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1. Introduction  
 

The complexity of computational models is constantly 

increasing. This phenomenon is not tied to certain fields of 

study-efforts to bring numerical simulations as close to 

reality as possible are visible everywhere, and civil 

engineering is no exception. When analyzing structures, the 

material model, the geometry and the boundary (and if 

needed, initial) conditions are all of importance. To a certain 

degree, the material model is related to the geometry or the 

scale at which the geometry is monitored. Why? The 

modeling of a heterogeneous material, e.g., concrete (a 

combination of aggregate, cement binder and possibly air 

voids) can be approached in two ways (the use of complex 

numerical methods will be discussed further). The first of 

these is to use a complex material model which expresses 

the behavior of concrete as a whole within a numerical 

simulation. Geometrically, there would be no distinction 

between the aggregate grains and the cement binder. In 

other words, heterogeneous concrete would be actually 

treated as a homogeneous material. The second approach is 

to consider concrete as it really is, i.e., made up of a mix of 

components. In this case a different material model would  
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be used for the aggregate and cement binder – probably a 

simpler one. However, this would require the geometric 

creation of a model that distinguishes between aggregate 

and cement binder, which could be a demanding task.  

In cases when a simple geometry is used with a complex 

material model that replicates the heterogeneity of the 

mixture, various optimization, sensitivity and reliability 

analyses often need to be carried out (Kala 2016, 

Rahmanian et al. 2014, Miyamoto and Isoda 2012). There is 

a simple reason for this-a complex material model has many 

inputs which need to be defined. If one chooses to use a 

complex geometry and relatively simple material models, 

this problem is avoided. However, the creation of the 

geometry might be difficult. The complexity of boundary 

and initial conditions is a chapter in itself (Han et al. 2017, 

Kralik et al. 2015, Agrawal and Hora 2012). Again, one can 

imagine a situation in which the choice of geometry 

complexity has a decisive impact on the difficulty of 

solving a numerical simulation and the procedure needed to 

do that-e.g., an investigation into the fire resistance of a 

concrete structure (Kralik et al. 2015). In the vast majority 

of cases, the basic parameters of the material are available; 

for instance the thermal expansion or heat capacity of 

aggregate. However, if it is necessary to determine the 

thermal characteristics of a mixture, laboratory 

measurements have to be taken, which is not only a costly 

but also a time-consuming matter. However, if separate 

geometries are used for the aggregate and the cement 

binder, these problems are eliminated completely. It is only 

necessary to assign each part the aforementioned material 
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parameters, which are available in every physics textbook.  

The article is divided into two parts in such a way that 

readers can obtain a better overview of the presented 

process (first and second part of the algorithm). The first 

part of the article deals with the process of creating the 

geometry of a heterogeneous material-concrete. The 

selected scale is of a resolution at which the aggregate and 

cement binder are distinguishable. The whole process is 

presented as an algorithm which generates geometry from 

an input photo of real material. As previously mentioned, 

the use of this approach is motivated by the growing 

number of inputs demanded by material models of concrete, 

particularly with regard to high-speed loading (Kala and 

Husek 2016a, b). For example, when the Smoothed Particle 

Hydrodynamics (SPH) method is used for the calculation, 

the problem is not the discretization of the investigated 

domain (i.e., the complexity of the geometry) (Husek et al. 

2016), but rather the difficulty in entering the inputs if 

complex computational tools are used (Nam et al. 2016). 

Subsequently, in the second part of the article, the 

generated geometry of concrete-aggregate and cement 

binder is utilized in the simulation of a cylindrical pressure 

test using the SPH method. The algorithm in this part shows 

how the heterogeneity of the material can be enhanced by 

simply causing the masses of the individual SPH particles 

to oscillate. There are several options for the use of this 

numerical heterogeneity. The article shows an application of 

the oscillation of the masses of SPH particles within the 

transition layer-a layer where aggregate and cement binder 

are in contact. The conclusion of the article then 

summarizes the findings and the results of numerical 

simulations. 

