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1. Introduction  
 

Complex shell structures are regularly encountered in 

diverse fields. The development of simple and efficient 

finite elements for the analysis of these structures is a main 

push of scientific research in solid mechanics. Flat shell 

finite elements are derived by the superposition of plate 

elements with plane stress elements, in which the 

membrane and plate bending properties are decoupled (for 

isotropic materials). In the literature, it is revealed that shell 

elements provide good accuracy for both displacement and 

stress of thin and thick structures. Nevertheless, problems 

are often encountered, making it difficult to achieve the 

assigned objectives. However, if membrane elements are 

combined with a plate bending element, they affect the 

accuracy of the results because of the poor performance of 

the membrane elements for dominated bending problems, 

which require a fine mesh density, and they induce 

continuity and compliance problems during the transition to 

shell elements. 

The main observed constraints are often linked to the 

following: 

– Displacement fields incompatibility aspects when  
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affixing the membrane elements to those of the plate.  

– The two phenomena of “shear locking” and 

“membrane locking”. 

– The numerical problems induced by the absence of the 

“sixth DOF” in the case of co-planar elements. 

– The numerical problems associated with numerical 

integration. 

Many finite elements have been developed for solving 

these problems. However, most of them have remained 

ineffective in the analysis of arbitrary geometric 

configurations. Isoparametric elements are the most 

successful among those available, due to their ability to 

successfully model curved structures. From the literature 

review, some researchers are addressing these problems. 

Bhothikhun and Dechaumphai (2014) have developed the 

Discrete Kirchhoff Triangle (DKT) plate-bending element 

together with the CST membrane. An adaptive meshing 

technique is applied to improve the solution accuracy and to 

decrease the computational effort. The formulations of a 

triangular element (THS) and a quadrilateral element (QHS) 

based on a hybrid variational principle and Rezaiee-Pajand 

and Karkon (2014) have obtained analytical homogeneous 

solution of the thin plate equation. Jeon et al. (2014) present 

an improvement of a scheme to enrich the three-node 

triangular MITC shell finite element by interpolation cover 

functions. The enhancement scheme increases the solution 

accuracy without any traditional local mesh refinement. 

Rezaiee-Pajand and Yaghoobi (2014) developed a new 

triangular element, named SST10. The formulation uses the 

optimization constraints of insensitivity to distortion and 

rotational invariance. In addition, the equilibrium equations 

 
 
 

The use of the strain approach to develop a new consistent triangular 
thin flat shell finite element with drilling rotation 

 

Hamza Guenfoud1, Mohamed Himeur1a, Hassina Ziou2a and Mohamed Guenfoud1b 
 

1LGCH Laboratory, 8 Mai 1945 University of Guelma, Algeria 
2Mohamed Khider University, Biskra, Algeria 

 
(Received December 19, 2017, Revised September 24, 2018, Accepted September 26, 2018) 

 
Abstract.  In the present paper, we offer a new flat shell finite element. It is the result of the combination of a membrane 

element and a bending element, both based on the strain-based formulation. It is known that C° plane membrane elements 

provide poor deflection and stress for problems where bending is dominant. In addition, they encounter continuity and 

compliance problems when they connect to C1 class plate elements. The reach of the present work is to surmount these 

problems when a membrane element is coupled with a thin plate element in order to construct a shell element. The membrane 

element used is a triangular element with four nodes, three nodes at the vertices of the triangle and the fourth one at its 

barycenter. Each node has three degrees of freedom, two translations and one rotation around the normal. The coefficients 

related to the degrees of freedom at the internal node are subsequently removed from the element stiffness matrix by using the 

static condensation technique. The interpolation functions of strain, displacements and stresses fields are developed from 

equilibrium conditions. The plate element used for the construction of the present shell element is a triangular four-node thin 

plate element based on Kirchhoff plate theory, the strain approach, the four fictitious node, the static condensation and the 

analytic integration. The shell element result of this combination is robust, competitive and efficient. 
 

Keywords:  finite element method; membrane; plate; shell; condensation; deformation approach; drilling rotation 

 

mailto:Guenfoud.hamza@univ-guelma.dz
mailto:hamzaguenfoud@gmail.com


 

Hamza Guenfoud, Mohamed Himeur, Hassina Ziou and Mohamed Guenfoud 

 

are established based on some constraints among the strain 

states. Kugler et al. (2010), Boutagouga (2008, 2016) and 

Hamadi (2016) have developed a new quadrilateral 

membrane finite element with drilling degrees of freedom. 

It is based on a variational principle employing an 

independent rotation field in the order of the normal of a 

plane continuum element. Further studies on the triangular 

finite element have also been published: Sabir (1985), Barik 

and Mukhopadhyay (2002), Kim and Bathe (2009), 

Papanicolopulos et al. (2009), Burkardt (2010), Serpik 

(2010), Huang et al. (2010), Gileva et al. (2013) and 

Himeur (2008, 2015). In 1990 Batoz and Dhatt developed 

triangular membrane finite elements with three nodes and 

six nodes called T3 (CST) and T6, correspondingly. Belarbi 

(2000) has also developed many triangular finite elements, 

namely the SBT2, SBT2ν, SBT3 and SBT3ν. Chinosi 

(2005) has made several amendments to the boundary 

conditions for Mindlin-Reissner plates. In recent times, 

Shin and Lee (2014) developed a three-node triangular flat 

shell element based on the assumed natural deviatory strain 

formulation for enhanced use in curved shell geometries. 

