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1. Introduction  
 

Since their discovery by Iijima (1991), carbon 

nanotubes (CNTs) have attracted a great research interest in 

many areas of science and technology. Superior mechanical, 

thermal and electrical properties of CNTs (Yakobson and 

Avouris 2001, Ho et al. 2004, Manchado et al. 2005, 

Sumfleth 2010) make them an excellent candidate for the 

reinforcement of polymer composites (Esawi and Farag 

2007, Fiedler et al. 2006). Since the nanotubes are 

distributed uniformly or randomly in the traditional carbon 

nanotube-reinforced composites (CNTRCs), mechanical 

properties of these kinds of composites do not vary 

spatially. On the other hand, functionally graded materials 

(FGMs) are the new generation of inhomogeneous 

composites in which the material properties are smoothly 

and continuously varied in the preferred direction. 

Employing the concept of FGMs, the pattern of the 

functionally graded (FG) distribution of reinforcement has 

been successfully used for functionally graded carbon 

nanotube-reinforced composites. For the first time, Shen 

(2009) studied the nonlinear bending of FG-CNTRC plates 

and showed that mechanical behavior of CNTRCs could be 

significantly improved via functionally graded distribution 

of CNTs within an isotropic matrix.  

Besides the analytical approaches (Xiang et al. 2002, 

Sofiyev et al. 2003, Sofiyev et al. 2017a, Sofiyev et al. 

2017b, Jin et al. 2013), various numerical approaches such  
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as finite element method (FEM), mesh-free method, 

generalized differential quadrature (GDQ) method, 

harmonic differential quadrature (HDQ) method and 

discrete singular convolution (DSC) method, have been 

widely used to analyze the static and dynamic analysis of 

composite and functionally graded materials (Liew et al. 

2004, Civalec 2008, Gürses et al. 2009, Baltacıoglu et al. 

2010, Civalec et al. 2010, Baltacıoglu et al. 2011, 

Talebitooti 2013). For instance, Sofiyev et al. (2017a) 

studied the thermoelastic buckling of FGM conical shells 

subjected to the non-linear temperature rise based on the 

shear deformation theory. The Galerkin method was 

employed to find the non-linear thermal buckling load. In 

addition, Gürses et al. (2009) presented the free vibration 

analysis of laminated skew plates based on Mindlin’s plate 

theory using the DSC technique. Civalec (2008) also 

employed the DSC method for the static analysis of cross-

ply laminated rectangular Mindlin plates based on the first-

order shear deformation theory. Furthermore, the three-

dimensional free vibration of rotating laminated conical 

shells was investigated by Talebitooti (2013) using the 

layerwise DQ method.  

In recent years, many theoretical investigations have 

been carried out on the mechanical behavior of functionally 

graded carbon nanotube-reinforced composite beams (Yang 

et al. 2015, Ansari et al. 2017a, Rafiee 2013) and plates 

(Shen and Zhang 2010, Ansari et al. 2017b, Kiani 2016). 

Mechanical behaviors of functionally graded CNT-

reinforced composite panels and shells have been also 

studied by many researchers. Yas et al. (2013) investigated 

the vibration of simply-supported FG-CNTRC cylindrical 

panels based on the three-dimensional theory of elasticity. 

Mehrabadi and Aragh (2014) studied the bending behavior 

of FG-CNTRC cylindrical panels under mechanical 

loadings.  The governing equations were derived based on 
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the third-order shear deformation theory (TSDT) and were 

discretized by employing the two-dimensional GDQ 

method along with the trigonometric functions. 

Shen and Xiang (2014) examined the thermal effects on 

nonlinear vibration behavior of FG-CNTEC cylindrical 

panels embedded in elastic foundations. The material 

properties of CNTRCs were assumed to be temperature-

dependent. The equations of motion were solved by use of 

perturbation technique to determine the nonlinear 

frequencies of the CNTRC panels. Shen and Xiang (2015) 

studied the thermal postbuckling of CNTRC cylindrical 

panels embedded in elastic foundations. A singular 

perturbation technique combined with a two-step 

perturbation approach was employed to determine the 

buckling loads and postbuckling equilibrium paths. Also, 

aerothermoelastic properties and active flutter control of 

CNTRC panels were investigated by Zhang et al. (2016) in 

supersonic airflow. The governing equations were presented 

based on Reddy’s third-order shear deformation theory. 

Employing the displacement feedback algorithm, the 

controller was designed and in order to study the 

aerothermoelastic properties and active flutter control 

effects of the panels, the frequency domain method was 

considered.  

Hosseini (2013) examined the vibration of FG-CNTRC 

cylindrical shells using hybrid mesh-free method based on 

generalized finite difference (GFD) method. Nonlinear 

vibration of FG-CNTRC cylindrical shells was examined by 

Shen and Xiang (2012). Furthermore, thermal postbuckling 

analysis of FG-CNTRC cylindrical shells was presented by 

Shen (2012). In these studies, the higher-order shear 

deformation theory with a von Kármán-type of kinematic 

nonlinearity was used to derive the governing equations. 

Also, there are some studies on the mechanical 

behaviors of FG-CNTRC conical shells. For example, 

Heydarpour et al. (2014) studied the free vibration of 

rotating FG-CNTRC truncated conical shells. Using 

Hamilton’s principle and based on the first-order shear 

deformation theory (FSDT) of shells, the governing 

equations were derived and solved by means of GDQ 

method. Kiani (2016) investigated the torsional vibration of 

nanocomposite conical shells reinforced with single-walled 

carbon nanotubes (SWCNTs). Using the concept of 

Hamilton’s principle and based on the Donnell’s shell 

theory in conjunction with the first-order shear deformation 

shell theory, the motion equations were derived. 

Furthermore, Ansari and Torabi (2016) analyzed the 

buckling and vibration of FG-CNTRC conical shells under 

axial mechanical loading. The governing equations were 

presented based on the first-order shear deformation theory, 

and the numerical approach was employed to solve the 

problem. Also, Mirzaei and Kiani (2015) investigated the 

linear thermal buckling of CNTRC conical shells. The 

stability equations were derived based on the first-order 

shear deformation shell theory, Donnell kinematic 

assumptions and von Kármán type of geometrical 

nonlinearity.  

This paper deals with the buckling and vibration of 

thermally pre-stressed FG-CNTRC conical shells using the 

VDQ method. The main focus is on the analyzing the effect 

of thermal loading on the vibrational characteristics and 

buckling behavior of such shells considering the 

temperature-dependent material properties. The physical 

properties of FG-CNTRC materials are assumed to be 

graded throughout the thickness direction and are estimated 

via the rule of mixture. On the basis of the first-order shear 

deformation theory and using Sander’s strain-displacement 

relations, the energy functional of the nanocomposite 

conical shell is presented. Employing the GDQ and periodic 

differential operators in axial and circumferential direction, 

respectively, the energy functional is directly discretized 

based on the VDQ method. Note that in accordance with the 

VDQ method, one does not need to derive the analytical 

governing differential equations of the strong form. In 

addition, VDQ provides an alternative way to discretize the 

energy functional, which avoids the local interpolation and 

the assembly process usually used in FEM. Comparison of 

the efficiency of the VDQ with some other numerical 

approaches were presented by Shojaei and Ansari (2017). In 

addition, using matrix relations and based on Hamilton’s 

principle, the reduced forms of mass and stiffness matrices 

are obtained from the discretized form of variational 

formulation. It is worth to note that applying the periodic 

differential operators in circumferential direction, one does 

not need to satisfy the periodicity condition in numerical 

differential operators. The accuracy of the present method is 

compared with the results given in the literature. 