 

 

2. Possible approaches in simulations involving 
material heterogeneity 
 

Numerical simulations in the area of structural 

mechanics involve several steps. Aside from certain special 

exceptions (purely analytical cases), there will always be 

three steps. The first of these is the creation of the simulated 

geometry and its discretization-this is often related to the 

numerical method used. The second step is the allocation of 

input data or values to the model created-material models 

and their parameters, initial and boundary conditions, or 

other constraints. The third step is the launch of the 

calculation itself, and its subsequent evaluation. In the case 

of complex analyses such as the analysis of the 

development of cracks in concrete, it is mainly the first two 

steps that will govern the course of the execution of the 

numerical simulation. In this way, three approaches can be 

distinguished in cases when material heterogeneities are 

taken into consideration in numerical simulations. The first 

approach utilizes complex methods, or extensions of basic 

numerical methods. The second employs complex material 

models, while the third works with a complex input 

geometry that represents the analysed specimens. 
 

2.1 Complex numerical methods 
 

The appearance of such methods could be described as a 

modern trend. New numerical methods that should be 

capable of generally describing an examined event (for 

instance the creation of discontinuity in the studied domain) 

are constantly emerging. For example, if the Finite Element 

Method (FEM) were one of the basic methods, then the 

Extended Finite Element Method (XFEM) could be 

considered as its extension (Moës et al. 1999). In the FEM, 

shape functions are used to provide an approximation space 

so that the solution can be represented by a vector. In the 

classical FEM, these shape functions are polynomials. In 

the XFEM, additional enrichment functions are used to 

approximate the solution in addition to the polynomial 

shape functions. These enrichment functions are chosen to 

have properties that the solution is known to follow. The 

most obvious XFEM enrichment functions are power 

functions introduced at the sharp corners of cracks to 

represent the singularities in the solution gradient (i.e., the 

singularity in the stress for solid mechanics problems).  

However, the use of such method is still more academic 

than practical. In this context, other methods and 

approaches can be mentioned such as the Microplane model 

(Bazant 1984, Bazant and Ozbolt 1990), or the Discrete 

crack or Smeared crack approach (Willam and Carol 1995). 

The key property of the mentioned methods and approaches 

is the use of a relatively simple geometry in combination 

with a relatively simple material model. However, this 

comes at the cost of needing to employ demanding 

computational operations that are included directly in the 

source codes of the numerical methods. 

 

2.2 Simple geometry, complex material model 
 

As already mentioned in the Introduction, another 

possible approach is to use a complex material model which 

is capable of describing a variable loading method in 

combination with a relatively simple numerical method and 

a relatively simple geometry. The cost of using such 

simplifications is balanced out by the need to describe the 

material in a relatively complex manner. The high number 

of inputs which the user has to define (Kral et al. 2016) is 

related to this. The high number is not necessarily a 

problem, but the actual interpretation of certain input data 

could be. The majority of complex material models use 

more parameters than simply those which have a physical 

dimension such as stiffness in their description. With regard 

to this, it is often almost impossible to fill in all the input 

data. There is often an effort to carry out the sensitivity 

analysis of certain parameters of the model before the 

simulation itself takes place (Hokes et al. 2016). This 

means that the majority of input data can be left at their 

table values. However, lengthy laboratory tests will 

eventually occur in the majority of cases, and before the 

launch of the numerical simulation itself, not insubstantial 

financial means will have to be devoted to the identification 

of parameters. 
 

2.3 Complex geometry, simple material model 
 

The last approach, which is also mentioned in the 

Introduction, is the very often ignored use of basic 

numerical methods and simple material models with a 
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complex geometry. The idea is to remove computational 

difficulty and the necessity to define the material 

parameters of the model. However, it requires a different 

approach to be taken to the perception of the simulated 

specimen. The specimen cannot be regarded as a simplified 

geometrical form-it should be seen as a complex material 

structure. In the case of concrete, this would mean (for 

example) the creation of the geometry of the aggregate and 

cement binder. Each of such geometrical models (of 

aggregate and cement binder) will subsequently have to be 

discretized according to the selected numerical method and 

allocated a simple material model. The question is how 

material structure can be created as simply but as 

realistically as possible.  