The strain approach technique is applied to the derivation of 

the membrane stiffness of the proposed element. The scope 

of the present research is to surmount the problem that 

appears when combining plane membrane elements of class 

C0 with plate elements of class C1. 

Therefore, the aim of the present work is the 

formulation of a thin flat shell finite element based on the 

“deformation approach” in order to avoid these difficulties 

on the one hand, and the construction of a thin flat finite 

shell element, which is simple and competent for the 

analysis of complex structures, on the other hand. To 

accomplish this, we have enriched our approach with the 

concepts and development techniques based on: 

– The adoption of the “deformation approach”, 

– The introduction of a “fictitious fourth node”, 

– The elimination of the freedom degrees corresponding 

to the “fictitious fourth node” by static condensation,  

– The use of “analytic integration” to evaluate the 

stiffness matrix. 

Earlier, Himeur and Guenfoud (2008, 2015) led to the 

construction of a triangular membrane finite element, which 

can be easily shared with inflected elements (slabs, beams 

and shells). “T43_Eq” by Himeur and Guenfoud (2008, 

2015) is a membrane triangular finite element with a central 

disrupted node. It is characterized by the presence of an 

unidentified nodal rotation defined by the derivation of 

displacement fields (drilling rotation). The interpolation 

functions are those obtained from the equilibrium 

conditions (bi-harmonic polynomials chosen from the 

solutions given by Teodorescu (1982) based on Airy 

function development). These interpolation functions are 

developed by using Pascal’s triangle. The “T43_Eq” 

element has three nodes positioned at the summit with three 

degrees of freedom, and a fourth fictitious node situated in 

the center of the triangle is added. 

We use the bending triangular finite element, founded 

on the Kirchhoff’s thin plate theory, with a fictitious fourth 

node based on the strain approach developed by Himeur 

and Guenfoud (2011) to construct the present shell element. 

This element is planned by using the strain approach. The 

interpolation functions of the deformation fields 

(consequently, displacements and stresses) are developed by 

using Pascal’s triangle. The considered element is a 

triangular element to which we added a fourth fictitious 

node positioned external to and away from the triangle. This 

position, outside, is thus chosen to avoid the relaxation of 

the stiffness matrix resulting in an excessive estimation of 

the nodal displacements. 

For both, the membrane and the plate element 

formulation, we eliminate, the degrees of freedom 

corresponding to the fourth fictitious node, using the static 

condensation method applied on the basic stiffness matrix at 

the elementary level. Hence, the main significance of the 

fictitious node lies in the improvement of the displacement 

field (P refinement i.e., increasing the degree of the 

polynomial interpolation), which accordingly leads to a 

better precision of the approximate solution. The 

corresponding variationally criterion used in the present 

formulation is the virtual work principle. The analytical 

integration to evaluate the elementary stiffness matrix is 

extremely interesting in order to avoid the defeat of 

convergence phenomenon observed when using the 

numerical integration (in this case the convergence trained 

by regular and undistorted meshes) for the formulation of 

the isoparametric elements. 

 

 

2. The membrane element (four node triangular 
element) 
 

The membrane element, designated T43_Eq, is 

formulated using the strain approach of Himeur and 

Guenfoud (2008). The interpolation functions of strain 

fields, and thus displacements and stresses, are developed 

from the equilibrium conditions. Fig. 1 presents this 

element. Every node has three degrees of freedom: two 

translations U and V and the rotation about the normal 

(“drilling rotation”) θz. Consequently, the displacement 

fields have twelve independent constants (a1,…,a12). The 

relationship between strains and displacements is given as 

follows 
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The true rotation around the normal, (the “drilling 

rotation”) θz, is given by the relation 
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The following system gives the equilibrium conditions 
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The Hooke’s law for isotropic materials Eqs. (2.4) offers  

386



 

The use of the strain approach to develop a new consistent triangular thin flat shell finite element… 

 

 

Fig. 1 Triangular four-node element “T43_Eq” 

 

 

the relationship between stresses and strains at the plane 

stresses state 
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For zero volume forces, the approximation functions are 

selected by introducing the Airy function F(x,y), which 

condenses the problem of relation (2.3) to a bi-harmonic 

equation (Himeur and Guenfoud 2015) 
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Using 

yx

y)F(x,
τ

x

y)F(x,
σ

y

y)F(x,
σ

2

x2

2

y2

2

x



=




=




=  (2.6) 

If we substitute Eq. (2.6) into Equation systems (2.4), 

the strains become as follows 
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Consequently, the universal solution of Eq. (2.5) 

standing on the bi-harmonic polynomials is the opening 

point for getting the stress, strain and displacement. 

