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1. Introduction  
 

Typically, reinforced concrete (RC) framed structures are 

infilled with non-structural panels in order to separate the 

internal building space from the external environment. The 

infill panels are, in the majority of cases, made by masonry, 

whose structural behavior is extremely complex, being 

affected by a number of uncertain parameters such as the 

mechanical characteristics of the raw materials (clay, 

concrete), the mortar thickness and quality, the brick 

geometry and arrangement, the relative stiffness of the frame 

and of the infill panel, as well as the actual workmanship 

expertise, to name just a few. Although they are considered 

as non-structural components in the structural calculation, 

masonry infills do modify the stiffness, strength and ductility 

response scenarios of the overall RC frame. Therefore, 

neglecting their presence in structural analysis and design of 

masonry infilled RC frames may lead to inaccurate 

predictions and wrong design conclusions. Additionally, the 

actual behavior is further complicated by the presence of 

irregularities in the distribution of infills in plan and 

elevation of the building, and the resulting overall interaction 

between infill walls and surrounding frame (Asteris et al. 

2015a, Khoshnoud and Marsono 2016, Asteris et al. 2017a). 

This interaction may or may not be beneficial from a design 

viewpoint, for instance an irregular distribution of infills may 

produce torsional behaviors along with triggering undesired 

phenomena of soft stories, as demonstrated by observations  
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after catastrophic earthquakes, see the emblematic examples 

illustrated in Fig. 1. Additionally, in common practice infill 

walls include openings (e.g., doors, windows) and this 

further complicates the determination of the mechanical 

response of masonry infilled frames (Asteris et al. 2011, 

Asteris et al. 2016a). 

The above sources of uncertainty and irregularity, and the 

heterogeneous nature of the masonry panels make the related 

modeling task a rather intricate process. Indeed, there is lack 

of repeatability of results, even when carrying out 

experiments under macroscopically identical geometrical 

and mechanical conditions. In this regard, experiments have 

been conducted on infill walls since the late 50s, see e.g., 

(Benjamin and Williams 1957, Benjamin and Williams 1958, 

Matthies et al. 1997, Zarnic and Tomazevic 1985) for some 

landmark contributions involving monotonic loading, and 

(Esteva 1966, Chandrasekaran and Chandra 1970, Klinger 

and Bertero 1976, Valiasis and Stylianidis 1989, Mehrabi et 

al. 1994, Dawe et al. 1989, Dolce et al. 2005) for cycling 

loading, harmonic excitations and shake-table tests. The 

mentioned papers were mostly focused on the in-plane 

behavior of the masonry infills, whereas a wealth of literature 

also exists for the out-of-plane behavior, see e.g., (Angel et 

al. 1994, Felice and Giannini 2001, Flanagan and Bennett 

1999, Pasca et al. 2017) for just a few examples. The failure 

mode of a masonry infill subject to horizontal (seismically-

induced) loads may range from compression failure of 

diagonal strut (also referred to as “corner crushing”), which 
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is quite frequent and typically occurs for low-compressive-

strength infill materials, damage in the frame members (also 

referred to as frame failure mode), which originates from a 

damage mechanism of the column due to the forces 

transferred from the infill wall to the surrounding frame (it 

generally takes place for masonry infills having high 

compressive strength), diagonal cracking failure mode, 

sliding shear or out-of-plane failure whereby damage 

accumulates in the central zone of the infill panel due to the 

arching mechanism (Kheirollahi 2013). 

The aforementioned references, although limited to just 

a few contributions, together with the variety of failure 

modes mentioned before give the general idea of the 

complexity in modeling the masonry infill behavior while 

properly accounting for its stiffening contribution and for the 

interaction with the surrounding frame in a RC framed 

building. Several researchers investigated this subject with a 

variety of numerical techniques, with different underlying 

theoretical bases and applicable to different scales of 

observations. Typical modeling approaches include micro-

models (Döven and Kafkas 2017), macro-models or 

homogeneization models (Milani and Benasciutti 2010). 

Some literature surveys can be found in a couple of papers 

by Asteris and co-workers (Asteris et al. 2011, Asteris et al. 

2013, Asteris et al. 2015b, Asteris et al. 2017b), and a quite 

recent overview of linear and nonlinear, micro-modelling, 

meso-modelling and macro-modelling approaches has been 

presented in (Tarque et al. 2015) and references therein. 

Extensive and in-depth state-of-the-art reports can be found 

in the following works (Amanat and Hoque 2006, Crowley 

and Pinho 2004, Crowley and Pinho 2006, Asteris et al.  

 

 

2016b, Asteris 2016).  

In line with this research field and considering the 

experimentally observed uncertain nature of the masonry 

behavior along with the dissemination of a large number of 

predictive expressions, the aim of this paper is to propose a 

probabilistic approach for the analysis of masonry infilled 

RC frames. This probabilistic framework is particularly 

motivated by the scatter of experimental results on which 

most of the predictive (simplified) expressions are based, 

which may induce doubts about which mechanical 

characteristics to assume for the diagonal struts in a 

simplified model.  

The presence of a variety of empirical expressions in the 

literature makes it difficult to decide which is the most 

suitable one for design purposes, even more complicated by 

the uncertain nature of the masonry behavior. In this paper, 

we face the problem of determining the structural response 

of masonry infilled reinforced concrete (RC) frames from a 

probabilistic perspective, by assuming the diagonal strut 

(modeling the masonry panel) as a random variable. In this 

way, the suitability of the different expressions proposed in 

the literature may be assessed in terms of how closely they 

predict the mean values (or some characteristic values) of the 

relevant probability density function. Additionally, the 

probabilistic framework allows the evaluation of the 

implications of the uncertain nature of the masonry infills in 

a set of response indicators. This is important to asses to what 

extent the randomness of the masonry infills propagates in 

the structural response. To the authors’ best knowledge, 

probabilistic approaches to this problem are very few 

(Erdolen and Doran 2012) and usually rely on Monte-Carlo- 

 

 

(a) (b) 

  

(c) (d) 

Fig. 1 Examples of poor seismic performance of RC frames with masonry infill walls: first-story damage in 2008 Wenchuan 

earthquake (China, Mw = 8.0) (a), intermediate story collapses due to infill failure in 1999 L’Aquila earthquake (Italy, Mw = 

6.3) (b), first-two-story collapse in 1999 Kocaeli (Turkey, Mw = 7.4) (c) and in 2010 Haiti earthquake (Mw = 7.0) (d) 
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based sampling techniques involving repetitive operations 

and computational effort, especially for structures with many 

degrees of freedom (DOFs). On the contrary, the focus of this 

paper is on a more effective numerical procedure through 

which the probabilistic characterization of the response of a 

masonry infilled RC frame can be identified in a direct 

manner. The advantage of this procedure is that no sampling 

operation is required (unlike Monte Carlo method or other 

techniques from the literature). This implies great 

computational efficiency in comparison with other methods. 

Another strength of this procedure is its simplicity when 

handling uncertain parameters like the ones involved in the 

equivalent diagonal truss elements associated with the 

macro-modeling assumption of the masonry infills, as will be 

in-depth clarified in the following parts of the paper. 

The outline of the paper is as follows. After this 

introductory section, in section 2 an overview of 

empirical/analytical expressions from the literature is 

presented for the macro-modeling of the masonry infills in 

RC frames. These expressions are useful to introduce the 

probabilistic framework adopted in this paper, as explained 

in section 3. Three different probabilistic approaches are then 

presented in section 4, including a novel method combining 

two earlier procedures from the literature, which is here for 

the first time applied to masonry infilled RC frames. Some 

simple numerical examples are illustrated in section 5 in 

order to present which kind of results the proposed procedure 

can offer, and which design implications the uncertain nature 

of the masonry infills may have, depending on the modeling 

assumptions and on the probabilistic parameters adopted. 