It is popular to use one the possible methods of creating 

the material structure of concrete in connection with the 

Discrete Element Method (DEM). The method is known as 

the Voronoi diagram (or also as Voronoi tessellation, 

Voronoi decomposition or Voronoi partition), see 

Aurenhammer (1991). The problem with this method is its 

excessive perfection. The grain of the aggregate makes an 

artificial impression due to being without defects or 

randomness of shape. The perfectly straight edges can be 

corrected using a noise function. This process can be 

understood as a combination of two mathematical 

functions-a straight line and a curve oscillating around it. 

The straight line defines the basic shape of the aggregate 

and then a suitably added/subtracted noise function creates 

the aggregate’s real appearance. This technique is nothing 

novel-it is widely used in computer graphics. It is based on 

Ken Perlin’s statement (Kessenich et al. 2017) that “you 

can think of noise as seasoning for graphics”.  

 

2.4 From the practical point of view 
 

From the practical point of view there is a choice of 

three approaches. However, if the word practical is defined 

as meaning currently usable in practice, e.g., when 

designing a bridge structure, only the second and third 

approaches remain available. If one were to stipulate a 

requirement for the simplest possible process for the 

execution of a numerical simulation without any further 

costs, only the third approach would remain-i.e., the use of 

simple numerical methods, simple material models and a 

complex geometry. The article will therefore describe a 

process by which a complex material geometry can be 

created for concrete and a numerical simulation of a loading 

test carried out at the same time. 

 
 

3. The first part of the algorithm 
 

If a space exists within which a coherent noise function 

(coherent noise is a type of smooth pseudorandom noise) is 

able to generate values within a defined range, this suggests 

that a given set of generated values could have a specific 

distribution that corresponds to a certain proposed source 

(input). If the source is a two-dimensional space with values 

that are either 1 or 0, a cutting plane through the 

aforementioned noise function space could produce a 

section possessing values that are identical to those of the  

 

Fig. 1 Creating higher-order Perlin noise by summing the 

octaves of gradient-based coherent noises 
 

 

Fig. 2 Diagram of the first part of the algorithm for material 

structure generation based on an input photo 
 

 

source for many criteria. 

The coherent noise function can be arbitrary and 

combinable in any way with other coherent functions, for 

example Perlin noise (Perlin 1985). Fig. 1 shows one of the 

options for the creation of a higher order of coherent noise-

due to its self-similar pattern it can be regarded as a fractal. 

Specifically, it is Perlin noise-a type of coherent noise that 

is the sum of several coherent-noise functions of ever-

increasing frequencies and ever-decreasing amplitudes. The 

omission of some of the octaves can result in the creation of 

a very different noise. With regard to the properties that 

coherent noise function has: 

• entering the same input value (seed) will always 

return the same output value,  

• a small change in the input value (seed) will produce 

a small change in the output value, 

• a large change in the input value (seed) will produce 

a random change in the output value, it is possible to create 

a pattern which corresponds to the source (input) according 

to the algorithm in Fig. 2. 

A real photograph of material can be understood as a 

surface on which the values of a function can be plotted. 

The material is thus defined by the type of function 

employed, and its values. In the case of concrete, aggregate 

and cement binder can often be recognized in the 

photograph. The vast majority of photographs are in color, 

however, and so not suitable for the purpose of analysis. In 

order to be able to understand a photograph as a function 

(i.e., data source) with only two values, e.g., aggregate 1 

and cement binder 0, the photograph must be adapted via 

the assignment of colors. This process is depicted in the left 

part of the diagram in Fig. 2. The right part of the diagram 

shows the construction of the noise function in such a way 

that the best possible agreement with the input photo is 

achieved. 
 