Zweiling (1952) determines these bi-harmonic polynomials. 

To formulate the strain field approximation, the first twelve 

bi-harmonic polynomials are assumed. These fields are as 

follows: 

- For Rigid Body Motions (RBM), the strains are 

zero. So, ε  

0εx =   0εy =   0γxy =  (2.8) 

For the higher modes, we are 
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This resultant field is characterized by: 

- The existence of constant strains that guarantee 

the convergence and the homogeneous strain when the 

mesh is refined, represented by constants a4, a5, and a6. 

- The existence of linear strains at dilations ( xε , yε ) 

and a state of linear strains of distortions ( xyγ ), 

corresponding to the parameters a7, a8, which put distortions 

in dependence with dilations. 

- The higher strains of distortions, symbolized by 

the parameters a11, a12. 

- The agreement of the general equation of strains 

compatibility. 
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The approval of the universal equation of strains 

compatibility is verified through the Airy function, as 

follows 
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Finally, the integration of strain fields provides the 

following displacement fields 
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In matrix form, the resultant displacement field 

represented by Eq. (2.12) can be written as 
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Having recognized the four nodal coordinates (xj, yj) 

corresponding to node j (i = 1,...,4) and affecting the 
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relation (2.13), the displacements nodal vector at the 

elementary level is obtained by 
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 Is the element nodal coordinates 

matrix designated by [A]. 

Himeur and Guenfoud (2008, 2008, 2015) detail the 

improvement of the matrix [A] for the finite element 

“T43_Eq”. Finally, we obtain the interpolation functions of 

displacements from Eq. (2.15) by the evaluation of the 

parameters ‘ai’ 
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Substituting Eq. (2.16) into Eq. (2.14), we get the 

relation between the vector displacement and the nodal 

displacement by the following relationship 
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function Ni. 

In the case of plane stress, the linear strain tensor 

representing the strain-displacement relationship is given by 
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Replacing u and v by their values of Eq. (2.17), the 

strain-displacement relation (2.18) takes the following form 
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Therefore, the strain matrix will take the form 

 
















++++

=

ν)(16y-ν)(16x-00ν)4y(1-ν)4x(1-200000

6ννx-6xy6νν-6x2νν-2y010000

6xy6ννx-6y6νν-2x2νν-001000

E

1
Q

22

 

(2.20) 

 

Fig. 2 Deformation of a bending Kirchhoff thin plate 
 

 

3. The Kirchhoff thin plate element 
 

3.1 Fundamental equations of thin plate theory 
(Kirchhoff theory) 
 

3.1.1 Kinematics equations compatibility conditions 
Fig. 2 presents the rotations around the two axes x and y 

denoted by θx and θy respectively and the slopes (gradients) 

in both directions defined by the variables βx and βy; with 
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the plate, and is interpreted by  
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The expressions (3.2) make it legitimate to disconnect 

the membrane displacement (u, v) and the transverse 

bending displacement (w) in reference to the Kirchhoff 

hypothesis. The displacement field to describe the 

behaviour of the plate is described as  
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The relations between the rotations and the curvatures 

are given by  
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By deriving the displacement field, the infinitesimal 

strain tensor is then obtained as 
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where 0== yzxz   according to the Kirchhoff 

hypothesis. 

The relations between the moments and bending 

curvatures are expressed by 

yx

w

xy
K

y

w

y
K

x

w

x
K

yx
xy

y

y

x
x




−=




+




=




−=




=




−=




=

2

2

2

2

2

2)(






 

(3.6) 

Saint-Venant (1854) established the compatibility 

conditions (Frey 2000). Their agreement is required to 

assure the uniqueness of the solution. The compatibility 

equations are developed as follows 
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3.1.2 Constitutive law 
The constitutive law, in the case of plane state stress and 

for isotropic material, is written as 
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In terms of the moment-curvature relationship, Eq. (3.8) 

is written as 
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(3.9) 

 
3.1.3 Equations of equilibrium 
The balance between the internal and external actions of 

an element with dimensions dx×dy in equilibrium state is 

obtained by the following equation 
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(3.10) 

where Qx and Qy are the shear actions forces in the sections 

perpendicular to the x and y axes respectively. The 

expression (3.10) is simplified to become 

0=



+




+

y

Q

x

Q
q

yx

 
(3.11) 

The equilibrium of moments about the x and y axes 

delivers 
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Fig. 3 Triangular Kirchhoff thin plate element with w, βx, βy 

degrees of freedom at each node 

 

 

By substituting the Qx and Qy values of Eqs. (3.12) in 

Eq. (3.11) and using the bending behaviour law (3.9), the 

balance condition will result in the displacement function 

“w” by the following relation 
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3.2 The “Himeur” Kirchhoff thin plate finite element 
 

3.2.1 Bending shapes functions 
The bending curvatures are equal to zero for Rigid Body 

Motions (RBM) 

000 xyyx ===   (3.14) 

By changing in Eqs. (3.6) the curves with their values 

given by Eqs. (3.14) and then integrating, we get the 

displacement fields signifying the rigid body motions, 

which are as follows 

32321 aa-.xa - aW ay yx ===   (3.15) 

with a2 and a3, parameters representing rotations θx and θy 

of the rigid body around the respective axis “y” and “x” and 

a1, parameter signifying the transverse displacement of the 

rigid body along the normal (axis “z”) representing the 

translation. 