Furthermore, the influences of volume fraction of CNT, 

different types of distribution of CNT through the thickness 

direction and various geometrical parameters on thermal 

stability and vibration behavior of FG-CNTRC conical 

shells are studied. Also, both temperature-dependent and 

temperature-independent results are reported to reveal the 

significance of temperature dependency. 

 
 

2. Functionally graded carbon nanotube-reinforced 

composites 
 

It is assumed that the CNTRC is made of a mixture of 

SWCNTs and isotropic matrix in which material properties 

are varied continuously throughout the thickness direction. 

In addition to uniform distribution (UD) of CNTs along the 

thickness of CNTRC conical shell, three types of 

functionally graded distributions of CNTs are considered 

which are denoted by FGA, FGO and FGX. In the case of  

FGA type, the inner surface of the shell is CNT-rich while 

for FGO  type, the mid-plane of the shell is CNT-rich. 

Additionally, both inner and outer surfaces of the shell are 

CNT-rich for FGX  type. The overall material 

characteristics of nanotube-reinforced composites can be 

expressed according to different micromechanical models. 

In this paper, the effective Young’s and shear modulus are 

given on the basis of extended rule of mixture as follows 

(Shen 2012) 

𝐸11 = 𝜂1𝑉𝑐𝑛𝐸11
𝑐𝑛 + 𝑉𝑚𝐸𝑚 (1) 

𝜂2

𝐸22

=
𝑉𝑐𝑛
𝐸22

𝑐𝑛 +
𝑉𝑚
𝐸𝑚

 (2) 
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𝜂3

𝐺12

=
𝑉𝑐𝑛
𝐺12

𝑐𝑛 +
𝑉𝑚
𝐺𝑚

 (3) 

where  𝐸11
𝑐𝑛 , 𝐸22

𝑐𝑛  and 𝐸𝑚  respectively denote Young’s 

modulus of CNT and isotropic matrix. In addition, 𝐺12
𝑐𝑛 

and 𝐺12
𝑚  stand for shear modulus of CNT and matrix. 

Different studies indicated that the mechanical behavior of 

nano-structures is size-dependent (Lam et al. 2003, Akgoz 

and Civalek 2013, Gürses et al. 2012). Therefore, the 

coefficients 𝜂𝑖 ( 𝑗 = 1,2,3 ) are introduced as the CNT 

efficiency parameters which capture the size-dependency of 

material properties and can be determined by matching the 

effective elastic modulus of CNTRC predicted by the 

molecular dynamics approach and those given by rule of 

mixture (Shen 2012). Furthermore, 𝑉𝑐𝑛  and 𝑉𝑚  are the 

CNT and matrix volume fractions, respectively, related by 

𝑉𝑐𝑛 + 𝑉𝑚 = 1. 

The density and thermal expansion coefficients of 

nanocomposite conical shell can be expressed as (Shen 

2012) 

𝜌 = 𝑉𝑐𝑛𝜌𝑐𝑛 + 𝑉𝑚𝜌𝑚 (4) 

𝛼11 =
𝑉𝑐𝑛𝐸11

𝑐𝑛𝛼11
𝑐𝑛 + 𝑉𝑚𝐸𝑚𝛼𝑚

𝑉𝑐𝑛𝐸11
𝑐𝑛 + 𝑉𝑚𝐸𝑚

 (5) 

𝛼22 = (1 + 𝜈12
𝑐𝑛)𝑉𝑐𝑛𝛼22

𝑐𝑛 + (1 + 𝜈𝑚)𝑉𝑚𝛼𝑚 − 𝜈12𝛼11 (6) 

where 𝛼11
𝑐𝑛 , 𝛼22

𝑐𝑛  and 𝛼𝑚  are thermal expansion 

coefficients, and 𝜈12
𝑐𝑛  and 𝜈𝑚  are Poisson’s rat1ios, of 

CNT and matrix phase, respectively. Also, 𝜌𝑚  is the 

density of matrix and 𝜌𝑐𝑛 stand for the density of CNT. 

Moreover, Poisson’s ratio of nanocomposite is given as 

𝜈12 = 𝑉𝑐𝑛𝜈12
𝑐𝑛 + 𝑉𝑚𝜈𝑚 (7) 

 

 

3. Governing equations 
 

Consider a conical shell with the small radius 𝑅1, large 

radius 𝑅2, thickness ℎ, semi-apex angle 𝛼 and length 𝐿. 

The curvilinear coordinate system of 𝑥 , 𝜃  and 𝑧 

coincides with the meridional, circumferential, and normal 

directions of the shell, respectively. On the basis of first-

order shear deformation theory, the displacement field is 

defined as  

𝑢 = 𝑢0 + 𝑧 𝜓0(𝑥, 𝜃, 𝑡), 𝑣 = 𝑣0 + 𝑧 𝜙0(𝑥, 𝜃, 𝑡),
𝑤 = 𝑤0(𝑥, 𝜃, 𝑡) 

(8) 

where 𝑢0, 𝑣0 and 𝑤0 stand for displacement of a point 

on the natural axis along the 𝑥, 𝜃 and 𝑧 direction and 𝜓0 

and 𝜙0  denote the rotations about 𝜃  and 𝑥  directions, 

respectively. Eq. (8) can be written as 

𝐔̃ = [
𝑢
𝑣
𝑤

] = 𝐏𝟎𝐔,       𝐏𝟎 = [
1
0
0

0
1
0

0
0
1

𝑧
0
0

0
𝑧
0
] ,     𝐔

=

[
 
 
 
 
𝑢0

𝑣0

𝑤0

𝜓0

𝜙0]
 
 
 
 

 

(9) 

in which 𝐔̃  is the displacement vector and 𝐔  is the 

augmented displacement vector. According to displacement 

field the strain vector of conical shell can be given as 

(Tornabene et al. 2009) 

𝛜 = (𝐄𝟏 + 𝐏𝟏𝐄𝟐) 𝐔 (10) 

in which 

𝛜 = [𝛜𝑝 𝛜𝑠]T, 𝛜𝑝 = [𝜖11 𝜖22  𝛾12],

𝛜𝑠 = [ 𝛾23  𝛾13] (11) 

𝐄𝟏 =

[
 
 
 
 
 
 
 
 

𝜕𝑥 0 0 0 0

sin (𝛼)