3.1 Generation of spatial geometry 
 

To enable an easier understanding of the algorithm, the 
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following part of the article illustrates the process of 

creating the geometry of concrete with various aggregate 

grain shapes-the first part of the algorithm. Fig. 3 shows the 

aforementioned left part of the diagram from Fig. 2. The 

suitable adaptation of the photograph of the material allows 

the foreground-aggregate (black) and background-cement 

binder (white) to be distinguished. Black represents 1 

values and white 0 values. 

A series of analyses follows this adaptation, consisting 

in the distinguishing of shapes, sizes and the evaluation of 

the global value Λ-Lacunarity (Smith et al. 1996, Plotnick 

et al. 1996), based on the average values λε, g determined for 

each size of the evaluation box with a beginning and 

orientation as 

( )
2
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, ,

,



 








 
= =  

 
 

g

g g

g

CV  (1) 

where CV is the coefficient of variation, σ the standard 

deviation and μ the mean, for pixels per box. There are also 

other Lacunarity calculation methods, e.g., those listed in 

Plotnick et al. (1993), McIntyre and Wiens (2000), 

Karperien (2004) or Karperien (2013). However, the values 

obtained do not differ from the value gained using (1). The 

analyzed values of the photograph of the material remain in 

the computer’s memory and are constantly compared during 

noise generation. Fig. 4 shows the right part of the diagram 

from Fig. 2. 

The generation and subsequent optimization of noise 

consists of several different steps. In the first step, a suitable 

coherent noise function is selected. Function databases are 

often freely accessible and, in many cases, include both 

original and modified noise variants (Vivo and Lowe 2015). 

An example is Perlin noise (Perlin 1985) with applied 

smoothing of transition borders, which was used in 

presented example and is shown in Fig. 4. 

Subsequently, the scale is changed and a suitable seed 

value selected so that the generated image is as similar to 

the input photo as possible. In the next step, the algorithm 

tries to include the shape of the aggregate and possibly its 

sharpness. As the aggregate in Fig. 3 has relatively sharp 

edges, the number of included octaves had to be increased, 

see also Fig. 1. In this stage, shapes approximating those in 

the input photo were created in a general manner. The next 

optimization step consists in the use of the threshold value, 

which is related (to a certain degree) to the potential use of 

color inversion. The generated noise in this stage still has 

many colors even though it is only in grayscale. By 

choosing a suitable threshold value, it is possible to say 

which shades of gray will become black and which, in 

contrast, will become white-i.e., which will have the values 

1 and 0. This choice can have several impacts. 
 

 

 

Fig. 3 Preparing the input photo for analysis 

 

 

Fig. 4 Generating the structure of the material for 

comparison with the input photo 

 

 

Fig. 5 Comparison of the input photo and the generated 

image 

 

 

For example, it can, to a certain extent, alter the 

aggregate size which is specified by the scale value as a 

priority. Black and white can be inverted if one wishes to 

determine whether the generated noise could be improved. 

It should be stated that the threshold value is used for the 

whole time in the background of the optimization, but at a 

limited level. The last step of the algorithm is noise 

iteration. Put simply, with iterations, the noise starts to 

project itself onto itself and add up in a suitable manner. 

The obtained effect can represent additionally generated 

aggregate grains in places where only cement binder was 

present. If it is subsequently recognized that there is good 

congruence between the input photo and the generated 

image, the process of noise generation and its optimization 

is completed. Fig. 5 shows a more detailed comparison of 

the input photo and generated image. 

 
3.2 Evaluation of generated geometry 

 

As previously said, even though only a section of the 

material was compared, the noise functions can be seen to 

be spatial.  

Any changes to the generated section are also projected 

into the noise space. Both of the generated structures,  
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Fig. 6 Generated structure of concrete. From the left: 

aggregate and cement binder 

 

 

aggregate and cement binder, are depicted in the form of a 

cylinder in Fig. 6. 