The element has four nodes (see Fig. 3): three heads to 

which we have added a fourth imaginary node. All the 

nodes have three degrees of freedom. Hence the 

displacement fields, expressed by the use of the model 

deformation, have twelve independent constant parameters 

(a1, ..., a12). The first three (a1, a2, a3) are used in Eqs. (3.15) 

to represent rigid body motions (RBM). The other nine (a4, 

..., a12) are used to characterise the state of pure bending. 

They share in the deformation interpolation functions to 

satisfy the balance relations (3.7) of kinematic compatibility 

for plane elasticity. Consequently, the flexure curvature 

fields for the higher modes derive from Pascal’s triangle as 

follows 
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By substituting in Eqs. (3.6) the curvatures with their 

values given by Eqs. (3.16) with subsequent integration, we 

obtain the complete displacement field for the bending 

mode 

2
.

2

.
.

2
....

6
.

2
.a

2
.

6
.

2
.

2

.
...a

2

x
.a .a

2

.
.

6

.
.

6
.

2

.
.

2
.

6

.
.

2

.
.a-

6

x
.a -

2

x
.aW

12

2

11

2

1098

3

7

2

6

12

3

11

2

9

2

76

2

54

12

3

11

3

10

2

9

2

8

3

7

2

6

3

5

2

4

x
a

yx
a

y
ayxaya

x
a

x

y
a

y
a

y
a

yx
ayxx

yx
a

yx
a

y
a

yx
a

y
a

yx
a

yx

y

x

++++++=

++++++=

−−−−−−−=





 

(3.17) 

By adding the relations (3.15) and (3.17), we obtain the 

final field (for rigid body motions and the pure bending 

deformation) of displacements 
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(3.18) 

We write the displacement field given by Eqs. (3.18) in 

the matrix form as follows 
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With,   = 121110987654321

T

i ,,,,a,a,a,a,a,a,a,aa aaaa  

 






















−−−−−−−−−−−

=

22

.

2
.

62
00100

26
0

2
0

2

.
.

2
010

2

.

6

.

62

.

26

.

2

.

62
1

y)f(x,

2232

3222

33223232

xyxy
yxy

xx

yyyyx
yx

x
x

yxyxyyxyyxyxxx
yx

 

(3.20) 

The nodal displacements vector, at the elementary level, 

corresponding to the nodes j (j = 1... 4), is obtained by 

applying the relation (3.20) after recognising the nodal 

coordinates (xj, yj) 
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With, 

  =
4y4x43y3x32y2x21y1x1

Te ,,,,,,,,,,,q  wwww  

[A] =

 
 
 
 



















)y,f(x

)y,f(x

)y,f(x

)y,f(x

44

33

22

11

 is the nodal coordinate’s matrix 

(Appendix A1 in Himeur et al. 2011). 

From relation (3.21), we gather the value of parameters 

“ai” by the following system 
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i q[A]a −=  (3.22) 

By replacing the parameters, which have the 

relationship given by (3.22), in the equation system (3.19), 

we obtain the following relationship 

   eqyx ..[A]y)f(x,

y)(x,

),(

y)W(x,
1-

y

x =



















 

(3.23) 

which represents the interpolation functions matrix Ni.  

The strain-displacement relationship takes the following 

expanded form by replacing in Eqs. (3.6) the w(x,y) values 

of Eq. (3.19) 
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(3.24) 

Finally, the deformation matrix [Q(x,y)] is assumed as 

follows ([K]=[Q(x,y)]{ai}) 
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4. Elementary stiffness matrix for both membrane 
and plate element 
 

The elementary discredited internal virtual work is given 

by the expression 

( )    =
eV

T

int .dVσ.ε
e

W  
(4.1) 

Knowing that 

        e1e' q.[A]y)Q(x,q.Nε −==  (4.2) 

And  

    ε.Dσ =  (4.3) 

Moreover, substituting in Expression (4.1)  ε  and

 σ  by values given respectively in Eqs. (4.2) and (4.3) 

produce 
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Consequently, the following integrating form obtains the 

elementary stiffness matrix derived from Expression (4.4), 

for both membrane and bending elements 

   
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(4.5) 

The expression (4.5) can be written as 
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The evaluation of the  0K  expression is determined by 

analytic integration in Belarbi (1999), Hamadi (2006), and 

Himeur (2008) of the different components of the resulting 

matrix product    y)Q(x,[D].y)Q(x,
T

, whose expressions 

take the form “ 

 yxCH x ..= ”. In conclusion, the 

elementary stiffness matrix, to be considered at the 

assembly and construction of the global stiffness matrix of 

the membrane and plate structure, is acquired after 

condensation of the matrix [Ke]. The static condensation 

relates at the degrees of freedom to the fictitious fourth  
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Membrane element        Kirchhoff Thin Plate Bending element        Shell element 

9 DOF 9 DOF 18 DOF 

 

 

18 DOF 

T43_Eq HIMEUR Shell 

element 
 

Fig. 4 Construction mode of the shell element 

 

 

Fig. 5 The shell element relative to the local (its own) and 

global coordinates 

 

 

node (Himeur and Guenfoud 2008, 2008, 2011, 2014, 

2015). 