𝑟(𝑥)

1

𝑟(𝑥)
𝜕𝜃

cos(𝛼)

𝑟(𝑥)
0 0

1

𝑟(𝑥)
𝜕𝜃 𝜕𝑥 −

sin (𝛼)

𝑟(𝑥)
0 0 0

0 −
cos (𝛼)

𝑟(𝑥)

1

𝑟(𝑥)
𝜕𝜃 0 1

0 0 𝜕𝑥 1 0]
 
 
 
 
 
 
 
 

 , (12) 

𝐄𝟐 = 

[
 
 
 
 
 
 
 
0 0 0 𝜕𝑥 0

0 0 0
sin (𝛼)

𝑟(𝑥)

1

𝑟(𝑥)
𝜕𝜃

0 0 0
1

𝑟(𝑥)
𝜕𝜃 𝜕𝑥 −

sin (𝛼)

𝑟(𝑥)
0 0 0 0 0
0 0 0 0 0 ]

 
 
 
 
 
 
 

  , (13) 

𝐏𝟏 = diag([𝑧 𝑧 𝑧 0 0]) (14) 

where 𝑟(𝑥) = 𝑅1 + 𝑥 sin (𝛽). 𝛜 is the strain vector and 

𝐄𝟏 and 𝐄𝟐 are the strain matrix operators. In accordance to 

the strain vector, the stress vector can be given as 

𝛔 = [𝛔𝑝 𝛔𝑠]T, 𝛔𝑝 = [𝜎11 𝜎22  𝜏12],

𝛔𝑠 = [ 𝜏23  𝜏13] (15) 

Additionally, based on Hook’s law, the stress-strain 

relation is presented as 

𝛔 = 𝐂𝛜 (16) 

in which 

𝐂 = [
𝐂𝑝 𝟎3×2

𝟎2×3 𝐂𝑠
] , 𝐂𝑝 = [

𝑄11 𝑄12 0
𝑄21 𝑄22 0
0 0 𝑄66

] ,

𝐂𝑠 = [
𝑄44 0
0 𝑄55

] 

(17) 

where 

𝑄11 =
𝐸11

1 − 𝜈12𝜈21

, 𝑄22 =
𝐸22

1 − 𝜈12𝜈21

,

𝑄12 =
𝜈21𝐸11

1 − 𝜈12𝜈21

 , 

𝑄44 = 𝐺23 , 𝑄55 = 𝐺13 , 𝑄66 = 𝐺12 . 

(18) 

Now, the governing equations are presented using 

Hamilton’s principle. For this account, the strain energy and 

kinetic energy are first presented. By the use of strain and 
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stress vector given in Eqs. (10) and (16), the elastic strain 

energy can be given as 

𝑈𝑒 =
1

2
∫𝛜T𝛔𝑑∀

 

∀

=
1

2
∫𝛜T𝐂𝛜𝑑∀

 

∀

 

=
1

2
∫𝐔T(𝐄𝟏

T𝐂𝟏𝐄𝟏 + 𝐄𝟏
T𝐂𝟐𝐄𝟐 + 𝐄𝟐

T𝐂𝟐𝐄𝟏

 

𝐴

+ 𝐄𝟐
T𝐂𝟑𝐄𝟐)𝐔𝑑𝐴 

(19) 

where 𝐴  is the cross-section area and 𝑑𝐴 = (𝑅1 +
𝑥sin(𝛽))𝑑𝑥𝑑𝜃. In addition 

𝐂𝟏 = ∫ 𝐂𝑑𝑧

ℎ
2

−
ℎ
2

= [
𝐂̂𝑝 𝟎3×2

𝟎2×3 𝐂̂𝑠

] , 

𝐂𝟐 = ∫ 𝐂𝐏𝟏𝑑𝑧
ℎ/2

−ℎ/2

, 𝐂𝟑 = ∫ 𝐏𝟏𝐂𝐏𝟏𝑑𝑧
ℎ/2

−ℎ/2

 

(20) 

in which 

𝐂̂𝑝 = ∫ [

𝑄11 𝑄12 0
𝑄21 𝑄22 0
0 0 𝑄66

] 𝑑𝑧
ℎ 2⁄

−ℎ 2⁄

, (21) 

𝐂̂𝑠 = [
𝜅11𝐶̂𝑠11

0

0 𝜅22𝐶̂𝑠22

] , 𝐶̂𝑠𝑖𝑗
= ∫ 𝐶𝑠𝑖𝑗

𝑑𝑧
ℎ 2⁄

−ℎ 2⁄

,

(𝑖𝑗 = 11,22) 

(22) 

In the above equation, 𝐶𝑠𝑖𝑗
 are the components of 𝐂𝑠 

presented in Eq. (17). In addition, 𝜅11 and 𝜅22 denote the 

shear correction factors in the first-order shear deformation 

theory. As known, the shear correction factors depend on 

the true stress distribution through the thickness and can be 

determined by matching the shear strain energy obtained 

from the first-order shear deformation theory and the strain 

energy due to the true transverse stresses predicted by the 3-

D elasticity theory (Oñate 2013), as presented in the 

Appendix. 

Moreover, according to displacement field given in Eq. 

(9), the kinetic energy can be presented as 

𝑇 =
1

2
∫ 𝐔̇T𝛒𝐔̇𝑑𝐴

 

𝐴

, 𝛒 = ∫𝐏𝟎
Tρ𝐏𝟎dz

 

𝐴

 (23) 

In addition, the strain energy due to initial thermal 

loading can be calculated as  

𝑈𝑇 =
1

2
∫𝐔T𝐐T𝐆𝐐𝐔𝑑𝐴

 

𝐴

 (24) 

where 

 

𝐐 = 

[
 
 
 0 0

𝜕

𝜕𝑥
0 0

0 0
1

𝑟(𝑥)

𝜕

𝜕𝜃
0 0

]
 
 
 

 , (25) 

𝐆 =

[
 
 
 𝑁𝑥

0
𝑁𝑥𝜃

0

2
𝑁𝑥𝜃

0

2
𝑁𝜃

0
]
 
 
 

 (26) 

in which 𝑁𝑥
0 , 𝑁𝜃

0  and 𝑁𝑥𝜃
0  are force resultants due to 

initial thermal loading in pre-buckling state. Since the 

deformation of the structure is small in pre-buckling state, 

one can obtain these force resultants considering membrane 

solution of linear equilibrium equations as (Torabi et al. 

2013, Akbari et al. 2015) 

𝑁𝑥
0 = −

(𝒜22𝑁𝑥
𝑇 − 𝒜12𝑁𝜃

𝑇) sin(𝛼) 𝐿

𝑟(𝑥) 𝒜22 ln (1 +
𝐿sin(𝛼)

𝑅1
)

, 

𝑁𝜃
0 = 0, 𝑁𝑥𝜃

0 = 0. 