As can be seen from Fig. 6, the spatial geometry of the 

aggregate as well as the cement binder makes a very 

realistic and convincing impression. The spatial 

arrangement of the aggregate and its size were influenced 

mainly by the choice of noise function, selected scale and 

seed value. These parameters can thus be considered to be 

global. The shape itself, the proportions and details of the 

aggregate were then influenced by the selection of the 

number of octaves, the threshold value level and the number 

of iterations. With regard to this fact, these parameters can 

be considered to be local. It is obvious from what was 

mentioned that the first part of the algorithm utilizes the 

descending concept of optimization, which is usual for the 

majority of optimization algorithms. 

 

 

4. The second part of the algorithm 
 

The created aggregate and cement binder geometry can 

subsequently be discretized by any numerical method and 

then used in simulations with a suitably allocated material 

model. This procedure can be utilized in practically every 

numerical method known today, including the SPH method. 

With the described process, variable results can be 

obtained (e.g., for cylindrical pressure tests performed on 

concrete) which will still correspond to those from real 

experiments. In this case, the variability concerns the failure 

of the concrete cylinder, and the related stress–strain curve. 

Thanks to this, various sensitivity analyses can be tested. 

There is a way to enhance the introduced heterogeneities 

even further, or bring them even closer to reality. It needs to 

be pointed out that the whole process is very simple when 

the SPH method is used. It is all about the use of the layer 

where aggregate and cement binder are in contact – the 

transition layer. The surface of the aggregate may not 

always be perfectly covered with cement binder, and the 

process of the solidification and hardening of cement in this 

area also may not be perfect. This can result in areas on the 

aggregate where the adhesion of the cement binder may or 

may not be optimal. In practice, in the case of the SPH 

method, this means the parameters of the particles 

belonging to this layer require suitable modification. 

In order to continue, the spatial geometry of the  

 

Fig. 7 Generated structure of the transition layer of concrete 

 

 

Fig. 8 Particle approximation using particles within the 

support domain of the smoothing function W for particle i 

 

 

transition layer needs to be obtained. Again, it can be 

obtained in several ways, e.g., by using the geometry of the 

aggregate or the cement binder. The contact surfaces can be 

considered to be the midsurface of the transition layer. The 

spatial geometry or volume of the transition layer can be 

obtained via a simple symmetrical offset in the direction of 

the normals of the geometry. The SPH particles which lie 

within the volume of the transition layer are the 

aforementioned particles with which the parameters will be 

modified. Fig. 7 shows the transition layer for the already 

generated aggregate and cement binder geometry.  

 

4.1 About the SPH method 
 

The formulation of the SPH method is often divided into 

two key steps. The first step is the integral representation 

of field functions, and the second is particle approximation 

(Liu and Liu 2003). The concept of the integral representa-

tion of a function f (x) used in the SPH method starts from 

the following identity 

( ) ( ) ( )


  = −f f dx x x x x  
(2) 

where f is a function of the three-dimensional position 

vector x, and δ (x – x′) is the Dirac delta function given by 

( )
0


+ =

− = 


   x x
x x

   x x
 (3) 
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In Eq. (2), Ω is the volume of the integral that contains 

x. Eq. (2) implies that a function can be represented in an 

integral form. Since the Dirac delta function is used, the 

integral representation in Eq. (2) is exact or rigorous as long 

as f (x) is defined and continuous in Ω (Liu and Liu 2003). 

If the Delta function δ (x – x′) is replaced by a smoothing 

function W (x – x′, h), the integral representation of f (x) is 

given by 

( ) ( ) ( ),


   −f f W h dx x x x x  (4) 

where W is the so-called smoothing function and h is the 

smoothing length defining the influence area of the 

smoothing function W. Note that as long as W is not the 

Dirac delta function, the integral representation in Eq. (4) 

can only be an approximation (Liu and Liu 2003). The 

continuous integral representations concerning the SPH 

integral approximation in Eq. (4) can be converted into 

discretized forms of summation over all the particles in the 

support domain shown in Fig. 8. The corresponding 

discretized process of summation over the particles is 

commonly known as particle approximation. 

