-II. From figure it 

can be seen that the phase velocity reduce (case-I) and 

increases (case-II) with the increasing values of 

inhomogeneity parameters. In comparison to above two 

cases, minimum impact of inhomogeneity parameters 

 / , /k k   has been found in case-I. 

Fig. 8 signifies the impression of the sandy parameter 

( )  on the phase velocity of the wave for individual values 

of ( )  under the influence of initial stress. The value of 

( )  for Curves 1, 2, and 3, respectively for case-I and 

Curves 4, 5, and 6, respectively for case-II, are considered 

as 1.00, 1.05, and 1.10 respectively. The graph gives the  
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Fig. 10 Variation of the dimensionless phase velocity 

( )2/c c  against the non-dimensional wave number kH1 for 

different values of initial stress parameter ( )3  

 

 

Fig. 11 Variation of the dimensionless phase velocity 

( )2/c c  versus the non-dimensional wave number kH1 for 

various values of ratio of thickness of layers (H) 

 

 

clear picture of initial stress, for a particular value of non-

dimensional wave number kH1, for both the cases, the phase 

velocity ( )2/c c  increases as the value of sandiness ( )  

increases. 

Fig. 9 manifests the consequence of gravity on the 

generation of the torsional surface wave in the half space. 

The value of (G)for curves 1, 2, and 3, respectively for 

case-I and Curves 4, 5, and 6, respectively for case-II, are 

considered as 1.0, 0.98, and 0.96 respectively. It has been 

found from the dispersion curves of present figure, that as 

the Biot’s gravity parameter (G) of the half space decreases, 

the phase velocity increases remarkably (case-I) and 

decreases remarkably (case-II) at a fixed wave number 

thereby, it shows the phenomena that phase velocity of 

torsional surface wave is inversely proportional (case-I) and 

directly proportional (case-II) to the gravity of the dry 

sandy half space. 

Fig. 10 depicts the effect of initial compressive stress 

3( )  of the anisotropic Gibson half space on the 

dimensionless phase velocity ( 2/c c ) of torsional surface 

waves with variation in wave number kH1 which provides 

the essence of having the influence of initial compressive 

stress in the half space detracts the phase velocity of 

torsional surface waves. In this figure, values of ( 3 ) are 

considered as 0.30, 0.15, and 0.10 for Curves 1, 2, and 3, 

respectively for case-I and Curves 4, 5, and 6, respectively 

for case-II. This figure highlights that the impact is approx.  

same as that of the Fig. 5, but the curves here are more apart 

from each other. Under these mentioned values, it can be 

observed that, as the compressive initial stress decreases, 

the dimensionless phase velocity ( 2/c c ) increases for a 

fixed wave number for both the cases. Thus, one can 

conclude that when half space is homogeneous then 

torsional surface wave is directly proportional to 
3  and 

increasing with same frequency as 3( )  increases. 

Fig. 11 illustrates the consequence of thickness ratio 

( )H  of the upper and intermediate layer. The value of 

( )H  for curves 1, 2, and 3 respectively for case-I and 

Curves 4, 5, and 6 respectively for case-II, are taken as 

2.05, 2.00, and 1.95 respectively. We observe that as the 

ratio of thickness of the layers ( )H  recedes, the phase 

velocity ( 2/c c ) of torsional surface at a particular 

frequency of wave number kH1 increases, which validates 

the fact that phase velocity of torsional surface wave is 

inversely proportional to the ratio of thickness of the layers 

and also the curves are more apart from each other show the 

remarkable effect of the ratio of thickness of the layer on 

torsional surface wave propagation.  

 

 

6. Conclusions 
 

In the present problem, a mathematical model is 

developed for analytical study on torsional wave generation 

in a fiber reinforced layer, constrained between different 

anelastic layer and gravitating semi-infinite sandy 

substratum. Based on the calculated results, the subsequent 

conclusions can be drawn: 

• The comparative study in the Figs. 7-11 shows that 

phase velocity of torsional surface wave is detected to be 

greater, for fixed value of wave number, when the topmost 

layer is transversely isotropic as compared with the event 

when the superficial layer is fluid saturated homogeneous 

porous. 

• In the presumed condition, the torsional waves are 

executed to be dispersive in nature, the phase velocity 

increases or decreases with increase in dimensionless wave 

number in all the graphs. 

• Increase of heterogeneity owning to directional rigidity 

of the substratum the phase velocity increases (for case-I) 

and decreases (for case-II). 

• The acquired secular relation for the torsional surface 

wave is detected to be well in compliance with the classical 

Love wave equation as a particular case of the problem, 

when effect of non-homogeneity parameters and pre-stress 

is neglected from the secular relation of the torsional waves 

and one of the upper layers vanishes. 

• The common velocity of torsional wave increases (for 
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case-I) and decreases (for case-II) as the Biot’s gravity 

parameter (G) decreases, significantly. 

• Existence of sandiness ( )  in the half space 

increases the wave length of the torsional wave which bars 

the extension of seismic energy despatched through the 

sandy medium. 

• It has been found that, the torsional surface wave 

transmits much slower and it indicates the effect of initial 

stress on phase velocity. The initial stresses staying in the 

anisotropic substratum, fiber reinforced medium and 

topmost anelastic medium also have a outstanding effect in 

the velocity of propagation. 

• Present study manifest that the width of the layers 

performs a vital role in the analysis of torsional surface 

waves. 
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