(27) 

where 

{
𝑁𝑥

𝑇

𝑁𝜃
𝑇} = ∫ [

𝑄11 𝑄12

𝑄12 𝑄22
] {

𝛼11

𝛼22
} ∆𝑇(𝑧) 𝑑𝑧

ℎ
2

−
ℎ
2

 (28) 

In the above equation, Δ𝑇(𝑧) is the temperature rise 

from reference temperature. Considering the strain energy 

and kinetic energy, the Hamilton’s principle is defined as 

∫ 𝛿(𝑇 − 𝑈)𝑑𝑡
𝑡2

𝑡1

= 0 (29) 

It should be noted that in the present study, the strain 

energy (𝑈) is due to elastic strain energy (𝑈𝑒) and initial 

thermal loading ( 𝑈𝑇 ) i.e., 𝑈 = 𝑈𝑒 + 𝑈𝑇 . Accordingly, 

substituting Eqs. (19), (23) and (24) into the Hamilton’s 

principle results in 

∫ 𝛿 ∫ (
1

2
𝐔̇T𝛒𝐔̇

 

𝐴

𝑡2

𝑡1

−
1

2
𝐔T(𝐄𝟏

T𝐂𝟏𝐄𝟏 + 𝐄𝟏
T𝐂𝟐𝐄𝟐

+ 𝐄𝟐
T𝐂𝟐𝐄𝟏 + 𝐄𝟐

T𝐂𝟑𝐄𝟐)𝐔 

       −
1

2
𝐔T𝐐T𝐆𝐐𝐔) 𝑑𝐴𝑑𝑡 

(30) 

The energy functional of the system presented in Eq. 

(30) can be directly discretized using VDQ method (Shojaei 

and Ansari 2017, Ansari et al. 2016). On the other word, 

according to the VDQ approach, the displacement vector 

and its derivatives appeared in the strain vector are 

discretized employing the numerical differential and 

integral operators. Following the numerical discretization 

procedure explained in (Shojaei and Ansari 2017), the 

discretized form of Eq. (30) is given as  

∫ 𝛿 (
1

2
𝕌̇T(𝛒 ⊗ 𝕊)𝕌̇

𝑡2

𝑡1

−
1

2
𝕌T(𝔼𝟏

Tℂ𝟏𝔼𝟏 + 𝔼𝟏
Tℂ𝟐𝔼𝟐

+ 𝔼𝟐
Tℂ𝟐𝔼𝟏 

        +𝔼𝟐
Tℂ𝟑𝔼𝟐)𝕌 −

1

2
𝕌TℚT𝔾ℚ𝕌) 𝑑𝑡 

(31) 

Taking the variation and integrating by parts in time 

domain results in (Shojaei and Ansari 2017) 

𝕄𝕌̈ + 𝕂𝕌 + 𝕂𝕘𝕌 = 𝟎 (32) 
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Table 1 Material properties of SWCNT at particular 

temperatures (Shen 2012) 

T [K] E11
cn[TPa] E22

cn[TPa] G12
cn[TPa] ν12

cn α11
cn[10−6 K⁄ ] α22

cn[10−6 K⁄ ] 

300 5.6466 7.0800 1.9445 0.175 3.4584 5.1682 

400 5.5679 6.9814 1.9703 0.175 4.1496 5.0905 

500 5.5308 6.9348 1.9643 0.175 4.5361 5.0189 

700 5.4744 6.8641 1.9644 0.175 4.6677 4.8943 

 

 

where the mass matrix 𝕄 , stiffness matrix 𝕂  and 

geometrical stiffness matrix 𝕂𝕘 are given as follows 

𝕄 = 𝛒 ⊗ 𝕊 

(33) 
𝕂 = 𝔼𝟏

Tℂ𝟏𝔼𝟏 + 𝔼𝟏
Tℂ𝟐𝔼𝟐 + 𝔼𝟐

Tℂ𝟐𝔼𝟏 + 𝔼𝟐
Tℂ𝟑𝔼𝟐 

𝕂𝕘 = ℚT𝔾ℚ 

with 

𝕊 = 𝐒𝜃 ⊗ (𝐒𝑥𝐑) 

(34) 
ℂ𝒊 = 𝐂𝑖 ⊗ 𝕊, (𝑖 = 1,2,3) 

𝔾 = 𝐆 ⊗ 𝕊 

where 𝐒𝜃  and 𝐒𝑥  are the integral operators in 

circumferential and axial direction, respectively and sign 

⊗ presents the Kronecker product. Furthermore, 𝔼𝟏, 𝔼𝟐 

and ℚ are the discretized counterparts of 𝐄𝟏, 𝐄𝟐 and 𝐐 

(Ansari and Torabi 2016). In the present study, the 

differential and integral operators in 𝑥  direction are 

defined based on the GDQ method. In addition, since the 

displacement components are periodic in circumferential 

direction, the periodic differential operators are used in 𝜃 

direction. For the GDQ differential operators in axial 

direction, the Chebyshev-Gauss-Lobatto grid point 

distribution was considered. For periodic differential 

operators in circumferential direction, the uniform 

distribution of grid points was considered. It is worth noting 

that the detailed description of these numerical differential 

and integral operators was explained in (Shojaei and Ansari 

2017). 

 

 

6. Results and discussion  
 

Stability and vibration analysis of FG-CNTRC conical 

shell subjected to thermal loading were presented. In this 

section, the accuracy of the present study is first validated 

by comparing the present results and those given in the 

literature. Then, a comprehensive parametric study is 

carried out to analyze the stability and vibration behavior of 

thermally induced CNTRC conical shell. It is assumed that 

the matrix phase of shell is made of Poly (methyl 

methacrylate) (PMMA) which its material properties are 

(Shen 2012): 𝐸𝑚 = (3.52 − 0.0034𝑇) GPa , 𝜌𝑚 =
1150 Kg/m3 , 𝛼𝑚 = 45(1 + 0.0005ΔT) × 10−6 1/K  and 

𝜈𝑚 = 0.34 . To calculate the elasticity modulus of the 

matrix 𝑇 = 𝛥𝑇 + 𝑇0  where 𝑇0 = 300 K  is the reference 

temperature. Furthermore, (10,10) SWCNT is selected for 

reinforcement. The material properties of SWCNT are 

considerably temperature-dependent. In this regard, Shen 

(2012) presented the mechanical and thermal properties of 

SWCNT at four different temperatures including 𝑇 =
300, 400, 500 and 700 K which are presented in Table 1. 