If the infinitesimal volume dx′ in Eq. (4) at the location 

of particle j is replaced by the finite volume of the particle 

ΔVj that is related to the mass of the particles mj by 

= j j jm V  (5) 

where ρj is the density of particle j (= 1, 2,…, N) in which N 

is the number of particles within the support domain of 

particle j, then the continuous SPH integral representation 

for f (x) can be written in the following form of discretized 

particle approximation (Liu and Liu 2003) as 
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or just 

( ) ( ) ( )
1

,
=

 −
N

j

i j i j

j j

m
f f W hx x x x  (7) 

Eq. (7) states that the value of a function at particle i is 

approximated using the average of those values of the 

function at all the particles in the support domain of particle 

i weighted by the smoothing function shown in Fig. 8. 
 

4.2 Size of the support domain 
 

The extent of the support domain is defined according to 

Fig. 8 as the size of the generally variable parameter h, 

which is called the smoothing length. Parameter h can also 

be multiplied by constant κ. Particles which are inside the  

 

Fig. 9 Eulerian kernel-the amount of particles within the 

support domain might not be constant 

 

 

Fig. 10 Lagrangian kernel-the amount of particles within 

the support domain is constant 

 

 

support domain attributable to particle i are called 

neighbouring particles. If the resultant value of the product 

κh in each time step of the numerical simulation is the 

same, there can be the decrease in the number of 

neighbouring particles and thus also the decrease in the 

accuracy of the solution due the effect of excessive 

deformations (i.e., during the mutual divergence of the SPH 

particles). It is advisable to change the size of the support 

domain during the calculation in such a way that the 

number of neighbouring particles is constant.  

There are many ways to dynamically develop h so that 

the number of neighbouring particles remains relatively 

constant. Benz (1989) suggested a method of developing 

the smoothing length. This method uses the time derivative 

of the smoothing function in terms of the continuity 

equation 

1 1


= − =  

dh h d
h

dt d dt d
v  (9) 

where d is the number of dimensions and v  is the 

divergence of the flow. This means that the smoothing 

length increases when particles separate from each other 

and reduces when the concentration of particles is 

significant. It varies in order to keep the same number of 

particles in the neighbourhood. Eq. (8) can be discretized 

using SPH approximations and calculated with other 

differential equations in parallel (Liu and Liu 2003). 

 

4.3 Eulerian and Lagrangian Kernels 
 

The approach in Eq. (8) is applicable when the integral 

representation of field functions is formulated in spatial 

coordinates (Eulerian kernel). With an Eulerian kernel, the 

smoothing length of a particle changes through the  
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Fig. 11 Including the numerical heterogeneity into the SPH 

model 
 

 

calculation. As a consequence, the neighbourhood of each 

particle needs to be updated at each time step (Husek et al. 

2016). However, nothing exists to prevent the number of 

neighbouring particles changing. Despite the 

implementation of Eq. (8), the particles can enter and leave 

the support domain and thus tensile instability can occur. In 

other words, this means that the possibility of simulating 

ductile failure during the excessive divergence of particles 

from one another disappears. The behaviour of an Eulerian 

kernel during a calculation can be seen in Fig. 9. 

However, when the integral representation of field 

functions is formulated in the material coordinates 

(Lagrangian kernel), the neighbours’ list of each SPH 

particle is defined in the initial configuration and remains 

constant throughout the whole calculation. It means that the 

support domain of a particle follows material deformation 

in order to always keep the same neighbours. It provides a 

way of solving tensile instabilities (Liu and Liu 2003). The 

behaviour of a Lagrangian kernel during a calculation can 

be seen in Fig. 10.  

To eliminate the tensile instabilities in the simulations 

the Lagrangian kernel was selected. The value of parameter 

κ = 1.2 was used. In other words, the extent of the support 

domain was 20% bigger according to Eq. (8). 
 