Finally, section 6 summarizes the main findings of this 

research work.  
 

 

2. Macro-modelling approach and overview of 
expressions 
 

The modeling of the masonry infills and of their 

stiffening contribution to the surrounding RC frame has been 

a topic of great interest for decades. Since the Polyakov’s 

work in 1960 (Polyakov 1960), the most simplified way to 

account for the masonry panel has been to introduce an 

equivalent diagonal strut element that incorporates the 

stiffening contribution of the masonry infill. In this 

simplified manner, underlying a macro-modeling approach,  

 

 

the geometrical characteristics of the equivalent diagonal 

strut are chosen such that they reflect the geometrical and 

mechanical properties of the actual masonry panel. A 

schematic representation of this macro-modeling approach is 

reported in Fig. 2, wherein the main geometric characteristics 

of both the masonry panel and the equivalent diagonal strut 

are illustrated. 

For monotonic loading only one strut is introduced in the 

compression direction, whereas for more general cyclic 

loading a couple of struts along the two main diagonals 

would be necessary. The former assumption is adopted in this 

paper, as we will restrict our attention to monotonic loading 

conditions. There exist more complicated macro-modeling 

layouts that involve more than a single diagonal strut element 

to represent the masonry panel behavior and to properly 

account for the interaction between the strut and the shear 

response of the column (Crisafulli 1997). Moreover, 

concentric and eccentric struts have also been investigated 

(Al-Chaar 2002), and it has demonstrated that a series of off-

diagonal strut elements are more appropriate to capture the 

local effects arising from the interaction between masonry 

panel and surrounding frame (Crisafulli 1997). Furthermore, 

linear elastic and nonlinear hysteretic constitutive models 

can be adopted to represent the stress-strain relationship of 

the equivalent strut, for example incorporating nonlinear 

fiber elements (Crisafulli et al. 2000).  

All these complex models strive for describing the actual 

behavior of the masonry panel with increasing accuracy. 

Considering all the uncertainties involved in the correct 

modeling and in the determination of the most appropriate 

parameters that reflect the actual, experimentally observed, 

masonry panel response, a variety of empirical expressions 

have been proposed in the literature so far. Due to the 

stochastic nature of the masonry behavior and the large 

scatter of the corresponding experimental results, it is quite 

difficult to decide which mechanical characteristics to 

assume for the diagonal struts in a simplified model. Even 

within the simplest framework of modelling the masonry 

panel via a single linear-elastic diagonal strut element, there 

exist a variety of formulae proposed by different authors in 

the last few decades. The validity of these expressions is 

limited to the specific geometric and mechanical properties 

of the masonry panel on which these formulae were 

calibrated.  

  

(a)  Schematic representation of the masonry infill (b)  Conventions used for the macro-modeling approach 

Fig. 2 Schematic representation of the masonry infill (a) and conventions used for the macro-modeling approach (b) 
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The aim of this paper is to present a probabilistic 

approach for the determination of the in-plane response of 

masonry infilled RC framed structures. Attention is paid to 

the simplest modeling assumption of a single linear-elastic 

diagonal strut element, but the generality of the proposed 

probabilistic approach is not confined to such assumption 

and extension to multiple struts would be possible, although 

the generalization to nonlinear behavior seems to be not 

straightforward. The cross area of the strut is generally 

computed as the product of the panel thickness tw and an 

equivalent width w. The latter parameter w is here assumed 

as a random variable to take into consideration the uncertain 

nature of the masonry panel. The development and 

dissemination of a large number of formulae for w makes it 

difficult to make a reliable choice of the diagonal strut 

properties. As an emblematic example, the stiffening 

contribution arising from a macro-modeling of the masonry 

panel is reported in Fig. 3 (in terms of the w/dw ratio) for a 

variety of empirical expressions, thus highlighting the 

variability of different formulations proposed in the 

literature. Consequently, the probabilistic characterization of 

w, discussed in the next section, will be based upon an 

ensemble of empirical expressions. The expressions  

 

 

considered in this study are all listed in Table 1, where the 

following positions have been considered  

4
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4

w w

h
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E t
H
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
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with Ew and Ec the Young’s modulus of masonry and 

reinforced concrete, respectively, 
cI   the second moment 

of the cross-sectional area of the column, 

c c

w w

E A

G A
 =   (2) 

where c c cA b h=  is the column gross area and 
w w wA t l=  

is the area of the masonry panel in the horizontal plane, while 

wG  is the shear modulus of the masonry. The b value in Eq. 

(2) must satisfy the following constraints: 0.9 11   and 

/0 75 2.5. w wl h   . Furthermore, the relative stiffness of 

beam and column 
b   and 

c  , respectively, and the 

related contact lengths zb and zc of the Hendry expression 

(Hendry 1981) are defined as 

 

Table 1 Expressions for calculation of the / ww d  ratio considered in the proposed probabilistic study (after Tarque et al. 

2015) 

Authors (year) / ww d  expression Note 

Holmes (1961) / 1/ 3ww d =  valid for 2h   (see Eq. (1)) 

Stafford Smith (1967) 0.10 / 0.25ww d   the value graphically depends on 
h  

Mainstone (1971) 
0.3/ 0.16w hw d  −=  

h  is computed through Eq. (1) 

Mainstone (1974) 
0.4/ 0.17w hw d  −=  adopted by FEMA-274 and FEMA-306 

Bazan and Meli (1980) (0.35 0.022 ) ww h= +    computed via Eq. (2) 

Hendry (1981) 
2 21

2
b cw z z+=  bz  and 

cz  computed via Eqs. (3) 

Tassios (1984) / 0.20 sinww d  =  valid for 1 5   

Liauw and Kwan (1984) 
0.95sin 2
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w

h

w d



=  valid for 25 50      

Decanini and Fantin (1987) 

0.707
/ 0.010w

h

w d


= +  

0.470
/ 0.040w

h

w d


= +  

for 7.85h   

 

for 7.85h   

 

Paulay and Priestley (1992) / 1/ 4ww d =  valid for 4h   

Durrani and Luo (1994) / sin 2ww d  =  

0.1
4
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Flanagan and Bennet (1999) 
cosh

w
C



 
=  C  is an empirical value dependent on the in-

plane drift displacement 

Cavaleri et al. (2005) and Amato et al. (2008) 
( )*

/ w

k c
w d

z 


=  

c  and   are functions of the Poisson’s ratio, 

k  is a function of the vertical load and z  is a 

geometric parameter 
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with Ib denoting the second moment of the cross-sectional 

area of the beam. Finally, in the expression by Cavaleri et al. 

(2005) and Amato et al. (2008) the parameters are 
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The expression conditions listed in the right column of Table 

1 represent some upper bound and lower bound values of the 

analytical expressions. In case of a given threshold being 

exceeded, the limit value is assumed as an admissible range. 

 

 

3. Probability characterization of masonry infills  
 

The analysis performed in this paper is limited to static 

loading conditions and serviceability limit states, whereby 

the behavior of the masonry infills may be assumed as linear-

elastic. In other words, no significant damage is expected to 

occur in the masonry infills. The uncertain mechanical 

behavior of the masonry infills and the related effects on RC 

framed structures has given rise to the dissemination of a 

large number of studies. In the framework of macro-

modeling approaches, many empirical expressions have been 

proposed, as overviewed in the previous section. However, 

the validity of these empirical formulae is strictly related to 

the assumptions made for their development, and to the set 

of geometrical and mechanical properties considered for the 

validation of the corresponding models. As already said, it is 

quite difficult to decide which mechanical characteristics to 

assume for the diagonal struts in a simplified model. 

Therefore, in this research work we attempt to evaluate the 

effects of the masonry infills uncertainty on the structural 

response of RC frames. To this aim, the strut width is here 

considered as a random variable, whose stochastic properties 

stems from the above set of empirical expressions. 

