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1. Introduction  
 

The concept of functionally graded materials (FGMs) 

was first introduced by a group of Japanese scientists in 

1984 (Yamanouchi 1990, Koizumi 1993). FGMs are a type 

of advanced composite materials whose properties vary 

gradually and continuously from one surface to another. 

Because of this advantage, they have been regarded as one 

of the advanced inhomogeneous composite materials in 

many engineering sectors. FGMs are made from a mixture 

of ceramic and metal. Ceramic constituent provides the high 

temperature resistance due to its low thermal conductivity 

and metal constituent resists the failure of the structure. The 

FGM is widely used in many structural applications such as 

aerospace, nuclear, civil, nanostructures, and automotive 

(Janghorban and Zare 2011, Nami and Janghorban 2014, 

Mouffoki et al. 2017, Karami et al. 2018a, b, c, Dash et al. 

2018). The benefit of advanced materials and structures can 

be demonstrated in other applications such as (Mehar et al.  
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2018, Henderson et al. 2018, Hirwani and Panda 2018, 

Bouadi et al. 2018, Cherif et al. 2018, Kadari et al. 2018, 

Belabed et al. 2018, Hajmohammad et al. 2018a, Mehar 

and Panda 2018, Karami et al. 2018d, e, f, g, Yazid et al. 

2018, Youcef et al. 2018, Karami et al. 2018h, i, Shahsavari 

et al. 2017, Mehar et al. 2017a, b, c, Mahapatra et al. 

2017a, b, Katariya et al. 2017a, Dutta et al. 2017, Sahoo et 

al. 2017, Beldjelili et al. 2016, Arani and Kolahchi 2016, 

Ahouel et al. 2016, Zemri et al. 2015, Bourada et al. 2015). 
The increase in FGM application requires more accurate 

plate theories to predict their responses. The classical plate 
theory (CPT) shows inaccurate results for thick and 
moderately thick plates as it does not consider shear 
deformation. The First-order shear deformation theories 
(FPT) (Mindlin 1951, Reissner 1945) consider the 
transverse shear deformation effects. However, a shear 
correction factor is needed to satisfy the zero transverse 
shear stress boundary conditions at the top and bottom of 
the plate. The higher-order shear deformation theories 
(HSDT) (Reddy 1984, 2000, Ren 1986, Touratier 1991, 
Soldatos 1992, Xiang et al. 2009, Akavci 2010, Grover et 
al .  2013,  Karama et  a l .  2003,  Pradyumna and 
Bandyopadhyay 2008, Ait Atmane et al. 2010, Mantari et 
al. 2012, Kar and Panda 2015a, Karand Panda 2016a, b, 
Mehar and Panda 2017a, b, Singh and Panda 2017, 
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Abstract.  In the present paper, functionally graded (FG) materials are presented to investigate the bending analysis of simply 

supported plates. It is assumed that the material properties of the plate vary through their length according to the power-law 

form. The displacement field of the present model is selected based on quasi-3D hyperbolic shear deformation theory. By 

splitting the deflection into bending, shear and stretching parts, the number of unknowns and equations of motion of the present 

formulation is reduced and hence makes them simple to use. Governing equations are derived from the principle of virtual 

displacements. Numerical results for deflections and stresses of powerly graded plates under simply supported boundary 

conditions are presented. The accuracy of the present formulation is demonstrated by comparing the computed results with those 

available in the literature. As conclusion, this theory is as accurate as other shear deformation theories and so it becomes more 

attractive due to smaller number of unknowns. Some numerical results are provided to examine the effects of the material 