Using these values and considering a third-order 

interpolation, the thermo-mechanical properties of (10,10) 

armchair SWCNT as a function of temperature can be 

presented as follows 

𝐸11
𝑐𝑛(𝑇)[TPa] = 6.3998 − 4.338417 × 10−3𝑇

+ 7.43 × 10−6𝑇
− 4.458333 × 10−9𝑇3  

𝐸22
𝑐𝑛(𝑇)[TPa] = 8.02155 − 5.420375 × 103𝑇

+ 9.275 × 10−6𝑇2

− 5.5625 × 10−9𝑇3 
𝐺12

𝑐𝑛(𝑇)[TPa] = 1.40755 + 3.476208 × 10−3𝑇
− 6.965 × 10−6𝑇2

+ 4.479167 × 10−9𝑇3 
𝛼11

𝑐𝑛(𝑇)[10−6 K⁄ ] = −1.12515 + 0.0229169𝑇
− 2.887 × 10−5𝑇2

+ 1.13625 × 10−8𝑇3 
𝛼22

𝑐𝑛(𝑇)[10−6 K⁄ ] = 5.43715 − 9.84625 × 10−4𝑇
+ 2.9 × 10−7𝑇2 + 1.25 × 10−11𝑇3 

𝜈12
𝑐𝑛 = 0.175 

𝜌𝑐𝑛[Kg m3⁄ ] = 1400 

(35) 

Different boundary conditions such as clamped (C), 

simply-supported (S) and free (F) are considered at the 

edges of conical shell. For instance, the CS  boundary 

condition denotes that the small and large ends of the shell 

are clamped and simply-supported, respectively. The 

essential boundary conditions at the edges of the conical 

shell are considered to be   

clamped:      𝑢0 = 𝑣0 = 𝑤0 = 𝜓0 = 𝜙0 = 0, 
simply − supported:    𝑢0 = 𝑣0 = 𝑤0 = 𝜙0 = 0, 

(36) 

In addition, no constraints are considered for free 

boundary condition. It should be noted that the uniform 

temperature rise is assumed along the thickness direction of 

the cone.  

 

6.1 Comparison and convergence studies 
 

The accuracy of the present study is checked by 

comparing the present results with those given in the 

literature. Firstly, the non-dimensional natural frequencies 

of FG-CNTRC cylindrical shell for different volume 

fractions and types of distribution of CNT are compared to 

those reported by Shen and Xiang (2012) in Table 2. Some 

discrepancies of the numerical results may be due to the 

employment of different models. In this study, the 

governing equations are presented based on the first-order 

shear deformation theory, while, the third-order shear 

deformation theory was used by Shen and Xiang (2012). In 

addition, comparison of natural frequencies of FGM conical 

shells for various FG power low index (𝑘) is performed in 

Table 3. In the last case, by considering temperature-

dependency, the buckling temperature of FG-CNTRC 

conical shells are compared in Table 4 with the results 

reported by Mirzaei and Kiani (2015). It can be seen that  
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Table 2 Comparison of non-dimensional natural frequency 

(Ω = ω(R1
2/h)√ρm/Em) of FG-CNTRC cylindrical shell 

(h = 5 mm, β = 0.001, R1/h = 10) 

1  

𝐿 = √100𝑅1ℎ 𝐿 = √500𝑅1ℎ 

Present study 
Shen and Xiang 

(2012) 
Present study 

Shen and Xiang 

(2012) 

0.12 

UD 3.3656 3.3704 1.7020 1.7231 

FGA 3.2019 3.1568 1.6614 1.6652 

FGX 3.5674 3.6150 1.6977 1.7814 

0.17 

UD 4.2870 4.2866 2.1900 2.2106 

FGA 4.1155 4.0412 2.1486 2.1477 

FGX 4.5410 4.6106 2.1913 2.3121 

0.28 

UD 4.6543 4.6766 2.3178 2.3548 

FGA 4.5410 4.4886 2.3228 2.3306 

FGX 5.2014 5.2173 2.3675 2.5651 

 

Table 3 Comparison of natural frequency f = ω 2π⁄ (Hz) 

of CF FGM conical shell (β = 40, Lcos(β) = 2 m، R1 =
0.5 m, h = 0.1 m) 

Mode 

No. 

𝑘 = 0 𝑘 = 1 𝑘 = 5 

Present 

study 

Tornabene et al. 

(2009) 

Present 

study 

Tornabene et al. 

(2009) 

Present 

study 

Tornabene et al. 

(2009) 

1 209.9 210.0 204.4 204.9 203.5 203.9 

2 209.9 210.0 204.4 204.9 203.5 203.9 

3 231.9 232.0 224.0 224.4 227.3 227.7 

4 231.9 232.0 224.0 224.4 227.3 227.7 

5 287.5 287.5 276.2 276.7 283.8 284.3 

6 287.5 287.5 276.2 276.7 283.8 284.3 

7 322.5 322.6 315.7 316.3 309.0 309.6 

8 322.5 322.6 315.7 316.3 309.0 309.6 

9 356.9 357.0 346.8 347.7 346.3 347.1 

10 356.9 357.0 346.8 347.7 346.3 347.1 

 

Table 4 Comparison of buckling temperature Tcr(K) of 

FG-CNTRC conical shells ( β = 30°, R1/h = 50, L =

√100R1h, h = 1 mm) 

𝑉𝑐𝑛
∗   UD FGA FGO FGX 

0.12 
Present study 406.50 391.39 385.60 427.66 

Mirzaei and Kiani (2015) 407.75 391.77 385.82 428.07 

0.17 
Present study 414.71 399.54 392.97 436.84 

Mirzaei and Kiani (2015) 415.95 399.99 393.49 437.41 

0.28 
Present study 398.02 384.86 375.89 422.04 

Mirzaei and Kiani (2015) 399.58 385.58 376.41 422.83 

 

 

the results have good agreement with those given in the 

literature. Furthermore, the convergence studies of the 

buckling temperature and non-dimensional natural 

frequencies of FG-CNTRC conical shells are reported in 

Tables 5 and 6, respectively. In this regard, variations of the 

buckling temperature and non-dimensional natural 

frequencies were presented for different number of grid 

points in axial (nx) and circumferential (nθ) directions. As  

Table 5 Convergence study for the buckling temperature 

Tcr(K) of SS FG-CNT conical shell (ℎ = 5 mm, 𝑅1/ℎ =
40, 𝛽 = 30°, 𝐿/𝑅1  = 2) 