 

Fig. 3 Variability of the stiffening contribution (w/d) with respect to the geometrical and mechanical parameters of the masonry 

infills ( h  and * ) – after Tarque et al. (2015) 

 

Fig. 4 PDF of the w  and of the   variable in the normal (left) and uniform (right) approximation 
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In particular, for given geometrical and mechanical 

properties of an assigned masonry infilled RC frame, all the 

parameters and coefficients entering the expressions reported 

in Table 1 are known. Therefore, a set of 
iw  values can be 

derived by applying the different formulae. At this stage, 

from this discrete set of values a probabilistic 

characterization of the strut width w  can be extrapolated in 

the form of a PDF ( )wp w  . The characteristics of such 

( )wp w   are thus related to a set of empirical or macro-

modeling-based approaches proposed in the literature by 

different authors. The mean value of the probability 

distribution ( )wp w  is denoted as 
0w . It is meant that such 

0w   value is related to the whole set of expressions, and 

takes into account the possible circumstance that different 

formulae may give rise to similar 
iw   values. This 

circumstance indicates a higher probability of occurrence of 

a specific interval within the present stochastic framework. 

Moreover, the dispersion of all the 
iw   values may be 

associated with the variance of the corresponding 

distribution ( )wp w . 

In the spirit of perturbation approach of stochastic 

analysis, the strut width w   can be modelled as a one-

dimensional random variable with constant (deterministic) 

mean value 
0w   and fluctuation    according to the 

expression 

0 (1 )w w = +  (5) 
 

In so doing, instead of treating the strut width itself as a 

random variable, the basic random variables of this problem 

are represented by the zero-mean fluctuations   of the strut 

width with respect to its mean value 
0w  . In Fig. 4, two 

possible representations of the probabilistic characterization  

 

 

of the   variable are illustrated. From the discrete set of 

iw  values, arising from the group of expressions reported 

above, it is possible to extrapolate a best-fitting PDF 

representation (here presented in the form of either a normal 

PDF or a uniform PDF) from which the mean value 
0w  and 

the dispersion characteristics can be identified. By 

application of relation (5) the probabilistic characterization 

of the zero-mean fluctuation   is straightforward, which is 

described in the bottom part of Fig. 4. From a probabilistic 

point of view, while the uniform distribution implies that all 

the iw   values have equal probability of occurrence 

between the minimum and maximum iw  values (denoted 

as 
minw   and 

maxw  , respectively), the normal distribution 

takes into account the concentration of the iw   values 

around the mean value 
0w  (which is the most likely value, 

meaning that the majority of the above empirical expressions 

lead to values around such 
0w ).  

Additionally, in the case of the normal distribution the 

statistical values 
0 ww    and 

w   are directly estimated 

from the discrete set of the iw   values, whereas for the 

uniform distribution two steps arise: 1) estimation of the 

best-fitting uniform PDF ( )wp w  from the discrete set of the 

iw   values, 2) evaluation of the statistical moments, 

including mean and standard deviation 
0wm w  and 

ws , 

respectively, and determination of the boundaries 
min  and 

max   of the zero-mean fluctuation PDF ( )p    as 

/w ws m . This conversion between the ( )wp w  distribution 

and the ( )p   is necessary to obtain a zero-mean PDF for 

the fluctuations, which is consistent with Eq. (5). 

Furthermore, it is worth noting that in a real masonry infilled 

  

(a) 0 =  (b) 0.8 =  

Fig. 5 Comparison of 
1 2

[ , ]
T

 =α   vector of fluctuations for uncorrelated ((a), 0 =  ) and correlated assumptions ((b), 

0.8 = ) 
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RC frame there are more than just one equivalent diagonal 

strut element due to the presence of several masonry infills. 

From a probabilistic point of view, it is therefore necessary 

to introduce a zero-mean multivariate normal distribution 

defined by a covariance matrix 
α

Σ   involving cross-

correlation terms between the various struts 
1[ , , ]T

m =α

. It is reasonably expected that two adjacent masonry infills 

are more correlated than two farther ones, which suggests to 

introduce a correlation function    dependent upon the 

distance between the centroid of each diagonal strut element 

d  , i.e., ( )d =  . For the simplest scenario of just two 

masonry infills, in Fig. 5 the two-dimensional PDF of the 

1 2[ , ]T =α  vector of fluctuations is sketched in the two 

cases of uncorrelated and correlated fluctuations, in the latter 

case assuming a correlation factor 0.8 = .  

 

 

4. Probability-based modelling techniques 
 

The topic dealt with in this paper is part of a broader and 

more general class of problems, widely investigated in the 

relevant literature, which are related to the structural analysis 

of systems with uncertain parameters (Schueller et al. 1987, 

Schueller et al. 2009, Mehrabi et al. 1994, Liu et al. 1987, 

De Domenico et al. 2018a, b). In particular, the uncertain 

variables can be of geometrical or mechanical nature. In the 

present paper, the stochastic modeling of the masonry 

equivalent strut width implicitly incorporates both the 

uncertainty in the mechanical parameters of the masonry and 

the uncertainty of the geometric definition of the equivalent 

truss member.  

In the context of probability-based approaches, the 

simplest method is to perform simulations via the Monte 

Carlo method. This method has unique advantages when 

dealing with nonlinear systems (Roberts and Spanos 1990), 

and complicated input-output relationships. However, the 

computational effort related to the Monte Carlo method can 

be disproportionately large, requiring thousands of 

simulations to identify the statistics of the response with 

good accuracy. This may be an issue, especially for systems 

having several DOFs. Another class of approaches is the one 

based on the perturbation method, which may be effective if 

the level of uncertainty that is present in the system is 

reasonably low. Alternative methods are those relying on the 

projection approaches, e.g., the Karhunen-Loève expansion 

(Ghanem and Spanos 1991) or the Galerkin projection 

scheme and the Wiener integral representation, which are 

based on the projection of the solution on a complete 

stochastic basis (Ghanem and Kruger 1996).  

In this paper, the structural response of masonry infilled 

RC framed structures is investigated via a handy probabilistic 

method of analysis that combines the “approximated 

deformation principal modes” (APDM) method (Falsone and 

Settineri 2014) with the “probabilistic transformation 

method” (PTM) (Falsone and Settineri 2013a, Falsone and 

Settineri 2013b). This combined method, first time applied to 

masonry infilled RC frames, leads to the determination of the 

PDF response directly, i.e., without requiring any sampling 

technique.  

4.1 Approximated deformation principal modes 
(ADPM) method 
 

The strut widths are modeled as random variables having 

mean values 
0iw   and fluctuations 

i  , with 1, ,i m=  

and m   is the total number of the masonry panels. We 

suppose that the considered structure has been discretized 

according to usual finite element techniques and is subject to 

a set of applied forces (e.g., the dead loads, the variable 

actions, the seismic lateral loads or wind loads) that are 

collected in the 1n   (deterministic) vector F  , with n  

being the number of DOFs of the discretized system. The 

equilibrium equation of the structure reads 

( ) ( )K α u α = F   (6) 

in which 
1 2[ , ,..., ]T

m  =α . Probabilistic characterization 

of this vector, in the form of the joint PDF ( )pα α  , is 

assumed to be known. In Eq. (6), ( )K α   is the n n  

structural stiffness matrix that implicitly depends on the 

vector of uncertain strut width α , and ( )u α  is the vector 

of the structural displacements that is obviously affected by 

the uncertain parameters, besides of the force vector F . In 

the spirit of a first-order perturbation approach, the stiffness 

matrix can be expressed as 

( ) 0

1

( )
 ;

m

i i

i

i

i 


==




= + =

α 0

K α K K
K

K
α

  (7) 

in which 
0K   is the stiffness matrix obtained by setting 

0i =  , and 
iK   are deterministic matrices corresponding 

to a single contribution of the α   vector. The APDM 

approximate the vector response ( )u α   of the system 

governed by Eq. (6), in the following form 

( ) ( ) ( ) ( )0 + ;      
m

i i

i

   =u α u u α u α u  (8) 

where 
0u   is the deterministic response of the system 

without uncertainties, i.e., obtained by setting 0i =  with 

1,2,...,i m=  , while ( )u α   is the vector of fluctuations, 

computed as the sum of ( )i iu  representing the stochastic 

response displacements in which only 0i   and 0j =  

with j i   and 1,2,...,j m=  . Therefore, ( )i iu   is the 

vector of the displacements for a scenario in which only 
i  

affects the probabilistic response of the system. As such, this 

vector can be computed as follows 

( ) ( ) ( )
1

0 0i i i i i i  
−

= + −u K K K u   (9) 