gradation, shear deformation on the static behavior of FG plates with variation of material stiffness through their length. 
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Kolahchi et al. 2017, Mehar et al. 2017b, Sekkal et al. 
2017a, Katariya et al. 2017b, Hirwani et al. 2018) account 
for shear deformation effects and satisfy the equilibrium 
conditions at the top and bottom surfaces of the plate 
without requiring any shear correction factors. Shear 
deformation models are also employed to study the 
mechanical response of nanocomposite structures (Kolahchi 
and Moniri Bidgoli 2016, Madani et al. 2016, Kolahchi et 
al. 2016a, b, Arani and Kolahchi 2016, Bilouei et al. 2016, 
Kolahchi et al. 2017a, b, c, Kolahchi and Cheraghbak 2017, 
Kolahchi et al. 2017a, b, c, Zamanian et al. 2017, Kolahchi 
2017, Shokravi 2017a, b, c, d, Besseghier et al. 2017, 
Hajmohammad et al. 2017, 2018b, c, d, e, Zarei et al. 2017, 
Amnieh et al. 2018, Golabchi et al. 2018). In a number of 
recent articles, a new refined and robust plate theory for 
bending response and vibration of simply supported FGM 
plate with only four unknown functions has been developed 
(Bourada et al. 2012, Bachir Bouiadjra et al. 2012, Tounsi 
et al. 2013, Kettaf et al. 2013, Ait Amar Meziane et al. 
2014, Ahmed, 2014, Kolahchi et al. 2015, Ait Yahia et al. 
2015, Kar and Panda, 2015b, Belkorissat et al. 2015, 
Bourada et al. 2016, Bouderba et al. 2016, Bellifa et al. 
2016, El-Haina et al. 2017, Benadouda et al. 2017, Fakhar 
and Kolahchi 2018, Attia et al. 2018, Karami et al. 2018f, 
Fourn et al. 2018, Bakhadda et al. 2018). Recently, review 
on refined plate theories can be documented in (Bouderba et 
al. 2013, Tounsi et al. 2013, Zidi et al. 2014, Larbi Chaht et 
al. 2015, Mahi et al. 2015, Karami and Janghorban 2016, 
Boukhari et al. 2016, Bousahla et al. 2016, Bounouara et al. 
2016, Houari et al. 2016, Fahsi et al. 2017, Khetir et al. 
2017, Klouche et al. 2017, Bellifa et al. 2017a, b, Menasria 
et al. 2017, Hachemi et al. 2017, Zidi et al. 2017, Aldousari 
2017, Chikh et al. 2017, Shahsavari et al. 2018a, Kaci et al. 
2018, Zine et al. 2018, Mokhtar et al. 2018, Meksi et al. 
2019). The thickness stretching effect is neglected in the 
most of shear deformation theories by considering the 
transverse displacement as constant. So, this effect should 
be taken into consideration especially for thick FGM plates 
(Carrera et al. 2011, Sekkal et al. 2017b, Younsi et al. 
2018). To overcome this problem, some quasi-3D theories 
presented in the literature are developed. Carrera et al. 
(2011) evaluated the effect of thickness stretching in 
plate/shell structures made by materials which are FGM in 
the thickness directions. Mantari and Guedes Soares (2013) 
conducted static analysis of thick FG plates using a novel 
trigonometric higher-order theory in which stretching effect 
was considered. Belabed et al. (2014) presented an efficient 
and simple higher order shear and normal deformation 
theory for FGM plates. Bousahla et al. (2014) developed a 
novel higher order shear and normal deformation theory 
based on neutral surface position for bending analysis of 
advanced composite plates. Akavci and Tanrikulu (2015) 
presented two dimensional (2D) and quasi three-
dimensional (quasi-3D) shear deformation theories for static 
and free vibration analysis of single-layer functionally 
graded (FG) plates using anew hyperbolic shape function. 
Draiche et al. (2016) presented a refined theory with 
stretching effect for the flexure analysis of laminated 
composite plates. Benahmed et al. (2017) presented a novel 
quasi-3D hyperbolic shear deformation theory for 
functionally graded thick rectangular plates resting on 
elastic foundation. Shahsavari et al. (2018b) proposed a 
novel quasi-3D hyperbolic theory for free vibration of FG  

 