𝑛𝜃 𝑛𝑥 
Vcn

∗ = 0.12 Vcn
∗ = 0.28 

UD FGA FGO FGX UD FGA FGO FGX 

8 

5 442.366 440.736 430.726 454.507 426.045 426.915 417.443 441.544 

7 441.628 438.178 428.083 454.041 425.557 425.756 415.585 441.218 

9 441.591 437.985 427.955 454.020 425.533 425.597 415.492 441.202 

11 441.592 437.991 427.948 454.022 425.534 425.601 415.490 441.203 

13 441.593 437.992 427.950 454.022 425.535 425.602 415.491 441.203 

15 441.593 437.992 427.951 454.022 425.535 425.603 415.491 441.204 

10 

5 411.937 410.687 400.477 424.787 399.691 400.966 389.137 415.843 

7 411.491 409.251 399.677 424.370 399.315 399.949 388.504 415.496 

9 411.476 409.191 399.640 424.359 399.304 399.900 388.478 415.487 

11 411.476 409.194 399.640 424.360 399.304 399.903 388.479 415.488 

13 411.477 409.194 399.641 424.360 399.305 399.903 388.479 415.488 

15 411.477 409.195 399.641 424.360 399.305 399.903 388.479 415.488 

12 

5 402.510 401.264 390.354 416.213 391.581 392.671 378.746 409.504 

7 402.258 400.234 390.110 415.901 391.331 391.845 378.496 409.224 

9 402.251 400.209 390.092 415.895 391.325 391.825 378.483 409.220 

11 402.252 400.211 390.093 415.895 391.326 391.827 378.484 409.220 

13 402.252 400.211 390.093 415.896 391.326 391.827 378.484 409.220 

15 402.252 400.211 390.093 415.896 391.326 391.827 378.484 409.220 

14 

5 402.510 401.264 390.354 416.213 391.581 392.671 378.746 409.504 

7 402.258 400.234 390.110 415.901 391.331 391.845 378.496 409.224 

9 402.251 400.209 390.092 415.895 391.325 391.825 378.483 409.220 

11 402.252 400.211 390.093 415.895 391.326 391.827 378.484 409.220 

13 402.252 400.211 390.093 415.896 391.326 391.827 378.484 409.220 

15 402.252 400.211 390.093 415.896 391.326 391.827 378.484 409.220 

 

 

observed, the numerical results rapidly converge with the 

increase of the number of grid points. 

  

6.2 Parametric study 
 

The accuracy of the present study was verified by the 

results given in the literature in the previous section. Here, 

some numerical results are conducted to investigate the 

effects of involved parameters on stability and vibration 

behavior of FG-CNTRC conical shells.  

Table 7 presents the variations of buckling temperature 

of FG-CNTRC conical shells for different values of volume 

fractions and types of distribution of CNTs, semi-vertex 

angles and length-to-small radius ratios. The boundary 

conditions of the shell are considered to be simply-

supported at both ends. To show the importance of 

temperature-dependency, both temperature-dependent and 

temperature-independent material properties are taken into 

account. It can be seen that the conical shell with 𝑉𝑐𝑛
∗ =

0.17 has the highest buckling temperature which is 

consistent with the findings reported in (Shen and Zhang 

2010, Shen 2012) for thermal buckling of rectangular plates 

and cylindrical shells. In addition, the FGO type  
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Table 6 Convergence study for the non-dimensional natural 

frequencies of SS FG-CNTRC conical shell ( ℎ =
5 mm, 𝑅1/ℎ = 40, 𝛽 = 30°, 𝐿/𝑅1  = 2) 

𝑛𝜃 𝑛𝑥 
𝑉𝑐𝑛

∗ = 0.12 𝑉𝑐𝑛
∗ = 0.28 

UD FGA FGO FGX UD FGA FGO FGX 

8 

5 9.958 9.881 9.556 10.387 13.758 13.942 13.335 14.727 

7 10.040 9.989 9.641 10.470 13.868 14.093 13.450 14.841 

9 10.040 9.989 9.640 10.470 13.868 14.093 13.450 14.841 

11 10.040 9.989 9.640 10.470 13.868 14.093 13.450 14.841 

13 10.040 9.989 9.640 10.470 13.868 14.093 13.450 14.841 

15 10.040 9.989 9.640 10.470 13.868 14.093 13.450 14.841 

10 

5 8.555 8.450 8.047 9.066 11.907 12.006 11.212 12.989 

7 8.622 8.542 8.115 9.133 11.996 12.135 11.305 13.084 

9 8.621 8.542 8.115 9.133 11.996 12.134 11.304 13.083 

11 8.622 8.542 8.115 9.133 11.996 12.135 11.304 13.083 

13 8.622 8.542 8.115 9.133 11.996 12.135 11.304 13.083 

15 8.622 8.542 8.115 9.133 11.996 12.135 11.304 13.083 

12 

5 8.110 7.991 7.529 8.682 11.322 11.380 10.399 12.565 

7 8.170 8.075 7.589 8.744 11.403 11.499 10.480 12.653 

9 8.170 8.075 7.589 8.744 11.403 11.498 10.480 12.653 

11 8.170 8.075 7.589 8.744 11.403 11.498 10.480 12.653 

13 8.170 8.075 7.589 8.744 11.403 11.498 10.480 12.653 

15 8.170 8.075 7.589 8.744 11.403 11.498 10.480 12.653 

14 

5 8.110 7.991 7.529 8.682 11.322 11.380 10.399 12.565 

7 8.170 8.075 7.589 8.744 11.403 11.499 10.480 12.653 

9 8.170 8.075 7.589 8.744 11.403 11.498 10.480 12.653 

11 8.170 8.075 7.589 8.744 11.403 11.498 10.480 12.653 

13 8.170 8.075 7.589 8.744 11.403 11.498 10.480 12.653 

15 8.170 8.075 7.589 8.744 11.403 11.498 10.480 12.653 

 
 

distribution results in lower buckling temperature of conical 

shell. In other words, the special feature of FGO type (mid-

plane of the shell is CNT rich), reduces the stiffness of the 

structure. Furthermore, the increase in length-to-small 

radius ratio and semi-vertex angle of conical shell makes 

the structure less stable so that the buckling temperatures 

decrease. Also, it is concluded that considering temperature-

dependent material properties plays an important role in 

predicting the stability of the FG-CNTRC conical shells and 

considerably decreases the buckling temperature. 

The influences of initial thermal loading on non-

dimensional natural frequency of clamped-clamped FG-

CNTRC conical shell for different volume fractions and 

distributions of CNT are presented in Table 8. Generally, it 

can be seen that the increase in volume fractions of CNT 

increases the non-dimensional natural frequencies. It is 

apparent that the increase in initial thermal loading 

increases the deformation of the cone in prebuckling state 

and so decreases the natural frequency. It is worth to note 

that the initial thermal loading is considered as a fraction of 

buckling temperature difference. For example, in the case of 

𝑉𝑐𝑛
∗ = 0.12, FGX type of distribution and considering 

temperature-dependent material properties, the increase of  

Table 7 Variations of buckling temperature Tcr(K) of SS 

FG-CNTRC conical shell for different semi-vertex angles 

and length-to-small radius ratios (h = 5 mm, R1/h = 50) 