A computational strategy for finding an explicit 

relationship between 
i   and 

iu   was proposed in 

(Falsone and Impollonia 2002), in which after computing the 

eigenproperties of the 1

0 i

−
K K   matrix, the following 

relationship of the ( )i iu  vector was obtained 
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( )  
1 T

i i i i n i i i i  
−

= − +u Φ I Λ Λ Φ F   (10) 

where 
iΛ   and 

iΦ   are the eigenvalue and eigenvector 

matrices of the matrix 1

0 i

−
K K  , while 

nI   is the identity 

matrix of order n  . In this way, the matrix entering the 

square brackets is diagonal, which simplifies the calculation 

of its inverse, as will be seen next. Moreover, the number of 

non-zero eigenvalues of 1

0 i

−
K K , i.e., the non-zero elements 

of 
iΛ  , is equal to the number of the structural principal 

modes directly affected by i . We here emphasize that the 

number of non-zero eigenvalues q is far lower than the 

number of DOFs of the system n, making the evaluation of 

( )i iu  computationally simpler. 

According to the macro-modelling assumptions outlined 

in Section 2, the single uncertain masonry infill is treated as 

an equivalent diagonal pin-jointed strut within a more 

complex RC framed structure. For simplicity, this diagonal 

strut is discretized as a single truss element for each masonry 

infill. Therefore, the single random variable 
i  , 

representing the uncertain strut width fluctuation, influences 

only such single finite element. It is well-known that for a 

truss finite element the number of principal deformation 

modes 1q = . As a result, the evaluation of ( )i iu  in Eq. 

(10) can be readily performed according to 

( )
0,

1 1

jk

j jk

j

i ii i i

i i i

i i i i

aq
u

b

 


  
= − =

+ +
  (11) 

( )
ji iu   being the jth element of ( )i iu , 

i  is the unique 

non-zero term of the eigenvalue matrix 
iΛ , 

jki  the (j,k)th 

element of the eigenvector matrix 
iΦ  , and 1

0, 0i i

−=q u  . 

The quantities 
jia   and 

jib   appearing in the last term of 

Eq. (11) can be obtained once that the eigenvalue problem of 
1

0 i

−
K K  is solved. Alternatively, a more direct evaluation of 

jia   and 
jib   can be obtained by solving twice Eq. (9) in 

which two arbitrary and different deterministic values of 
i

  

are assumed. The jth component of the ( )u α  vector in (8) 

is given by 

( ) ( ) ( )0 0 0

1

( )
j j j j

m
T

j j i i j

i

u u u u u u
=

= +  = + = +α α 1 u   (12) 

where 
T

1   is a 1 m   vector having all components equal 

to one and ( )ju    is a 1m   vector comprising the 

( )
ji iu    terms whose summation is denoted by ( )

jiu α  . 

The evaluation of the stochastic response vector is achieved. 

This has several advantages in terms of computational effort 

as compared to the Eq. (6), since the stochastic response is 

computed without requiring the inversion of ( )K α  

explicitly. However, the evaluation of ( )u α   still implies 

Monte Carlo simulations, as samplings of 
i   from the 

assumed ( )pα α   are necessary to calculate the ( )
ji iu   

terms in Eq. (11). Therefore, the PDF of the response cannot 

be obtained directly, but is approximated as the number of 

sampling increases, which is a shortcoming of any Monte 

Carlo-based technique. In the next section an alternative 

method, called PTM, will be presented. We prove that this 

method, when combined with the APDM method presented 

above, leads to the determination of the PDF of the system 

response directly, without implying any sampling operations.  

 

4.2 Probabilistic transformation method (PTM) 
 

The PTM is based on the probabilistic approach of the 

space transformation laws of random vectors. Let us consider 

the m-dimensional random vector α   (input uncertain 

variables, defined as the strut width fluctuations in this case), 

whose joint PDF ( )p
α
α  is known, and let ( )h  be a m-

dimensional invertible application with 1( ) ( )−  = h f  , such 

that one can write 

( );= =u h α α f(u)  (13) 

It is well known that once the direct and inverse 

relationships in (13) are defined, the joint PDF of the random 

vector u   (output variables, representing the unknown 

system displacements), that is ( )p
u

u  , can easily be 

obtained through the following expression (Papoulis and 

Pillai 2002)  

( ) det[ ( )] ( ( ))p p=
u f α

u J u f u   (14) 

where ( )
f

J u   is the Jacobian matrix associated to the 

transformation law given in Eq. (13)2 

( ) ( )T=  
f u

J u f u   (15) 

Tu
 being the mth order row-vector operator collecting all the 

partial derivatives with respect to the components iu  of u  

and the symbol   indicating the Kronecker tensor product 

(Graham 1981). Expression (14) gives a direct deterministic 

relationship between the joint PDFs of the system response 
u  and that of the uncertain parameters α that are functions 

of multidimensional variables. In other words, the PDF of the 

output variables ( )p
u

u  can be computed once the PDF of 

the input variables ( )p
α
α  is known and the transformation 

law is defined.  

Let ju  be the single component of the output random 

vector u  defined by scalar transformation ( )j ju h= α . In 

(Falsone and Settineri 2013a, b) it was shown that the PDF 

of ju , by using the properties of the Dirac delta function, 

can be reduced as follows 

1( ) ... ( ) ( ( ))d d
ju j j j mp u p u h y y

+ +

− −

= −  α y y   (16) 

In an analogous way, the joint PDF of two components of 

the output random vector u  can be obtained as 
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1

( , )

... ( ) ( ( )) ( ( ))d d .

j ku u j k

j j k k m

p u u

p u h u h y y 
+ +

− −

=

− −  α
y y y

 (17) 

When ( )jh α   is a linear combination of the 

components of α  , that is, ( ) T

j jh =α h α  , a more direct 

calculation of the marginal PDF of the system response can 

be obtained by using the characteristic function (CF).  

 

 

Although this is not the case of the ( )jh α   function 

defined in Eqs. (11) and (12), it will be later demonstrated 

that there exists a mathematical manipulation through which 

this relation holds. By applying the Fourier transform to both 

sides of Eq. (16) we obtain 

( ) ( ) ( )

( ) ( ) 1

1 1
exp

2 2

d d e .

j j

j

u u j j j

uT

j j m j

M p u u du

p u y y du


 
 





−

 + + −

− − −

= − =

 −
 



 



   α
y h y

 (18) 

 

Fig. 6 Flow chart of the proposed probabilistic procedure 
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Once again, by exploiting the properties of the Dirac delta 

function, Eq. (18) becomes 

( ) ( ) ( )
1

2
j j

m

uM M


 
−

=
=

α θ h
θ  (19) 

that directly relates the characteristic functions of α  and of 

ju  , thus avoiding any type of integration. If the joint 

probability of the two variables uj and uk is required, 

exploiting similar procedures, it is easy to show that the 

following relationship holds 

( ) ( ) ( )
2

2 .
j k j j k k

m

u u j kM M
 

  
−

= +
=

α θ h h
θ  (20) 

From the CF of the system response, the PDF of the 

displacements can be easily obtained by applying the inverse 

Fourier transform to Eqs. (19) and (20).  