Fig. 1 Schematic representation of FGM plate with 

distribution of volume fraction along x 
 
 

plates with porosities resting on Winkler/Pasternak/Kerr 
foundation. Benchohra et al. (2018) employed a new quasi-
3D sinusoidal shear deformation theory for FG plates. 
Abualnour et al. (2018) proposed a novel quasi-3D 
trigonometric plate theory for free vibration analysis of 
advanced composite plates. Hirwani and Panda (2019) 
presented nonlinear finite element solutions of 
thermoelastic deflection and stress responses of internally 
damaged curved panel structure and two different 
polynomial types of kinematic theories including the 
through-thickness stretching effect are employed. Katariya 
et al. (2018) used higher-order kinematic theory including 
the stretching term effect to study the nonlinear deflection 
and stress of skew sandwich shell panel. Shahsavari et al. 
(2018c) studied the shear buckling of porous nanoplates 
using a new size-dependent quasi-3D shear deformation 
theory. Galerkin method is employed to find the shear 
buckling forces. Bouhadra et al. (2018) proposed an 
improved HSDT accounting for effect of thickness 
stretching in advanced composite plates. Zaoui et al. (2019) 
developed a new 2D and quasi-3D shear deformation 
theories for free vibration of FG plates on elastic 
foundations. 

It is seen from the above literature analysis that most of 

the previous studies are related to FG structures whose 

material properties vary through the thickness only. Thus, 

there have been a very little number of studies related to FG 

structures with property variation throughout the length so 

far. 

A novel method has been developed by Amirpour et al. 

(2016) to analyze the elastic deformation of functionally 

graded thick plates with in-plane stiffness variation using 

higher order shear deformation theory. For design and 

analysis of thick FG plates with in- plane stiffness variation, 

the development of simple theory for bending analysis of 

thick FG plates with in-plane property variation, including 

stretching effects, is very relevant and represents the main 

objective of the present article. 

The aim of this work is to analyze bending behavior of 

thick FG plates with in-plane variation of stiffness 

(variation of stiffness through the length of the plate) using 

the higher shear deformation theory including stretching of 

the thickness. The main challenge in developing accurate 

models for in-plane property variation compared to the 

through-the-thickness property variation is that the variation 

of Young’s modulus (material stiffness) through the length 

(x) leads to mathematically complex five simultaneous 

governing equations. The solutions of which become 

relatively difficult as several parameters vary with the 

length (x). The transverse displacement is apportioned into 

three components: bending, shear and thickness stretching. 

Equations of motion are derived from the principle of 
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virtual displacements. The accuracy of obtained solutions is 

verified by comparing the present results with those 

predicted by solutions available in the literature.  

 

 

2. Theoretical developments  
 

Consider a simply supported rectangular FG plate with 

the length a width b, and thickness h. The x-, y-, and z-

coordinates are taken along the length, width, and height of 

the plate, respectively, as shown in Fig. 1. The formulation 

is limited to linear elastic material behavior. The FG plate is 

isotropic with its material properties vary smoothly through 

the length of the plate. 

 

2.1 Displacement field and strains 
 

The formulation is limited to linear elastic material 

behavior. The displacement fields of various shear 

deformation theories are chosen based on following 

assumptions: (1) The transverse displacement is partitioned 

into bending and shear and stretching components, (2) the 

in-plane displacements are partitioned into extension, 

bending and shear components, (3) the bending parts of the 

in-plane displacements are similar to those given by the 

classical plate theory (CPT) and the shear component of 

axial displacement gives rise to the higher-order variation of 

shear strain and hence to shear stress through the thickness 

of the plate in such a way that shear stress vanishes on the 

top and bottom surfaces. Based on these assumptions, the 

displacement fields of various higher-orders shear 

deformation theories are given in a general form as (Hebali 

et al. 2014, Hamidi et al. 2015, Bennoun et al. 2016, 

Bouafia et al. 2017, Shahsavari et al. 2018b) 
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The shape function is given as (Zenkour 2013, Bourada 

et al. 2015) 
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where u0 and v0 denote the displacements along the x and y 

coordinate directions of a point on the mid-plane of the 

plate, wb and ws are the bending and shear components of 

the transverse displacement, respectively, and the additional 

displacement φ accounts for the stretching effect. f(z) is a 

shape function determining the distribution of the transverse 

shear strain and shear stress through the thickness of the 

plate. The shape functions f(z) are chosen to satisfy the 

stress-free boundary conditions on the top and bottom 

surfaces of the plate, thus a shear correction factor is not 

required. Note that g(z)=0 is required for 2D analysis. 