 

 

5. The result flat plane thin shell element 
 

The present element is a flat plane thin shell element, 

obtained by superimposing the T43_Eq. membrane finite 

element (Himeur 2008) with the Himeur thin plate finite 

element (Himeur 2011). For the isotropic material case, we 

obtain the elementary stiffness matrix by adding the 

stiffness matrix of the membrane element to that of the 

bending element without a coupling effect. We outline the 

approach with this principle as follows: 

* We approximate the real geometry with flat planes 

(Fig. 5), so we neglect the curvatures on the element. This 

avoids the membrane locking. 

* Use of a membrane element coupled to that of a plate-

bending element (Fig. 4). 

* The shell element may have any orientation in the 

global coordinate system XYZ (Fig. 5). 

* We establish the passage of the local coordinates to the 

global coordinates through the rotation matrix [Ro] as 

follows 

        URKRuK Oe

T

Oe =  (5.1) 

* We rearrange the local rigidity terms (18×18) before 

assembly in the local level as in Fig. 6. 

With:  

Membrane rigidity term       

Bending rigidity term         

We remove the difficulty associated with the rigidity in 

θz in the formulation of the membrane element by 

introducing the rotation around the normal “drilling 

rotation” in the construction of the corresponding 

elementary stiffness matrix. 
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Fig. 6 Structural type of the elementary shell rigidity in the 

local coordinates [Ke] 
 

 

6. Validation tests 
 

We examine a number of commonly used benchmark 

problems to compare the present element with other 

elements models in the open literature to assess their 

relative accuracy and convergence. We summarize as 

follows the elements to be included in the comparisons: 

Name Element Description 

ANST3: Three-node shell element based on assumed 

covariant strains (Guenfoud 1990). 

ANST6: Six-node shell element based on assumed 

covariant strains (Guenfoud 1990). 

ECB1: A three-node deep shell theory (Geoffroy 1983). 

ECB2: A three-node shallow shell theory (Geoffroy 

1983). 

DKTM: A three-node thin shallow shell element based 

on Marguerre’s theory (El-Khaldi 1987). 

DSTCOQ: Three-node flat shell element (Guenfoud 

1996, 2000). 

DSTM: Three-node thick shallow shell element based 

on Marguerre’s theory (Guenfoud 1996, 2000). 

DKT12: (CST+DKT6) (Batoz 1990). 

 T
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Fig. 7 Standard Kirchhoff Patch-Test 

 

 

DKT18: (CST+DKT9) (Batoz 1990). 

DLR18: (Carpenter 1986). 

ACM_RSBES: (Hamadi 2016). 

ACM_SBQ4: (Belarbi 2000). 

 

6.1 Spectral analysis of stiffness matrix 
 

The evaluation of the eigenvalues of the stiffness matrix 

of the present element was performed for various element 

shapes. Upon performing a spectral analysis of the present 

element stiffness matrix, we reveal six zero eigenvalues 

associated with the requisite rigid body modes. No spurious 

zero energy modes are present, as one would expect from 

an analytical and exactly integrated stiffness matrix. 

Therefore, the stiffness matrix has a correct rank and the 

element is considered as kinematically consistent. 

 

6.2 Patch test 
 

6.2.1 The standard Kirchhoff patch test 
We assume the standard Kirchhoff plate patch test 

described as follows in Fig. 7. A thin, rectangular plate is 

subjected to a bending state such that all three-moment 

resultants are constant throughout the plate domain. The 

plate discretization consisting of four geometrically distinct 

elements produced exact values of all three constant 

moments in respect of the element. 

 

6.2.2 Inextensional bending modes 
In order to investigate membrane locking, we perform a 

rectangular plate with initial out-of-flatness subjected to 

constant bending. In the first case, the initial out-of-flatness 

is 𝑊0 =
4𝐻𝑥

𝐿
(1 −

𝑥

𝐿
) and in the second case it is 𝑊0 =

𝐻𝑥𝑦

𝐵𝐿
. We analyze the test with H=0.1 and 1. The analytical 

solution, according to Marguerre’s theory, is given in 

Guenfoud (1993). In all cases, the error is less than 1.1% for 

the energy. The maximum membrane stress is equal to 2.9% 

of the flexural stress for H=1, and is less than 1.1% of the 

flexural stress for H=0.1. We comprehend that the element 

does not lock. If we did not pay special attention to 

membrane locking, the results would be very modest. 