 

4.3 Matching the APDM method and the PTM 
 

In this subsection, we demonstrate that it is possible to 

couple the APDM method and the PTM in order to determine 

the direct probabilistic characterization of ( )ju α  , 

introduced into Eq. (12) that, in turn, leads to the PDF, 

( )
ju jp u , of the jth component of the displacement response. 

Starting from the jth element of ( )i iu , that is ( )
j ji i iu h =  

whose expression is given into Eq. (11), if the application of 

the PTM is considered, then the evaluation of the inverse 

relationship 1( ) ( )
j j j ji i i i ih u f u −= =   is necessary. It can be 

easily seen that it has the following expression 

( ).
j

j j

j j j

i

i i i

i i i

u
f u

a b u
 = =

−
  (21) 

The application of the PTM to the vector 
ju  leads to 

the following joint PDF  

 

 

 

Fig. 8 Elastic response spectrum of the installation site of the 

building 

 

 

( ) ( ) ( )( ).
j jj j j jp p=u fu J u f u  (22) 

Since the inverse functions ( )
jif   in Eq. (21) depend on 

the response parameter 
jiu  only, the Jacobian ( )

j


f
J  is a 

diagonal matrix and its determinant can be simply evaluated 

as 

( )
( )

1

j j

j

m
i i

j

i i

df u

du=

=f
J u   (23) 

The Eq. (22) allows the evaluation of the joint PDF of the 

vector 
ju  . eevertheless, if one wants to characterize the 

response component ( )ju α  , and, as consequence, the 

random part ( )ju α , then, from Eq. (12), the PTM must be 

applied to the following relationship 

( ) .T

j ju =α 1 u   (24) 

Considering the previous remarks about the 

advantageous application of the CF when a linear input-

output relation is involved, it is convenient to exploit this 

strategy and compute the CF of ( )ju α  as follows 

 

Fig. 7 Sketch of the RC frame analyzed in the numerical example 

Table 2 Distributed load per unit area applied to the one-way floor slab for every level of the building 

Level 2
1[kN/m ]G  + 2

2 [kN/m ]G  2[kN/m ]Q  2 a 

Floor 1,2,3 8.0  2.0 0.3 

a combination coefficient for the quasi-permanent value of variable action [16] 
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( ) ( ) ( )
1

2
j j

m

uM M


 
−

 =
=

u θ 1
θ  (25) 

that is nothing but Eq. (19) with the vector 1  playing the 

role of the h   function in the input-output relationship. 

Once ( )
juM 

 is calculated, the inverse Fourier transform 

is applied to determine ( )
ju jp u    and, thus, the 

probabilistic characterization of ( )
ju jp u   is definitely 

achieved. Extension of this procedure to the determination of  

the joint PDF of two response components ( , )
j ku u j kp u u  is 

not difficult and the details can be found in (Falsone and 

Laudani 2018).  

In order to summarize and clarify the main steps of the 

proposed algorithm, a schematic flow-chart has been 

constructed and reported in Fig. 6. In this flow-chart it is 

clearly shown how the two probabilistic methods (APDM 

and PTM) are linked together to derive the PDF of the system 

response directly, resorting to the use of the CF as explained 

above.  
 

 

5. Numerical examples 
 

The proposed probabilistic procedure is here applied to 

compute the PDF of the response of masonry infilled RC 

frames in which the equivalent diagonal pin-jointed struts are 

assumed uncertain. For the sake of simplicity, reference is 

made to a planar frame of a regular RC structure. The 

elevation and plan views of the RC structure is shown in Fig. 

7. The following data are assumed as known 

(deterministically) input parameters: bay width equal to 

6.0m , inter-story height 3.2m , column sections 

40 60cm , beam sections 30 50cm , concrete having 

Young’s modulus 
c 30GPaE = , which is typical of ordinary 

concrete structural elements (Pisano et al. 2013a, 2013b, 

2014, 2015, De Domenico et al. 2014a, 2014b, De Domenico 

2015), masonry with mean Young’s modulus 5GPawE = , 

mean Poisson’s ratio in the diagonal direction 0.25d = , 

and thickness 40cmwt = . The loads acting on the planar 

frame are calculated based on the loads per unit area reported 

in Table 2.  

The seismic analysis is performed by means of an 

equivalent static lateral force procedure, with a distribution 

of horizontal forces detected by the response spectrum of the 

installation site, whose shape is reported in Fig. 8. The 

installation site is placed in Messina, Italy, and the peak 

ground acceleration (PGA) is 
g0 0.254gu =  with g denoting 

the gravity acceleration. The first (fundamental) period of 

vibration is calculated according to the simplified formula for 

reinforced concrete building (D.M. LL. PP. 2008) 

3/4 3/4

1 0.075(9.6) 0.41sT C H= =   (26) 

The lateral (equivalent) seismic forces acting along the 

building height are distributed according to the fundamental 

mode of vibration of the building (D.M. LL. PP. 2008), and 

are scaled to the spectral acceleration of the elastic response  

 

Fig. 9 PDF of the last-floor displacement (node 4) for normal 

distribution assumption and uncorrelated fluctuations: 

Comparison between the three probabilistic methods 

 

 

Fig. 10 PDF of the last-floor displacement (node 4) for 

normal distribution assumption and correlated fluctuations 

between the struts: Comparison between the three 

probabilistic methods 

 

 

spectrum at the first mode of vibration 
pa 1( )S T  

i i

i h

j j

j

z W
F F

z W


= 


 

(27) 

with 
pa 1( ) / gh totF S T W=   , 0.85 =  (D.M. LL. PP. 

2008), and 
tot j

j

W W=  is the total weight of the building. 

Adopting the elastic- (rather than the design-) response 

spectrum for computing the seismic force distribution is 

consistent with the assumption of a linear-elastic behavior of 

the masonry infilled RC frame as a whole, i.e., only the 

elastic response is investigated in this paper. Investigating 

the post-elastic behavior of the structure would imply a 

modification of the proposed procedure to incorporate a 

nonlinear constitutive behavior of the diagonal struts 

(Crisafulli et al. 2000) and, consequently, would justify the 

adoption of a behavior factor greater than one to describe the 

energy dissipation mechanisms occurring in the structure. 

The main aim of this paper is the probabilistic 

characterization of the in-plane elastic response of the 

masonry infilled RC frame, while the analysis of this post-

elastic behavior is left for future research. 

The results presented in this Section aim to highlight the 

influence of the uncertain characteristics of the masonry 

infills on a few response indicators of the RC frame. To this 

aim, the PDFs of several response indicators have been 

computed through the combined APDM and PTM methods 

of analysis described in Section 4.3. To validate the proposed 

probabilistic procedure, comparison against Monte Carlo 

simulation results (obtained with thousands of samples and,  
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consequently, requiring much higher computational effort) is 

made for just a few selected quantities. Moreover, to 

demonstrate the consistency of the results of the combined 

APDM+PTM with the APDM method proposed by Falsone 

and Impollonia (Falsone and Impollonia 2002), described 

above in Section 4.1, in addition to the Monte Carlo 

technique we also compare the results with the procedure 

presented in (Falsone and Impollonia 2002). In this way, the 

improvements and computational savings achieved by the 

proposed probabilistic procedure can be assessed in 

comparison with two alternative probabilistic techniques.  

Considering the geometric and mechanical properties of 

the analyzed masonry infilled RC frame, application of the 

empirical expressions reported in Table 1 along with the 

assumptions outlined in Section 3 provides the probabilistic 

characterization of the equivalent strut widths in terms of a 

physically-based (in the spirit of a macro-modelling 

approach) joint PDF ( )pα α  of the fluctuations 

1 6[ ],, T =α . The adjective “physically-based” refers to 

the fact that the input PDF ( )pα α  derives from some 

empirical (macro-modelling) expressions proposed in the 

literature. Therefore, the expressions reported in Table 1 

form the basis of the probabilistic characterization of the 

fluctuations in this probabilistic study. 