The nonzero linear strains associated with the 

displacement field in Eq. (1) are 
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and 
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2.2 Constitutive relations 

 

The material is assumed to be elastic and 

inhomogeneous, and the material stiffness vary 

continuously through the length of the plate and obey a 

simple power-law distribution of volume fraction of 

constituents as given by (Amirpour et al. 2016) 

p

c
a

x
xV 








=)(  (5) 

Where p is a parameter that governs the material 

variation profile through the length of the plate. Since the 

effect of variation of Poisson’s ratio on the response of FG 

plates is very small (Yang 2005, Kitipornchai 2006), this 

material parameter is assumed to be constant, and the 

Young’s modulus is considered tobe variable, and can be 
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determined by the rule of mixture as (Tornabene 2009) 
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The linear constitutive relations of a FG plate can be 

written as 
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(7) 

where (σx, σy, σz, τyz, τxz, τxy) and (εx, εy, εz, γyz, γxz, γxy) are the 

stress and strain components, respectively. Using the 

material properties defined in Eq. (6), stiffness coefficients, 

Cij, can be expressed as 
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2.3 Equations of motion 
 

The governing equations of the present theory are 

derived from the Principle of Virtual Displacements. The 

internal virtual work is initially formulated as follows 

 0U V + =  (10) 

Where δU, δV are the variation of the strain energy, the 

external work by applied forces, respectively, and are 

described in the following equations 
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Where A is the top surface and the stress resultants N, 

M, and S are defined by 

( )   

)(

1

,,

2/

2/


− 
















=















h

h

xyyx

s

xy

s

y

s

x

b

xy

b

y

b

x

xyyx

dz

zf

z

MMM

MMM

NNN



 

(12a) 

( ) ( )   )(, , 

2/

2/


−

=

h

h

yzxz

s

xz

s

xz dzzgSS    )(

2/

2/


−

=

h

h

zz dzzgN 

 

(12b) 

Substituting Eq. (7) into Eq. (12) and integrating 

through the thickness of the plate, the stress resultants are 

given as 
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The variation of work done by the applied loads can be 

expressed as 

  )(  ++−=
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Substituting the expressions for δU and δV from Eqs. 

(11) and (14) into Eq. (10) and integrating by parts, and 

then collecting the coefficients of δu0, δv0, δwb, δws and δφ, 

the following governing equations of the FG plate with the 

variation of material property through the length are 

obtained as follows 
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Introducing Eq. (13) into Eq. (15), equations of motion 

for FG plate can be obtained as follows 
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Where dij, dijl and dijlm are the following differential 

operators 
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And stiffness components are given as 
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3. Analytical solutions 
 

The exact solution of Eq. (16) for the FGM plate under 

various boundary conditions can be constructed. The 

boundary conditions for an arbitrary edge with simply 

supported conditions are: 

• Simply supported (S) 
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The following representation for the displacement 

quantities, that satisfy the above boundary conditions, is 

appropriate in the case of our problem 
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For simply supported boundary conditions 
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The transverse load q is also expanded in the double-

Fourier sine series as follows 
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The coefficients Qmn are given below for some typical 

loads (Zenkour 2006) 
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where Umn, Vmn, Wbmn, Wsmn and φmn are arbitrary parameters 

to be determined. The functions Xm(x) and Yn(y) are 

suggested here to satisfy at least the geometric boundary 

conditions given in Eqs. (21) and represent approximate 

shapes of the deflected surface of the plate. Noting that 

λ=mπ/a and μ=nπ/b. 