4.4 SPH particles within and outside the transition 
layer 
 

For an easier understanding of numerical heterogeneity 

and in order to avoid possible misunderstandings, a 

prerequisite has been introduced: all particles have the same 

material model allocated to them-in other words, ρj is the 

same for every j particle. At the same time, in order to 

eliminate the chance of the occurrence of numerical cracks 

(Benz 1989, Swegle et al. 1995, Belytschko et al. 2000) the 

particles are distributed in such a way that they are arranged 

into a regular grid-in other words, ΔVj is the same for every 

j particle. With regard to the above-mentioned facts, it can 

be concluded that every SPH particle has the same mass mj 

with regard to validity Eq. (5). This state can be regarded as 

the initial state that exists before the creation of the material 

parameter oscillations themselves, and simultaneously as 

the next step of the second part of the algorithm. SPH 

particles outside the transition layer area consequently 

remain with their initial parameters ρj, ΔVj and thus also mj. 

SPH particles within the transition layer will have these 

parameters modified to a certain degree. 
 

4.5 How to amplify heterogeneity 
 

Each SPH particle can be considered a Lagrange 

 

Fig. 12 Diagram of the second part of the algorithm for 

material structure generation based on an input photo 

 

 

Fig. 13 One of the generated mass distribution function for 

particles within the transition layer 

 

 

element with regard to the fact that the mass mj allocated to 

a particle moves together with the particle during the 

simulation. Also, it can be stated that mass mj acts in Eq. (7) 

as a weight coefficient. The higher the mj value, the more 

particle j is going to influence its surroundings. This 

information can be utilized very simply to create numerical 

heterogeneity (Husek et al. 2017). 

Numerical heterogeneity can be considered to be an 

adaptation of the computational model in the sense of the 

modification of its numerical code or of the numerical 

method with which the simulation is calculated. 

Combination is also possible. The following process can be 

considered a combination of both methods as it is 

essentially modifies the computational model as well as the 

numerical method. The modification consists in the 

introduction of the oscillation of the masses of SPH 

particles within the transition layer. However, this 

oscillation will directly precede the compilation of Eq. (7) 

for each i particle. In other words, the oscillation of the 

weight coefficient occurs directly. Other impacts may 

include the creation of virtual geometry in the background 

of the calculation as can be seen on Fig. 11; more 

information can be found in Husek et al. (2017). The 

process of creating numerical heterogeneity and also the 

rest of the second part of the algorithm can be seen in the 

diagram in Fig. 12. 

In the first stage of the creation of numerical 

heterogeneity, constraints must be applied if there are any. 

These can be, for example, the sum of all modified masses, 

which has to equal the original sum of unmodified masses. 

In the next steps, the selection of the statistical distribution 

of masses and the intensity of oscillations themselves takes 

place. After the generation of these new masses, or weight 
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coefficients, the evaluation of the smoothness of the 

transitions of the whole generated field occurs. In other 

words, the sizes of the differences in oscillations between 

the neighboring SPH particles are evaluated. If the 

differences are too great, smoothing of these transitions 

takes place, thanks to which the simulation is more stable. If 

the numerical heterogeneity is then evaluated as being 

sufficient, the computational model is ready. Otherwise, 

another generated series of oscillations can be added, which 

further enhances the numerical heterogeneity. The 

distribution of masses can resemble that shown in Fig. 13, 

where it is depicted in the form of a histogram interleaved 

by a curve of a selected statistical distribution. 

 

 

5. Numerical simulations 
 

To illustrate the functionality of the algorithm, static 

load tests conducted on cylindrical concrete specimens 

(numerical models or models for short) using controlled 

displacement were simulated. Stress-strain curves were 

recorded at the same time. The cylindrical specimens were 

300 mm high and 150 mm in diameter. As one of the 

conditions for the functionality of the introduced algorithm 

was the regularity of the initial particle distribution, the 

cylinders were discretized with 80 particles along the height 

and 40 particles along the width or depth. The particles 

were arranged into a regular grid field, not a radial one, and 

a total of 15 load tests were simulated. The first tested 

model did not contain any heterogeneities-in the following 

text, it is referred to as a homogeneous model. The 

remaining 14 heterogeneous models were created using the 

described algorithm. Fig. 14 demonstrates the homogeneous 

model and two generated heterogeneous models with 

representation of the masses.  