Subsequently, the procedures described in Section 4 are 

applied to obtain a probabilistic characterization of the 

system response in terms of a variety of response indicators. 

As an example, in Fig. 9 the PDF of the last-floor displacement 

(corresponding to node 4, i.e., 
4xu ) is shown. In this first case, 

we assumed that the 1 6[ ],, T =α  fluctuation variables are 

probabilistically described by a zero-mean multivariate normal 

distribution that best fits the empirical values. Moreover, the 

1 6[ ],, T =α  fluctuations are also assumed as uncorrelated 

random variables in this first example. By inspection of Fig. 9 it 

is noted that the proposed probabilistic procedure is able to 

provide the PDF of the displacement response, which is only 

approximately described by the other two techniques (MCS and 

APDM) depending on the number of samples utilized. The first 

consideration is about the mean value of the top-story 

displacement, that is, 
4

38.8 10 m7
xu

−=  . The displacement 

response spectrum corresponding to the first natural period of 

the frame without diagonal pin-jointed struts ( 1 0.41sT =  ) is 

 

 

Fig. 12 PDF of the last-floor displacement (node 4) for uniform 

distribution assumption of the fluctuations: Comparison 

between the three probabilistic methods 

 

 

4,spectrum

23.24 10 mxu −=  .  

Obviously, the introduction of the struts leads to a 

significantly reduce, of almost four times, the displacement due 

to a stiffening contribution that reduces the first natural period 

accordingly. Furthermore, the deterministic value of the 

displacement computed adopting the largest stiffness of the 

diagonal struts among the empirical expressions reported in 

Table 1 is 
n

3

4,mi 6. 1080 mxu −=  , while that corresponding to 

the minimum strut width (related to the minimum stiffness) is 

x

2

4,ma 1. 1021 mxu −=  . These two values represent more or less 

the boundaries of the PDF reported in Fig. 8.  

eext, in order to take into account the correlation that may 

exist between the mechanical properties of masonry infills that 

are close to each other, a correlation function has been 

introduced. According to Section 3, this correlation function 

depends upon the distance between the centroid of each 

diagonal strut element, i.e., ( )d =  , in particular the 

following exponential decaying function has been assumed 

exp
d




 
= − 

 
  (28) 

where i jd = −x x   is the Euclidean distance between the 

centroid of the strut i and j, while 15m =   is an arbitrary 

correlation length that is here chosen such that two adjacent 

masonry infills have a correlation equal to 0.8. In Fig. 10 the 

PDF of the top-story displacement (node 4) is illustrated for 

normal distribution assumption of the fluctuations, but assuming 

the correlation function given in Eq. (28). It is noted that the 

introducing cross-correlation terms within the covariance matrix  

 

Fig. 11 PDF (left) and CDF (right) of the last-floor displacement (node 4) for normal distribution in the two hypotheses of 

uncorrelated and correlated fluctuations 
1 6[ ],, T =α  

  

characteristic
values (95%)0

deterministic
value with 
( 0)

w
 =

4

uncorrelated

mean value

xu
4

correlated

mean value

xu
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of the fluctuation 
α

Σ  requires a larger number of samples to 

approximate the PDF given by the proposed probabilistic 

procedure. Indeed, for the given number of samples adopted 

also for the previous case (
510   samples), little deviations are 

observed by comparing the PDF with the APDM-based 

approximated one. The PDF and cumulative distribution 

function (CDF) of the last-floor displacement in the two cases 

of uncorrelated and correlated fluctuations 1 6[ ],, T =α  

are depicted in Fig. 11. It is noted that the two assumptions not 

only lead to a slightly different mean value 
4ux   (which is 

lower in the correlated case), but also produce remarkable 

differences in terms of characteristic values (95th percentile of 

the distribution). In particular, such characteristic value is about 

20% higher in the correlated case due to the different shape of 

the distribution. Also, in the more realistic scenario of correlated 

fluctuations the dispersion of the displacement values is found 

to be higher than in the case of uncorrelated fluctuations. 

Furthermore, it is also noticed that the deterministic value of the 

last-floor displacement computed assuming that no fluctuations 

are present in the masonry panels (i.e., 
0w w=  and 0a =  for 

all the equivalent diagonal struts) is in between the two mean 

values in the uncorrelated and correlated cases.  

For completeness, the PDF of the last-floor displacement 

(node 4) has also been computed via the uniform distribution 

assumption for the fluctuations, which implies that all the 

empirical macro-modelling expressions have an equal 

probability of occurrence. By looking at Fig. 12, similar trends 

to those already observed in Fig. 9 for the normal distribution 

assumption are obtained, and similar conclusions can be drawn. 

In Fig. 13, the three distributions are compared with each other. 

It is noted that both the mean value and the characteristic value 

(95th percentile of the distribution) of the last-floor displacement 

are lower in the case of uniform distribution as compared to the 

two normal distributions. In the case of the uniform distribution 

the dispersion around the mean value is reduced, whereas in the 

case of normal distribution with correlated fluctuations the 

dispersion is amplified. Moreover, the deterministic value of 

4xu   in the absence of fluctuations is more or less comprised 

between the three mean values of the three above mentioned 

distributions.  

Once the displacement vector u   has been characterized 

probabilistically through the knowledge of the relevant PDF 

( )p
u

u , any other response indicator of interest can easily be  

 

 

Fig. 14 PDF of the third interstory drift for uniform 

distribution assumption of the fluctuations: Comparison 

between the three probabilistic methods 

 

 

computed as a linear combination of the components of the u  

vector, according to the finite element method. As an example, 

in Fig. 14 the PDF of the third inter-story drift 

43 4 3x x xu u u = −   is displayed as computed by the three 

probabilistic procedures considering that the fluctuations are 

uniformly distributed between the 
min  and 

max  values. 

In the same graph, we also report the deterministic inter-

story drift values calculated by assuming the minimum and 

maximum values of the 
iw   discrete set. As expected, since 

min  and 
max  do not reflect the values of 

minw  and 
maxw

, the deterministic max value does not represent the 100 th 

percentile of the PDF 
43xup

 , which is consistent with what 

explained in Section 3. The PDF has a slightly asymmetric 

shape and all the three probabilistic procedure are in good 

agreement with each other. In Fig. 15, the PDF and CDF of the 

third inter-story drift 
43 4 3x x xu u u = −   is illustrated and 

compared for the case of normal distribution (uncorrelated and 

correlated) and uniform distribution of the fluctuations. The 

results are more or less in line with the previous trends observed 

for the last-floor displacement 
4xu : the characteristic value of 

the distribution is lower in the case of uniform distribution than 

the normal distributions. However, the mean value from the 

uniform distribution is in between that of the normal distribution 

for uncorrelated and correlated assumptions, which is different 

from the results discussed above for 
4xu  , although the three 

mean values are very close to each other. The dispersion of the 

43xup
  is reduced for uniform distribution as compared to 

normal distribution, whereas it is amplified in the case of normal 

distribution with correlated fluctuations. The deterministic value  

 

Fig. 13 PDF (left) and CDF (right) of the last-floor displacement (node 4) for normal (uncorrelated and correlated) and uniform 

distribution assumption 
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obtained with 
0w  (in the absence of fluctuations, 0 = ) lies 

in between the two mean values calculated with the uniform and 

normal distributions assumptions of the fluctuations. 

It has been observed that the influence of the stiffening 

contributions offered by the equivalent pin-jointed diagonal 

struts is more significant for determining the stress and strain in 

the column elements rather than in the beam elements. This is 

reasonable, since the masonry infills increase the lateral stiffness 

of the frame as compared to the case in which they are ignored 

in the calculation.  