By substituting Eqs. (20) and (23) into Eq. (16), a set of 

algebraic equations can be obtained as 
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Where the coefficients of the above matrix are given as 

follows 
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Table 1 Material properties used in the functionally graded 

plates 

Material 
Properties 

E v 

Alimunium (Al) 70 0.3 

Alumina (Al2O3) 380 0.3 

Table 2 Comparison of the deflection and stress 

components of a simply supported homogeneous square 

plate (a/h = 10) 
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Akavci (2015) =0
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Akavci (2015) ≠0
 

0.4635 2.9981 1.8925 0.4782 0.4315 1.2578 

Present ≠0
 

0.4639 2.9064 1.9153 0.4924 0.4376 1.2557 

Present =0 0.4665 2.8921 1.9106 0.4958 0.4406 1.2857 

SL 

Zenkour (2006) =0 0.2960 1.9955 1.3121 0.2462 0.2132 0.7065 

Present =0 0.2960 1.9943 1.3123 0.2387 0.2121 0.7066 

Present ≠0
 

0.2942 2.0075 1.3173 0.2386 0.2120 0.7010 

 

Table 3 The non-dimensional displacement and stress 

components of an Al/Al2O3 FG square plate subjected to 

sinusoidal load (a/h = 10) 
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4. Numerical results and discussions 
 

In order to verify the accuracy of the present theory in 

predicting the static response of simply supported FG 

plates, different examples are solved and compared with the 

results of various quasi-3D and 2D shear deformation 

theories. The material properties of the plate are listed in 

Table 1. The length of the plate is assumed to be 1 m. 

The non-dimensional displacement and stress 

components are 

 

Table 4 The non-dimensional displacement and stress 

components of an Al/Al2O3 FG square plate subjected to 

sinusoidal load 
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The non-dimensional displacement and stress 

components for Fig. 6 
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In Table 2, the non-dimensional displacement and 

stresses of a simply supported homogeneous square plate  
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Fig. 2 Deflection of the FG plate with variation of the 

material stiffness through the length for different Ec/Em 

ratios (p=2) 
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Fig. 3 The effect of material anisotropy on the 

dimensionless center deflection w  of an FG plate for 

different values of p 

 
 

subjected to uniformly and sinusoidal distributed loads are 

presented. 

Table 2 shows the calculated results of non-dimensional 

displacement and stress components of the Homogeneous 

square plate as compared with the published results of a 

generalized 2D shear deformation theory by Zenkour 

(2006) and Akavci (2015), where εz=0. It can be seen from 

the table that the present 2D theory results are in excellent 

agreement with the 2D theory results of Zenkour (2006) and 

Akavci (2015). In addition, the present quasi-3D theory 

yields more accurate results than those obtained by the 

other two theories. 

In Tables 3 and 4, the non-dimensional displacement 

and stresses of an Al/Al2O3 FGM square plate subjected to 

sinusoidal distributed load are presented for different values 

of the power-law index. Table 3 shows the calculated results 

of non-dimensional displacement and stress components of 

the square FGM plate under uniform load as compared with 

the results of a generalized 2D shear deformation theory. It 

is well known that, the quasi-3D theory gives more accurate 

results than those obtained by the 2D theory where εz=0. 

However, Table 3 demonstrates that these two theories give 

almost the same results. This is due to the used thickness  
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Fig. 4 Dimensionless center deflection w  as a function of 

the aspect ratio (a/b) of an FGM plate (a/h=10) 
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Fig. 5 Dimensionless center deflection w  as a function of 

the side to-thickness ratio (a/h) of an FG square plate 

 

 

ratio (a/h=10) which is not appropriate for very thick plates. 

This table also shows that, the transverse displacement w 

and the shear stresses xz  and xy increase with the 

increasing value of power law index p.  

Table 4 presents the non-dimensional in-plane stresses 

x  and non-dimensional transverse displacements w of a 

square plate for different a/h ratios. The present results are 

compared with the present 2D higher order shear 

deformation theory. The present quasi-3D that includes both 

transverse shear and normal deformations give accurate 

results than those given by the other theory. 

The non-dimensional displacements and stresses are 

presented in Tables 5-6 for various values of aspect ratio 

b/a, thickness ratio a/h and exponent value p. Table 5 

presents the central transverse displacements of the very 

thick EGM plates. The obtained results are compared with 

the 2D theory. Since the proposed theory includes the 

thickness-stretching effect, the results are accurate for thick 

plates. Meanwhile, 2D theory which do not include the 

thickness stretching effect overestimate the results. In Table 

6, the calculated non-dimensional stresses are presented as  
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Fig. 6 The distributions of the non-dimensional 

displacement and stresses of FG plate (a/b=1, a/h=10) 
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Table 6 Continued 

 

 

compared with the 2D theory. It is evident from the tables 

that the present computations are in good agreement with 

the quasi-3D solutions.  