 

6.3 Pinched cylinder with free edges problem 
 

The pinched cylinder is a classical problem that is used 

extensively to check the ability of shell elements to 

represent the inextensional bending deformation. This is the 

example that is most common in the literature. Indeed, since 

1967 it has always served researchers (Thomas 1975, 

Zienkiewicz 1977, Batoz 1977, Geoffroy 1983, Carpenter 

1986, Guenfoud 1990, 1996) to evaluate the performance of 

the finished shell elements for a convergence rate 

perspective and representation of rigid body motion. The 

test relates to the analysis of an isotropic pinched cylinder 

with short free edges as shown in Fig. 8. The open-ended 

cylinder leads to pure inextensional deformation at the limit 

as h/R approaches zero. For the present example, we have 

h/R=0.0031 and h/L=0.0015, indicating that the cylinder is 

very thin. Fig. 8 shows the model geometry and mechanical 

data structure. The upload relates to the mid-section of the 

cylinder by the application of two diametrically opposite 

forces (P) and (-P). 

 

 

Length of the cylinder   ( L ) 10.35 

Radius of the cylinder ( R ) 4.953 

Young’s Modulus ( E ) 10.50×106 

Poisson Coefficient ( υ ) 0.3125 

Thickness (h) 0.01548 

Load (concentrated P) 0.10 

 

 

Due to dual symmetry, we model only one-eighth 

ABCD of the cylinder by imposing the symmetry 

conditions along the edges “AB”, “CB” and “DC”. The 

limits conditions considered here are as follows 

 

 

W = θx = θy = 0 Along AB 

V = θx = θz = 0 Along CB 

U = θy = θz = 0 Along DC 

 

 

The considered mesh is composed of a single mesh 

(double triangular element) in the longitudinal direction, 

since the shell deforms substantially in the same manner in 

each cross-section, and several meshes are considered in the 

circumferential direction. The results L/h=668.6 and 

R/h=320 indicate that the shell is very thin. Timoshenko 

and Woinowsky-Krieger (1959) give an analytical solution 

for this limiting case (thin deep shell), which is WC = -

0.0244. We compare our results with those given by 

Guenfoud (1990, 1996). 

We note that for the present test the bending mode 

(flexion) is dominant. Indeed, at point B, for example, we 

have for z = h/2 that : 𝜎𝑥(𝑧) =
𝑁𝑥

ℎ
+ 𝑀𝑥 .

12

ℎ3 . 𝑧     𝜎𝑥(𝑧 =
ℎ

2
) =

𝑁𝑥

ℎ
+ 𝑀𝑥 .

12

ℎ3 .
ℎ

2
 

From where:    
𝑀𝑥

𝑁𝑥
=

5

6
ℎ 

The criterion considered for evaluating the performance 

of the present shell element for the actual example is the 

displacement along the z-axis of the point C (displacement 

WC) and the radial displacement at point B (displacement 

UB). We present in Figs. 9 and 10 the results of our element 

and we conclude:  
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Fig. 8 Pinched cylinder with free edges 

 

 

Fig. 9 Pinched Cylinder with free edges-Displacement W at 

Node C 

 

 

Fig. 10 Pinched Cylinder with free edges-Displacement U 

at Node B 

 

 

- There is a rapid convergence of the present element, 

reflecting a correct representation of the state of rigid body 

motions. 

- Our element converges to the solution given by the 

deep shell theory WC = -0.0244 (thin cylinder case). 

- With the selected mesh, we observe a monotonic 

upward convergence of the present element. 

- Numerical results for the pinched cylinder with open 

ends indicate that the proposed element exhibits a good 

accuracy. 

 

6.4 Infinitely long pinched cylinder 
 

The infinitely long pinched circular cylinder, presented 

in Fig. 11, is subjected to two opposite uniform transverse 

load lines. We seek to solve this problem so as to 

demonstrate the influence of the relationships between 

deformations and displacements on the one hand, and to 

follow our element behaviour while modelling curved 

structures on the other hand. 

Radius of the cylinder ( R ) 10 

Young’s Modulus ( E ) 105 

Poisson Coefficient ( υ ) 0 

Thickness (h) 1 

 

V = θx =0 On all nodes 

U = θy =0 Along EF and DC 

 

 

We present the geometrical and mechanical data of this 

shell in Fig. 11. As in Batoz (1977) and Geoffroy (1983) 

and based on symmetry, we model only a quarter EAFDBC 

of a shell strip considering several cuts (Fig. 11). The 

conditions of the imposed limits allow us to eliminate the 

influence of the Y direction on the deformation of the 

whole. Punctual forces substitute the uniform load. We 

present the normalized numerical results of upright 

displacements for the A and B nodes according to the total 

number of degrees of freedom in Figs. 12 and 13. We 

compare the present element results to two exact solutions. 

The first, given by Donnel (1933), is based on the shallow 

shell theory and the second one is based on the deep shell 

theory given by Koiter (1960, 1973) and Sander (1959), as 

well as on the numerical results presented by Guenfoud 

(1990) and Geoffroy (1983). 