To quantify this effect, in Fig. 16, the PDF and CDF of the 

moment at the top of the column 3-2 (M32) are shown. It is noted 

that the introduction of the struts with uncertain mechanical  

 

 

 

properties even produce changes in the signs of the moments for 

a frame subject to an equivalent distribution of seismic lateral 

forces as those considered in this example through Eq. (27). In 

this case, it is also noted that the correlated fluctuations yield a 

PDF that has less dispersion than in the case of uncorrelated 

fluctuations. This is in opposite trend as compared to the 

previous plots. However, from a broader examination of other 

response quantities (not reported here for the sake of brevity) it 

was found that the dispersion of such indicators can be higher or 

lower by comparing the correlated and uncorrelated 

assumptions. Therefore, no apparent relationship between the 

correlation of the fluctuations and the shape of the PDF can be 

inferred, since no clear tendency is observed. 

 

Fig. 15 PDF (left) and CDF (right) of the third interstory drift ( 43 4 3x x xu u u = − ) for normal (uncorrelated and correlated) and 

uniform distribution assumption 

 

Fig. 16 PDF (left) and CDF (right) of the moment at the top of the column 3-2 ( 32M ) for normal (uncorrelated and correlated) 

and uniform distribution assumption 

 

Fig. 17 PDF (left) and CDF (right) of the moment at the top of the column 3-7 ( 37M ) for normal (uncorrelated and correlated) 

and uniform distribution assumption 
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On the contrary, the influence of the fluctuations on the 

stress and strains in the beam elements is less pronounced. As 

an example, in Fig. 17, the PDF and CDF of the moment at the 

left side of the beam 3-7 ( 37M  ) are illustrated. nnlike the 

probabilistic characterization of the moment on the column, in 

this case the values are almost entirely positive (i.e., they do not 

exhibit sign changes), and the influence of the uncertainty in the 

masonry panels is less pronounced. In this case, the correlated 

fluctuations give more dispersed values, in line with other 

response quantities. Furthermore, the deterministic value of 

37M   identified by an analysis with 
0w w=   and 0 =   for  

 

 

all the struts is again bounded by the mean values of the PDFs 

for uniform and normal distribution assumptions. In order to 

highlight the remarkably different influence of the uncertain 

mechanical properties of the masonry infills on the column and 

beam elements, in Fig. 18, the PDFs of the moments on the 

beam and column elements are compared with each other. The 

two Figs refer to different distribution assumptions of the 

fluctuations (normal and uniform), but the general qualitative 

conclusions for the two cases are almost identical. These 

conclusions are confirmed also for other response quantities, for 

instance, moments evaluated at other nodes or shear forces. 
 

 

Fig. 18 Comparison of PDF of the moment on the column ( 32M ) and beam ( 37M ) for normal uncorrelated (left) and uniform 

(right) distribution assumption of the fluctuations  

Table 3 List of characteristic parameters of the probabilistic distribution of a set of response quantities (uniform distribution 

assumption of the fluctuations) 

response quantity response designation 
deterministic value for 

0w w=  ( 0) =  
mean value   standard deviation    COV /    

top-story displacement 4 [m]xu  0.0087 0.0086 0.00034 0.039 

last interstory drift 43 [m]xu  0.0026 0.0026 0.00015 0.059 

moment on the top 

of the column 32 [kNm]M  24.02 23.38 12.47 0.53 

moment on the beam end 37 [kNm]M  33.10 33.61 3.97 0.12 

moment reaction at the 

base of the central 

column 
5 [kNm]MR  249.5 258.00 60.27 0.23 

shear force on the 

top of the column 32 [kN]V  6.10 5.88 7.92 1.35 

shear force on the 

beam end 37 [kN]V  81.43 81.64 1.28 0.016 

      

Table 4 List of characteristic parameters of the probabilistic distribution of a set of response quantities (normal uncorrelated 

distribution of the fluctuations) 

response quantity response designation 
deterministic value for 

0w w=  ( 0) =  
mean value   standard deviation    COV /    

top-story displacement 4 [m]xu  0.0087 0.0089 0.0008 0.93 

last interstory drift 43 [m]xu  0.0026 0.0027 0.00038 0.14 

moment on the top 

of the column 32 [kNm]M  24.02 26.14 30.36 1.16 

moment on the beam end 37 [kNm]M  33.10 30.55 9.79 0.32 

moment reaction at the 

base of the central 

column 
5 [kNm]MR  249.5 256.15 47.29 0.18 

shear force on the 

top of the column 32 [kN]V  6.10 7.12 19.14 2.69 

shear force on the 

beam end 37 [kN]V  81.43 80.69 3.18 0.039 
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Therefore, uncertain mechanical properties of the masonry 

infills have a great influence on the column stress and strain 

values, and a reduced influence on the beam response quantities. 

The proposed procedure also enables the determination of 

the joint PDF between two or more response quantities. As an 

example, in Fig. 19, the joint PDF of the moments on the beam 

37M   and that on the column 32M   is displayed, namely 

32 37 32 37( , )M Mp M M  . This joint PDF can be interpreted for 

drawing some general conclusions from a design viewpoint. It 

is well-known that capacity design establishes a hierarchy of 

zones among the structural members (Avramidis et al. 2015), 

which is a concept incorporated in seismic provisions (FEMA- 

274 1997, D.M. LL. PP. 2008). The failure mode of the beam is 

usually deemed to be more ductile than that of the column.  

Therefore, capacity design principles promote failure 

mechanisms occurring in the beam before those occurring in the 

column. In a simplified manner, it can be assumed that the 

design flexural resistance 
RdM  is related to the design bending 

moment 
EdM   calculated in the analysis. Therefore, it is 

interesting to scrutinize to what extent the typical ratio between  

 

 

moments in beam and column elements is affected by the 

uncertainty on the masonry panels. To this aim, in the contour 

plots on the bottom part of Fig. 19 a dashed line has been 

reported that corresponds to 
32 37M M= . This means that points 

lying above this dashed line in the first quadrant and lying below 

this dashed line in the third quadrant represent situations in 

which 
32 37M M , thus jeopardizing the correct principle of 

the strength hierarchy underlying the “weak-beam-strong-

columns” principle. This, in turn, is likely to produce less ductile 

collapse mechanism in the masonry infilled RC frame, provided 

the design resistance is assumed in line with the design bending 

moments. It is noted that there exists such a probability of 

occurrence of this phenomenon in both the normal and uniform 

distribution assumption of the fluctuations. This outcome is 

affected by the distribution of the stress in the masonry infilled 

RC frame induced by the presence of the uncertain masonry 

panels. Although the present analysis is extremely simplified, in 

the authors’ opinion this link is important to provide physical 

meaning and usefulness of the proposed probabilistic approach 

of analysis in the case of RC frames with uncertain masonry 

infills. A summary of the results is reported in Table 3, Tables 4 

 

Fig. 19 Joint PDF between the moment on the column ( 32M ) and on the beam ( 37M ) for normal uncorrelated (left) and uniform 

(right) distribution assumption of the fluctuations 

Table 5 List of characteristic parameters of the probabilistic distribution of a set of response quantities (normal correlated 

distribution of the fluctuations) 

response quantity response designation 
deterministic value for 

0w w=  ( 0) =  
mean value   standard deviation   COV /   

top-story displacement 4 [m]xu  0.0087 0.0089 0.0017 0.19 

last interstory drift 43 [m]xu  0.0026 0.0027 0.0005 0.19 

moment on the top 

of the column 32 [kNm]M  24.02 26.87 20.58 0.77 

moment on the beam end 37 [kNm]M  33.10 30.27 14.65 0.48 

moment reaction at the 

base of the central column 5 [kNm]MR  249.5 257.59 58.19 0.22 

shear force on the 

top of the column 32 [kN]V  6.10 5.24 10.62 2.03 

shear force on the 

beam end 37 [kN]V  81.43 80.65 5.2 0.064 

 

32 37

straight line
M M=

32 37

straight line
M M=
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and 5 for uniform, normal uncorrelated and normal correlated 

fluctuations, respectively. By inspection of these tables, the 

following conclusions can be drawn: 

• the mean values of several response indicators calculated 

from the PDF are very close to the deterministic values that 

can be computed by an analysis of the RC frame in which 

the diagonal pin-jointed struts are assigned the mean width 

value w = w0, i.e., with a zero value of the fluctuations 

according to a mere deterministic analysis; 

• the dispersion of the distribution expressed by the standard 

deviation   is different from case to case: in general, the 

sensitivity of the response indicators to the uncertainty of 

the masonry infills is more pronounced for column-related 

quantities (e.g., the moment on the top of the column 32M  

or the shear force 32V ) than for beam-related variables; 

• the more pronounced dispersions of the distribution, 

indicated by the value of the COV, are higher in the cases 

of column-related quantities, especially the shear forces on 

the columns. 