 
𝑉𝑐𝑛

∗    

𝐿/𝑅1  =  2 𝐿/𝑅1 = 4 

 𝛽 = 15° 𝛽 = 30° 𝛽 = 45° 𝛽 = 15° 𝛽 = 30° 𝛽 = 45° 

Temperature 

independent 

0.12 

UD 438.39 409.41 382.38 417.63 387.40 365.05 

FGA 434.35 406.86 380.51 406.05 376.82 356.86 

FGO 424.08 397.30 370.90 401.70 374.46 354.30 

FGX 454.04 423.79 395.86 432.99 401.48 373.86 

0.17 

UD 458.41 424.41 392.81 433.88 398.38 373.33 

FGA 448.14 421.73 391.19 420.12 387.39 364.11 

FGO 437.00 410.68 380.43 413.84 383.61 360.76 

FGX 477.18 440.91 407.76 452.32 414.36 384.45 

0.28 

UD 418.20 394.49 372.27 401.27 376.60 356.48 

FGA 421.13 396.11 372.96 394.69 369.09 351.54 

FGO 406.08 381.18 359.52 386.79 363.58 346.73 

FGX 441.29 413.77 389.15 423.63 393.99 367.80 

Temperature 

dependent 

0.12 

UD 403.75 386.05 368.14 391.25 371.67 355.43 

FGA 401.98 384.30 366.66 383.51 363.84 349.27 

FGO 395.51 377.50 359.39 381.09 362.10 347.21 

FGX 413.51 395.68 377.86 401.29 381.24 361.71 

0.17 

UD 414.95 395.17 375.06 400.94 378.87 361.40 

FGA 411.95 393.60 373.85 392.92 371.06 354.62 

FGO 404.31 386.08 366.02 388.75 368.46 352.03 

FGX 426.02 405.77 385.50 412.42 389.77 369.16 

0.28 

 

UD 391.03 375.98 360.78 380.42 363.89 348.74 

FGA 392.79 376.95 361.13 375.64 358.13 345.10 

FGO 382.74 366.31 350.91 370.47 354.05 341.24 

FGX 405.66 389.08 373.11 395.24 375.58 357.07 

 

 
initial thermal loading from Δ𝑇 = 0  to Δ𝑇 = 3Δ𝑇𝑐𝑟/4 , 

decreases the non-dimensional natural frequency about 

37%.  Furthermore, it is found that neglecting the 

temperature-dependent material properties overestimates 

the stiffness of the structure and consequently predicts 

higher values for buckling temperature. One can see that in 

the case of 𝑉𝑐𝑛
∗ = 0.12 , FGX  type of distribution and 

𝑅1/ℎ = 20, considering the temperature-dependent material 

properties, decreases the buckling temperature difference 

about 37%. 

Considering the temperature dependency, the variations 

of non-dimensional natural frequencies of FG-CNTRC 

conical shells versus uniform temperature rise through the 

thickness direction are demonstrated in Figs. 1 and 2 for 

four boundary conditions and different values of length-to-

small radius ratios and semi-vertex angles, respectively. The 

results show that the increase in 𝐿/𝑅1 and 𝛽 makes the 

conical shells more flexible and so decreases the buckling 

resistance and natural frequency of the structure. 

Furthermore, Fig. 1 reveals that in the case of small 𝐿/𝑅1 

(for instance 𝐿/𝑅1  = 2) increase in initial thermal loading 

results in swift decrease of non-dimensional natural  
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Table 8 Effects of initial thermal loading on non-

dimensional natural frequency Ω = 𝜔(𝑅1
2/ℎ)√𝜌𝑚/𝐸𝑚 of 

CC FG-CNTRC conical shell (ℎ = 5 mm, 𝛽 = 25°, 𝐿/𝑅1  =
2, 𝑅1/ℎ = 20) 

 𝑉𝑐𝑛
∗   𝛥𝑇 = 0 𝛥𝑇 =

𝛥𝑇𝑐𝑟

4
 𝛥𝑇 =

𝛥𝑇𝑐𝑟

2
 𝛥𝑇 =

3𝛥𝑇𝑐𝑟

4
 

Temperature 

independent 

0.12 

UD (341.74)* 10.93 9.58 7.94 5.71 

FGO (241.03) 9.22 8.07 6.68 4.80 

FGX (437.70) 12.20 10.69 8.87 6.41 

0.17 

UD (368.73) 13.57 11.90 9.85 7.08 

FGO (261.20) 11.48 10.05 8.32 5.99 

FGX (427.29) 15.16 13.28 11.01 7.94 

0.28 

UD (318.85) 15.73 13.79 11.43 8.22 

FGO (217.62) 13.11 11.47 9.48 6.81 

FGX (413.05) 17.66 15.48 12.84 9.26 

Temperature 

dependent 

0.12 

 

UD (226.87) 10.93 10.11 8.82 6.68 

FGO (168.07) 9.22 8.43 7.27 5.45 

FGX (275.02) 12.20 11.38 10.01 7.69 

0.17 

UD (238.95) 13.57 12.59 11.00 8.35 

FGO (177.79) 11.48 10.52 9.09 6.83 

FGX (289.74) 15.16 14.17 12.49 9.62 

0.28 

UD (213.45) 15.73 14.54 12.68 9.60 

FGO (155.38) 13.11 11.97 10.31 7.71 

FGX (258.47) 17.66 16.44 14.45 11.08 

*Number in the parenthesis indicates the buckling 

temperature difference (Δ𝑇𝑐𝑟) 

 

 
Fig. 1 Effects of initial thermal loading on non-dimensional 

natural frequency Ω = ω(R1
2/h)√ρm/Em  of FG-CNTRC 

conical shell for various length-to-small radius ratios and 

boundary conditions ( h = 5 mm, β = 30°,
R1

h
= 40, Vcn

∗ =

0.12, FGX) 
 

 

frequencies, whereas for the cone with larger  𝐿/𝑅1 (for 

instance 𝐿/𝑅1  = 8), the increase in temperature difference 

yields to gradual decrease of natural frequencies.  

Moreover, Fig. 2 depicts that by increasing the semi-

vertex angle, the buckling temperature differences of 

conical shell are more affected rather than the natural 

frequencies. For example, it is observed that the increase of  

 

Fig. 2 Effects of initial thermal loading on non-dimensional 

natural frequency Ω = ω(R1
2/h)√ρm/Em  of FG-CNTRC 

conical shell for various semi-vertex angles and boundary 

conditions (h = 5 mm,
L

R1
= 2,

R1

h
= 25, Vcn

∗ = 0.28, UD) 

 

 
Fig. 3 Effects of initial thermal loading on natural frequency 

(Hz) of FG-CNTRC conical shell for various small radius-

to-thickness ratios and boundary conditions ( h =

5 mm, β = 30,
L

R1
= 2, Vcn

∗ = 0.28, UD) 

 
 

semi-vertex angle from 𝛽 = 10 to 𝛽 = 50, decreases the 

non-dimensional natural frequency about 10%, while the 

reduction of the buckling temperature difference is about 

13%. Note that investigation of the results for different 

boundary conditions also reveals that the CC conical shell 

has the highest buckling temperature and non-dimensional 

natural frequencies and there are no considerable 

differences between CS and SC boundary conditions. Fig. 3 

demonstrates the effects of initial thermal loadings on 

natural frequencies of FG-CNTRC conical shell for various 

boundary conditions and small radius-to-thickness ratios. It 

can be seen that thicker cones have larger buckling 

temperature differences and natural frequencies. In addition, 

comparison of different boundary conditions implies that 

the initial thermal loading has stronger decreasing effects on 

the natural frequency of SS conical shell rather than other 

boundary conditions. 