It is worth noting that: 

- A rapid monotonous convergence towards the exact 

solution is obtained by our element. 

- We notice the existence of a jump between the first 

two mesh sizes and the third. This is due to the fact that the 

shell behaves as a shallow one for the two first meshes, 

while it shows a deep shell behaviour if the mesh is refined. 

 

 

 

Fig. 11 Infinitely long pinched cylinder 

 

 

Fig. 12 Infinitely long pinched cylinder-normal 

displacement at node A 
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Fig. 13 Infinitely long pinched cylinder-normal 

displacement at node B 

 

 

Fig. 14 Cylindrical panel subjected to its weight-Scordelis-

Lo roof, thin shallow shell 

 

 

6.5 Cylindrical panel subjected to its weight 
(Scordelis-Lo roof, thin shallow shell) 
 

The next test considered here and frequently used to 

investigate the performance of a shell element is the 

Scordelis-Lo roof. It is certainly the most common problem 

to compare the various shell elements proposed in the 

literature. It is a circular cylindrical panel where the two 

curved edges are based on two rigid diaphragms alongside 

their plan and the other two edges are free. The panel is 

subjected to its own weight only. We give in Fig. 14 the 

geometrical and mechanical characteristics of the panel. 

- Length of the panel      L=6 m 

 

Fig. 15 Cylindrical panel subjected to its weight-vertical 

displacement at point C 

 

 

Fig. 16 Cylindrical panel subjected to its weight-vertical 

displacement at point B 

 

 

- Medium radius    R=3 m 

- Thickness of the panel h=0.03 m 

- Young’s Modulus  E=30000 N/m2 

- Poisson Coefficient  ν=0.03 

- Volume weight of shell γg= - 0.2083 N/m3 

- Angle    φ= 40° 

Boundary conditions  

U=W=ϴY =0  Along AD 

Symmetric conditions 

U= ϴY = ϴz = 0  Along CD 

V= ϴx = ϴz = 0  Along CB 

Reference values (Deep shell theory) 

WB=-0.00361 m   WC= 0.000541 m 

Analytical solution (Shallow shell theory) 

WB=-0.003703 m   WC= 0.000525 m 

UB=-0.001965 m  VA=-0.001513 m 

 

The panel is thin and shallow (R/h=100, L/h=200). The 

symmetry of the problem allows us to study only the ABCD 

quarter of the structure with regular meshes (N= 2, 4, 6 … 

elements) alongside AB and AD. We neglect the transverse 

shear deformations. The membrane deformations are more 

important than the bending deformation. The influence of 

the membrane on the overall behaviour of the shell is very 

dominant. Indeed, the comparison of the two effects 

(membrane and bending) at point (B) gives: 
ℎ 𝑁𝑥

6 𝑀𝑥
= 4. The 

results obtained by the present flat shell element for the 

vertical displacement at the mid-point B of the free edge, at 

the center C of the roof and for longitudinal displacement in 

A are shown in Figs. 15, 16 and 17 respectively. We 

compare our results with two reference solutions. The first  
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Fig. 17 Square base spherical shell-geometrical data and 

meshes 

 

 

one is analytical and it is based on the shallow shell theory 

according to Scordelis (1964), and the second one is based 

on deep shell theory according to Forsberg (1970) on the 

one hand and numerical results cited in literature on the 

other hand. We see a rapid convergence of the present 

element to the shallow shell solution compared to other 

elements. This remarkable convergence is due to the 

richness of the element on the membrane (cubic 

interpolation). The convergence curves in Figs. 15, 16 and 

17 show the good contribution of the strain-based approach. 

The overall results prove the good convergence of the 

present formulated shell element. 

 

6.6 Square base spherical shell 
 

The problem presented in Fig. 17 is the spherical shell, 

with a square base, articulated on its contour. The radius R, 

the opening α and the thickness define it. A concentrated 

load (P) is applied to the shell at its center. Fig. 17 presents 

the geometrical data and the mechanical characteristics of 

this shell. All edges of the shell are hinged. 

 

 

Length of the square base ( 2a ) 1569.8 mm 

Radius of the sphere ( R ) 2540 mm 

Young’s Modulus ( E ) 68.95 MPa 

Poisson Coefficient ( υ ) 0.3 

Thickness (h) 99.45 mm 

Load (concentrated P) 1.0 N 

 

 

The results 2a/h=15.78 and R/h=25.54 indicate that the 

shell is moderately thin. The symmetry of the problem 

enables us to study only the quarter ABDC of the shell. This 

problem has been treated analytically by Leicester (1968) 

and numerically by several researchers such as Dhatt 

(1970), Gallagher (1975), Tahiani and Lachance (1975),  

 

Fig. 18 Square base spherical shell-deflection at the center 

of the shell 

 

 

Fezans (1981) and Guenfoud (1990). It is also quite low 

because the ratio of its depth to the length of its side is 

equal to 2a/H=12.65. The results obtained for the vertical 

displacements at the loading point (C) are shown in Fig. 18. 