It is concluded that careful attention must be paid to the 

values of the stress and strains in a RC frame with masonry 

infills, especially if the panels are affected by largely scattered 

results arising from preliminary experiments on the constituting 

elements and materials. The examples shown in this paper, 

although carried out on a simple structure and under an 

equivalent static lateral force procedure, give a preliminary idea 

of the influence of the masonry infills on a set of response 

indicators for different modelling assumptions, all related to a 

macro-modeling approach, and for different distribution 

assumptions of the relevant equivalent strut widths simulating, 

in a simplified way, the presence of the stiffening contribution 

offered by the masonry infills themselves.  

Finally, in order to provide insight into the reliability of the 

proposed predicting expressions for the masonry infill stiffening 

contribution, a final analysis has been conducted. In this final 

analysis, the influence of the uncertain nature of the Young’s 

modulus has also been investigated. Instead of assuming a 

deterministic E value, the sensitivity of the results to the 

variability of the Young’s modulus is here studied. The E value 

has been sampled by assuming a uniform distribution between 

min 4GPawE =   and max 6GPawE =  , and the empirical  

 

 

expressions reported in Table 1 have been repeatedly applied in 

order to have a wider set of statistical data to assess the accuracy 

of the empirical expressions in comparison with probabilistic 

results. We here report the PDF of two response indicators: the 

last-floor displacement 4xu   and the bending moment on the 

top of the column 32M  . Four alternatives of empirical 

formulae predicting the same response quantities are employed, 

within a deterministic framework, for comparison purposes. In 

this way, we can assess the accuracy of four different predicting 

expressions when compared to a more complete probabilistic 

analysis. From Fig. 20, it is noted that the influence of the 

Young’s modulus on the probabilistic characterization of the 

response, at least in the range of wE   explored here, is not 

particularly significant. Indeed, the obtained PDF with modulus 

variation is very similar to that obtained with the mean value of 

wE  . Furthermore, the four deterministic values of the two 

response quantities 4xu   and 32M   predicted with the four 

considered formulations give very large scatter of results. In 

particular, it is seen that the Mainstone 1974 expression 

(Mainstone 1974), also adopted by FEMA-274 and 306 

(FEMA-274 1997, FEMA-306 1998), provides extremely large 

values of the response, on the conservative side. More 

reasonable estimates of the response mean value as computed 

by the probabilistic analysis are provided by the other three 

formulations considered. However, these three formulations 

(namely, Bazan and Meli 1980 (Bazan and Meli 1990), Liauw 

and Kwan 1984 (Liauw and Kwan 1984), Cavaleri et al. 2005 

(Cavaleri et al. 2005)) leads to results that are not particularly 

close to the mean value of the corresponding PDF, especially for 

the displacement. 

It seems that the formula proposed by Bazan and Meli 1980 

(Bazan and Meli 1980) is the most accurate one because it is in 

reasonable agreement with the mean value and it provides 

conservative estimates of the response.  

As a final remark, this comparison definitely highlights the 

scatter of results that the different formulations may produce, 

and underlines the importance of probabilistic studies to account 

for the uncertain nature of the masonry infill mechanical 

behaviour. 

 

 

Fig. 20 PDF of the last-floor displacement (
4xu ) and of the moment on the top of the column ( 32M ) compared to deterministic 

values predicted by four different deterministic formulations 
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6. Conclusions  
 

The main contents and findings of this research work are 

summarized as follows: 

• A fully probabilistic approach has been proposed for the 

analysis of the in-plane response of masonry infilled RC frames. 

More specifically, this paper has been focused on the 

investigation of the effects of the masonry infills uncertainty on 

the structural response of RC frames. A macro-modeling 

approach has been adopted in which the masonry panels are 

considered via equivalent diagonal pin-jointed struts. The strut 

widths have been considered as random variables in order to 

incorporate the stochastic nature of the masonry infills ascribed 

to their inherent heterogeneous nature and to the large scatter of 

corresponding experimental results. 

• The probabilistic characterization of the complex 

mechanical behavior of the masonry infills has been based upon 

an ensemble of empirical expressions proposed in the literature 

by different authors. For given geometrical and mechanical 

properties of an assigned masonry infilled RC frame, a 

procedure for deriving the probabilistic input data of the strut 

widths has been described, and different modelling assumptions 

in terms of correlation and shape of the PDF have been explored.  

• An effective numerical procedure has been proposed that, 

unlike Monte-Carlo-based methods, avoids sampling 

techniques thus implying reduced computational effort, 

especially for structures with several DOFs. This procedure 

provides the probabilistic characterization of the system 

response directly, once the probabilistic characterization of the 

masonry panels has been established as per the previous bullet 

point. To the authors’ best knowledge, such a direct probability-

based procedure has never been considered for the analysis of 

masonry infilled RC frames, which represents the main novelty 

of this contribution. 

• To demonstrate the kind of results that this procedure can 

offer, a simple application has been presented, consisting in an 

equivalent linear analysis of a regular masonry infilled 

reinforced concrete framed structure. The PDF of a set of 

response indicators has been determined, and has been 

compared to the PDF obtained via alternative (more 

cumbersome) techniques like Monte Carlo method and other 

strategies earlier proposed in the literature, all requiring 

sampling operations and providing just an approximation of the 

PDF as the number of sampling increases.  

• The sensitivity of the response to the modeling 

assumptions, mainly the shape of the PDF and the inherent 

correlation between the fluctuations of the various strut widths 

associated with the various masonry panels, has been discussed. 

For most of the response indicators analyzed, incorporating the 

correlation of the strut widths in the probabilistic 

characterization of the input data has led to more dispersed 

probabilistic characterization of the system response. 

Furthermore, it has been observed that a deterministic analysis 

carried out considering the mean values of the strut widths 

provides reasonable estimates of the mean response as 

determined by the probabilistic approach. However, as a matter 

of fact, deterministic analysis cannot give indications on the 

probability distribution, which is important for reliability-based 

design. 

• As expected, the influence of the uncertainty of the 

masonry infills is more pronounced for column-related 

quantities (e.g., the moment, shear forces, etc.) rather than for 

beam-related variables. Furthermore, it has also observed that, 

due to the presence of uncertain masonry infills, the weak-beam-

strong-columns principle underlying the strength hierarchy 

criterion might be jeopardized.  

• Based on the last two conclusions, it is recommended that 

conservative safety factors be applied for designing the columns 

in masonry infilled RC frames in order to take into account, in a 

simplified way, the randomness of the response due to the 

stochastic nature of the masonry panels. 

• A more specific analysis on four different formulations 

proposed in the literature has revealed which are the more 

reliable formulations that are better able to reproduce the mean 

value of the response as indicated in the present probabilistic 

study.  
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