The influences of temperature-dependency of material 

properties on the thermally induced vibration analysis of  
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Fig. 4 Effects of considering the temperature-dependent 

material properties on the thermally induced vibration of 

FG-CNTRC conical shell ( ℎ = 5 mm, 𝛽 = 20,
𝐿

𝑅1
=

2, 𝑉𝑐𝑛
∗ = 0.17, FGX) 

 

 
Fig. 5 Effects of initial thermal loading on the fundamental 

vibrational mode shapes of simply-supported FG-CNTRC 

conical shell (β = 20°,
L

R1
= 2,

R1

h
= 50, Vcn

∗ = 0.12, FGX) 

 

 

FG-CNTRC conical shells are demonstrated in Fig. 4. In 

this figure, by considering both temperature-dependent and 

temperature-independent material properties, the non-

dimensional natural frequencies versus initial thermal 

loading are presented for two different radius-to-thickness 

ratios. As it can be seen, considering the temperature-

dependent material properties has considerable effects on 

the natural frequencies of thermally induced FG-CNTRC 

conical shells. In addition, one can see that the effects of 

temperature-dependent materials are more significant for 

the shells with smaller radius-to-thickness ratio. 

In addition, the influences of initial thermal loading on 

the fundamental vibrational mode shapes of FG-CNTRC 

conical shells are illustrated in Fig. 5. The thermal loadings 

are considered as the fraction of the critical buckling 

temperature difference. As observed, for Δ𝑇 = Δ𝑇𝑐𝑟/8 , 

Δ𝑇 = 3Δ𝑇𝑐𝑟/8  and Δ𝑇 = 5Δ𝑇𝑐𝑟/8 , the fundamental 

vibrational mode shape has five circumferential wave 

numbers, while by the increase of initial thermal loading to 

Δ𝑇 = 7Δ𝑇𝑐𝑟/8, the fundamental vibrational mode shape has 

four circumferential wave numbers. 

7. Conclusions 
 

Thermal buckling and vibration analysis of thermally 

induced FG-CNTRC conical shells were presented 

employing the VDQ method. It was assumed that the 

material properties of nanotube-reinforced composite are 

continuously varied through the thickness direction of 

conical shell and the temperature-dependent material 

properties were taken into account. Considering first-order 

shear deformation theory and Sander’s strain-displacement 

relations, the energy functional were derived. The GDQ 

method in axial direction and periodic differential operators 

in circumferential direction were used to discretize the 

energy functional. The accuracy of the present numerical 

method was first validated with the results given in the 

literature. Furthermore, the effects of various parameters 

such as volume fractions and distributions of CNT, 

boundary conditions and semi-apex angles were examined 

on buckling and vibration of CNTRC thermally pre-stressed 

conical shells. As observed, temperature dependency of the 

material properties has significant effects on the mechanical 

behavior of FG-CNTRC conical shells under thermal 

loading so that considering the temperature-dependent 

material properties results in lower buckling temperatures. 

Also, it was found that the increase in volume fractions of 

CNTs increases the non-dimensional frequencies of 

nanocomposite conical shell, whereas this result is not 

correct for thermal buckling temperature. Symmetric 

distributions of CNTs along the thickness of the shell may 

lead to higher thermal buckling capacity and natural 

frequency. In addition, increase in length and vertex angle 

of conical shell makes it more flexible and declines the 

buckling temperature and fundamental frequency. Studying 

the effects of boundary conditions on dimensionless natural 

frequency of CNTRC conical shell revealed that 

considering the stiffer boundary conditions at edge of 

conical shell increases the buckling temperature and 

fundamental frequency. Generally, initial thermal loading 

decreases the non-dimensional natural frequency of FG-

CNTRC conical shell. Additionally, it was observed that 

geometrical parameters of conical shell such as length-to-

small radius and small radius-to-thickness ratio have an 

important role on vibration and buckling mode shapes.   
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Appendix: Computation of shear correction factors 
 

The shear correction factor can be computed by 

matching the shear strain energy obtained for an exact 3D 

distribution of the transverse shear stresses τ23 and τ13 

(denotes by 𝑈1) and shear strain energy related to the first-

order shear deformation theory (denotes by 𝑈2 ). 

Considering the stress vector, the shear strain energy for 3D 

model can be given as (Oñate 2013) 

𝑈1 =
1

2
∫ 𝛔𝑠

T𝐂𝑠
−1𝛔𝑠𝑑𝑧

ℎ/2

−ℎ/2

 (A-1) 

and for the first-order shear deformation plate theory 

𝑈2 =
1

2
𝐍𝑠

T𝐂̂𝑠
−1𝐍𝑠 (A-2) 

where 

𝐍𝑠 = ∫ 𝛔𝑠𝑑𝑧
ℎ/2

−ℎ/2

 (A-3) 

In the above equations, 𝐍𝑠  presents the vector of 

transverse force resultants. Furthermore, 𝐂s and 𝐂̂s were 

defined in Eqs. (22) and (27) respectively. Matching 𝑈1 

and 𝑈2 results in the expression for 𝐂̅s and accordingly, 

the transverse shear correction factors can be obtained. On 

the basis of the analytical approach outlined in (Oñate 

2013), by the use of equilibrium equations of 3D elasticity 

and considering some assumptions, Eq. (A-1) can be 

represented as 

𝑈1 ≅
1

2
𝐍𝑠

T𝐇𝑠𝐍𝑠 (A-4) 

with 

𝐇𝑠 = ∫ 𝐐T𝐂𝑠
−1𝐐 𝑑𝑧

ℎ/2

−ℎ/2 

 (A-5) 

𝐐 = ∫
z

2
[
𝐴11 + 𝐴33 𝐴13 + 𝐴32

𝐴31 + 𝐴32 𝐴22 + 𝐴33
]  𝑑𝑧

𝑧

−ℎ/2 

 (A-6) 

Where 𝐴𝑖𝑗 are the components of matrix 𝐀 defined as 

𝐀 = 𝐂𝑝𝐂̅𝑝
−1, 𝐂̅𝑝 = ∫ 𝑧2𝐂𝑝𝑑𝑧

ℎ
2

−
ℎ
2

 (A-7) 

By equaling 𝑈1 (Eq. (A-4)) and 𝑈2 (Eq. (A-2)), the 

generalized transverse shear strain constitutive matrix is 

obtained as  

𝐂̂𝑠 = 𝐇𝑠
−1 = 𝐇̂𝑠 (A-8) 

According to Eq. (A-8) and considering Eq. (27), the 

shear correction factors are determined as 

𝜅11 =
𝐻̂𝑠11

𝐶̂𝑠11

, 𝜅22 =
𝐻̂𝑠22

𝐶̂𝑠22

 (A-9) 

where 𝐻̂𝑠𝑖𝑗
 are the components of  𝐇̂𝑠 = 𝐇𝑠

−1  and 𝐶̂𝑠𝑖𝑗
 

are defined in Eq. (27). 
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