Fig. 2 presents the deflection of the FG plate with 

variation of the material stiffness through the length for 

different Ec/Em ratios. Generally, it is reported that an 

increase in the stiffness ratio, Ec/Em, increase the deflection 

of the FG plate with property variation through the length, 

which shows the effect of different Ec/Em ratios on the 

deflection of the FG plate. 

On the whole stiffness of the FG plate is robustly 

associated with the direction of the material stiffness 

variation and the correct selection of the modulus ratio 

Ec/Em. The modulus ratio also influences the location of 

maximum deflection. As the Ec/Em ratio increases, the 

location of the maximum deflection moves towards the left 

side of the plate (dominated side). By using this aspect, the 

location of the maximum deflection, the stiffness of the FG 

plate can be controlled to meet the desired application with 

specific performance. 

The center deflections of the simply supported FG 

square plate are compared in Fig. 3 for various ratios of 

moduli, Em/Ec (for a given thickness, a/h=10). In other 

words, the deflections are computed and compared for 

plates with different ceramic-metal mixtures. It is clear that 

the deflections decrease smoothly as the volume fraction 

exponent decreases, and decrease as the ratio of metal-to-

ceramic moduli increases. 

Figs. 4 and 5 show the variation of the center deflection 

for various power law exponent p and with different aspect 

and side-to-thickness ratios, respectively. The FG plate 

deflection is between those of plate made of ceramic 

(Al2O3) and metal (Al). It can be observed that the 

deflection of metal rich plates is larger when compared to 

ceramic rich FGM plates, which can be attributed to the fact 

that the Young’s modulus of ceramic (Al2O3, 380 GPa) is 

higher than that of metal (Al, 70 GPa). Hence for FG plates, 

the transverse deflection decreases as the power law 

exponent p decreases. In addition, the deflection of the 

FGM plate decreases as the aspect ratio increases, whereas 

it may be unchanged as the side-to-thickness ratio increases. 

The stress and displacement distributions through the 

thickness of Al/Al2O3 FGM square plate, under sinusoidal 

load, are presented in Fig. 6. The results are plotted for 

various values of power law index p. According to Fig. 6, it 
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is important to note that, the through the thickness 

distributions of in-plane stresses x  and xy  are linear 

for FG plate with in-plane variation of material stiffness 

along the length. The variation of the in-plane stress x at 

the mid-plane (xy) of the FG plate with in-plane variation of 

material stiffness along the length is depicted in Fig. 6. The 

maximum tensile and compressive stresses occur at the 

bottom and top surfaces, respectively. It is observed that the 

stress x also becomes zero at the mid-surface of the 

thickness (z=0) for FG plates with property variation 

through the length, which is the same trend for the case with 

constant property (homogenous plate).  

 

 

5. Conclusions 
 

In this work, the bending response of thick FG plates 

with power-law variation of volume fraction within the 

length is studied using a quasi-3D hyperbolic shear 

deformation theory. The exactitude of the present model has 

been confirmed for bending investigation of a simply 

supported FG plate under uniformly and sinusoidal 

distributed loads. From this study, it is observed that 

contrary to the case of a homogeneous plate, the maximum 

deflection does not found in the middle of the FG plate with 

in-plane distribution of material rigidity. It is also noticed 

that the overall rigidity of the FG plate strongly depends on 

the direction of the variation of rigidity of the material and 

the ratio between Young's moduli (Ec/Em) of the two phases. 

In addition, the location of the maximum transverse 

displacement does not depend on the thickness of the FG 

plate and the maximum deflection increases with an 

increase in the power index (p). The effect of boundary 

conditions can be considered in future using the same 

methodology as is described by Ait Amar Meziane et al. 

(2014) and Abdelaziz et al. (2017). 
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