The simulations involved 97,280 SPH particles in total 

and were performed via the LS-DYNA program (LSTC 

2017). The Continuous Surface Cap Model (CSCM) was 

chosen as the material model of concrete to be used 

(Murray 2007, Murray et al. 2007), meaning that material 

was the same everywhere except for the transition layer 

where oscillations were included. The CSCM material 

model has been tested by the authors many times in the past 

and was selected mainly due to its great ability to capture 

even complex types of loading, see e.g., Kala and Husek 

(2016a, b), Husek et al. (2016) or Kral et al. (2016). Table 1 

shows the parameters employed in the simulations. 

 

 

 

Fig. 14 From the left: Mass distribution of the 

homogeneous model and two generated heterogeneous 

models (units in g) 

Table 1 The material parameters for the CSCM model 

Mass density, ρc (kgm-3) 2207 

Compressive strength, fc (MPa) 47 

Initial shear modulus, G (GPa) 12.92 

Initial bulk modulus, K (GPa) 14.15 

Poisson’s ratio, vc 0.18 

Fracture energy, GF (Jm-2) 83.25 

 

 

Fig. 15 From the left: Failure of the homogeneous model 

and two generated heterogeneous models at the end of the 

pressure test 

 

 

Fig. 16 Stress-strain curves of homogeneous and generated 

heterogeneous models 

 

 

6. Results of the numerical simulations 
 

The aim of the numerical simulations was the creation 

of variable results which still correspond to those of real 

experiments as much as possible. The requirement was 

mainly to obtain variable types of failure and the stress–

strain curves which correspond to them. Thanks to the 

variability of the results, various sensitivity analyses can be 

tested, a fact which will play an important role in any 

possible optimization processes. As material structure from 

14 different input photos supplemented with 14 unique 

mass oscillations was generated for the 14 tested models, 

there really are differences in the obtained results. 

Fig. 15 shows a comparison of the failure of the 

homogeneous model and two generated heterogeneous 

models. It is obvious that the failure in each case is similar, 

yet different. In addition, a very standard failure with only 

one main crack can be observed in case of the homogenous 

model since no mass oscillation was involved.  

Fig. 16 shows the stress-strain curves. The homogenous 

model curve is drawn with a thick line and it corresponds to 

results in Murray et al. (2007). It is clear that the 

heterogeneous models oscillate around this curve. However, 

the vast majority of the heterogeneous models do not reach 

the maximum load bearing capacity, i.e., 47 MPa. This can 
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be explained as being due to the high intensity of mass 

oscillations or insufficient smoothing of the oscillations of 

the neighboring SPH particles. 

 

 

7. Conclusions 
 

The first part of the article presents the process of 

creating spatial geometry-material structure of concrete, 

using an algorithm based on the comparison of an input 

photo of real material with the generated image of a section 

cut through a space filled with noise. Using a simple 

algorithm cycle, in which the optical congruence of the 

input and generated image are improved thanks to a change 

in the parameters of the noise functions, the spatial structure 

of the material is generated in the background of the 

process. The first part of the article presents the 

functionality and individual steps of the process using 

example of the generation of concrete with various 

aggregate grain shapes. 

The second part of the article works with the created 

geometry and shows how it is possible to enhance the 

created heterogeneities further in the case of the use of the 

Smoothed Particle Hydrodynamics method. The creation of 

a transition layer is explained, as well as the role it plays in 

numerical simulations. The second part of the algorithm 

concentrates on the creation of numerical heterogeneity. 

Again, a simple cycle based on the choice of distribution 

function and the intensity of the oscillations of material 

parameters is sufficient for the creation of numerical 

heterogeneity. Also, numerical simulations of concrete load 

tests are included in the second part of the article. The 

functionality of the second part of the algorithm is again 

supported by results which demonstrate, among other 

things, a certain variability in the stress-strain curves of the 

tested numerical models.  

The article as a whole presents a process which enables 

signs of heterogeneity to be included in numerical 

simulations in a very simple way. 
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