The reference solution is taken from Fezans (1981). We 

observe a remarkable convergence of the present element 

for this example, which confirms the utility of our element 

even for structures with rather lower double curvature. Our 

element converges non-monotonously towards the solution 

of the lowered shells. 

 

6.7 Hyperbolic paraboloid shell under uniform 
pressure 

 

We consider a section of semi-thin hyperbolic 

paraboloid shell (2a/h=52) with clamped straight edges 

subjected to a uniform normal pressure. We show the 

geometrical data and mechanical properties of the material 

in Fig. 19. The equation governing the present shell 

example is given by: 
𝑍

𝐶
=

𝑥𝑦

𝑎2. 

 

 

Length ( 2a ) 12.92 

Elevation (C) 1.304 

Young’s Modulus ( E ) 5.105 

Poisson Coefficient ( υ ) 0.39 

Thickness (h) 0.25 

Load (normal pressure q) -1.0 

All edges of shell are clamped  

 
 

The structure is not symmetrical so it is necessary to 

mesh the entire shell. The aim of the present example is to 

see the ability of our element to model double-curved 

structures. The present example is of slightly dominant 

bending. Indeed, at the point O and for z=h/2, we have: 
6 𝑀𝑥

ℎ 𝑁𝑥
= 1.5. We present the results of the study in Fig. 20. It 

characterizes the deflection at the centre as a function of the 

total number of degrees of freedom for different meshes. 

We compare our results with the analytical solution given 

by Chetty and Tottenham (1964) and then with the 

numerical solution given by Guenfoud (1990, 1996) and by 

Ben-Taher (1981). We note a good non-monotonic  
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Fig. 19 Clamped hyperbolic paraboloid shell under-uniform 

pressure 

 

 

Fig. 20 Clamped hyperbolic paraboloid shell under-uniform 

pressure. Deflection at the center of the paraboloid 

 

 

convergence of the results of our element towards the 

analytical solution. 

 

6.8 Hemispherical shell problem (Mac neal test) 
 

We study the hemispherical shell subjected to self-

equilibrating radial point forces with 90° intervals, two 

inward and two outward forces at the quarter points of its 

open edges, via the quarter model shown in Fig. 21. This 

problem intends to pattern the element performance for the 

rigid body rotations and the nearby extensional bending of a 

doubly curved shell. We present the geometry and material 

properties in Fig. 21. Flugge (1960) offers the analytical 

solution for the problem. The reference solution for the 

radial displacement at the loaded points is 0.0924. Owing to 

symmetry, we analyze only a quarter of this hemispherical 

shell. We present the results for different mesh sizes in Fig. 

22. They indicate that the proposed element performs well 

in comparison with other elements in the literature. We 

compare our results with the analytical solution given by 

Flugge (1960) and the reference solution by Belytchko 

(1984) and then with the numerical solution given by 

Guenfoud (1990, 1996). 

 

 

Radius of the sphere ( R ) 10.00 

Young’s Modulus ( E ) 6.825×107 

Poisson Coefficient ( υ ) 0.3 

Thickness (h) 0.04 

Load (concentrated F) P=2 

 

Fig. 21 Hemispherical shell problem (Mac Neal Test)-

geometrical data and meshes 

 

 

Fig. 22 Hemispherical shell problem (Mac Neal Test)-radial 

displacement at loaded point 

 

 

5. Conclusions 
 

The formulation of a flat triangular thin shell element 

with a true rotation based upon the strain approach has been 

successfully developed and presented in the present paper. 

The three translational displacements (u, v and w) are each 

described in terms of cubic polynomial functions. The use 

of equal-order fields for all displacements has the effect of 

approximating more strictly the rigid body motion 

condition. The originality in the formulation of the present 

element lies in the use of the model in deformation and the 
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use of concepts and techniques in order to achieve: 

- The enrichment of the fields of displacement (P 

refinement), thus a better precision in the approximation of 

the solution; 

- Enhancement of behaviour in the case of geometric 

distortion of the meshes; 

- The avoidance of the membrane-locking problem for 

curved structures; 

- The response to the numerical problems induced by the 

absence of the rigidity related to the rotation around the 

normal in the case of the coplanar elements. 

These concepts and techniques are: 

- Adoption of the deformation approach; 

- The introduction of a fourth internal node in the three-

node triangular element; 

- The reduction of elementary stiffness matrices using 

the static condensation technique; 

- The use of analytical integration to evaluate the 

stiffness matrix. 

This approach led us to a competitive, robust and 

efficient flat faceted shell element. The present formulation 

(strain approach) is demonstrated to be consistent in a very 

wide variety of linear analysis situations. A series of test 

problems were conducted to evaluate the efficiency of the 

element compared to other elements in the literature. The 

results obtained confirmed the fast convergence rate of the 

element. The proposed element has the advantage of being 

simple in form and uses the six degrees of freedom. Further, 

it can be used for the analysis of thin shell structures, even 

those with complex geometries. 
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