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1. Introduction  
 

Composite materials play significant role in advanced 

mechanical and structural applications. They have found 

increasing use with the rapid development of industries 

because they offer advantages over conventional materials. 

As one of the important structural components, composite 

laminated plates and shells, which are widely used in 

various engineering applications, such as airplanes, naval 

vehicles aircrafts, pressure vessels and civil industries. 

However, laminated plates and shells can present large 

stress discontinuities due to great mismatch in material 

properties, which induce a premature delamination, warping 

and cracking. Recently, functionally graded materials 

(FGM) has found extensive applications as structural 

elements in contemporary industries such as aeronautics 

production industry, mechanical engineering and nuclear  
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engineering. This is mainly due to their several advantages 

compared to classical composites, namely, assuring 

continuous transition of stress distributions and reducing or 

removing of stress concentration, (Ghannad et al. 2012, 

Shaterzadeh and Foroutan 2016, Attia et al. 2018), Tu et al. 

2017, Lee et al. 2017). Indeed, typical FGM plate-shell type 

structures are made of materials that are characterized by a 

continuous variation of the material properties over the 

thickness direction by mixing two different materials, 

(Denir et al. 2016, Bourada et al. 2015, Younsi et al. 

2018).The most known FGMs are composed of transition 

alloys from metal at one surface to ceramic at the opposite 

surface, (Yang and Shena 2003, Woo and Merguid 2001, 

GhannadPour and Alinia 2006).Actually, the attractive 

physical and mechanical properties characterizing 

particulate reinforced metal matrix composites (MMCs) 

which combine metallic properties, such as ductility and 

toughness, with ceramic properties like high strength and 

high modulus, leading to greater strength in shear and 

compression and higher service temperature capabilities, 

have made them interesting candidate materials for 

aerospace, automotive, reactor vessels, and numerous other 

engineering applications, (Tjong and Ma 2000, El-Haina et 

al. 2017, Elmossouess et al. 2017, Barati et al. 2016, 

Bousahla et al. 2016, Frikha et al. 2016, 2017, 2018, 

Hajlaoui et al. 2017). 

Due to increasing use of composite structures in 

advanced industries, it is crucial to apply an appropriate 
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theory in conjunction with a consistent and powerful 

numerical approach such as the finite element method. 

Three different approaches can be used to investigate the 

kinematics of these structures which are: the classical 

Kirchhoff-love theory (CST), the first-order shear 

deformation theory (FSDT) and the high-order-shear 

deformation theory (HSDT). The classical theory is adopted 

to model the kinematics of thin structures. This theory is 

simple to develop and allows results with reduced 

computational costs. However, the transverse shear 

deformation effect is ignored. Hence, the FSDT theory was 

proposed by Mindlin (1951) to include shear effects by 

using a constant shear coefficient (5/6 for isotropic 

materials). This model can be applied for both thin and 

moderately thick shell structures. Accordingly, the 

introduction of the HSDT theory allows to overcome the 

limitations of these models by considering a parabolic 

variation of the transverse shear strains across the shell 

thickness. This theory was developed by Reddy (1984) and 

it has already been used to analyze thick structures. 

However, the HSDT requires more kinematic variables and 

more computational time than those addressed above. 

Indeed, a comparative study between the FSDT and HSDT 

was provided by Shankara and Iyengar (1996) where they 

outlined that accurate results can be obtained from the 

FSDT theory for the analysis of laminated thick plates. 

Therefore, several finite element models have been 

developed to assure balance between computational 

efficiency and accuracy for global behaviour of composite 

structures. Civalek (2008) conducted a static analysis of 

thick symmetric cross-ply laminated composite plates based 

on FSDT. Using a finite element model based on the FSDT, 

free vibration, static and dynamic analysis of laminated 

composite plates and shells were performed in the works of 

(Gürses et al. 2009, Liew et al. 2004, Jin et al. 2013). 

Trabelsi et al. (2018) examined thermal post-buckling of 

functionally graded material shell structure. Further, an 

efficient hyperbolic shear deformation theory was proposed 

to investigate bending, buckling and free vibration of FGM 

sandwich and laminated composite plates by (Abdelaziz et 

al. 2017, Hebali et al. 2014, Mahi et al. 2015). In the same 

context, a refined trigonometric plate theory is provided in 

order to analyze hygro-thermo-mechanical bending 

(Beldjelili et al. 2016, Zidi et al. 2014), bending (Bouderba 

et al. 2016), buckling (Bellifa et al. 2017) and free vibration 

of FGM plates (Bellifa et al. 2016, Bennoun et al. 2016). 

Moreover, based on HSDT, several works were conducted 

to study the mechanical behavior of advanced composite 

plates taking into account linearity, nonlinearity and 

environmental effect (Bouhadra et al. 2018, Bousahla et al. 

2014, Menasria et al. 2017). The HSDT is utilized by Zghal 

et al. (2017, 2018a, 2018b, 2018c) in order to investigate 

mechanical behavior of functionally graded carbon 

nanotube-reinforced plate and shell structures. Further, 

various numerical approximate methods for solving linear 

and nonlinear mechanical problems of composite material 

plate and shell are proposed such as:  discrete singular 

convolution (DSC) method (Baltacıoglu et al. 2011, Civalek 

et al. 2013) and the differential quadrature (DQ) method 

(Talebitooti 2013). Several practical problems of FG 

structures require a geometrically non-linear formulation. 

However, it should be emphasized that analytical solutions 

of shell problems are very limited, (Hosseini Kordkheili and 

Naghdabadi 2012, Kar and Panda 2015) and most studies of 

the non-linear behavior of FGM plates and shells were 

limited to a von-Karman assumption taking into account 

plane stress only, which is restricted to moderately small 

deformations, Zhao and Liew (2009) and Phung-Van et al. 

(2014). Recently, Moita et al. (2016) conducted a static 

geometric and material nonlinear analysis for FGM plate-

shell type structures. The formulation includes material and 

geometric nonlinearities and was implemented in a finite 

element model based on a non-conforming triangular flat 

plate/shell finite element in conjugation with the Reddy’s 

third-order shear deformation theory. 

On the other hand, material nonlinearity plays a major 

role in the behavior of FGM structures. Over the years, 

much research has been dedicated to describe the 

elastoplastic behavior of FGMs. In the open literature, the 

plasticity formulation follows generally a composite model 

proposed by Tamura et al. (1973), Tamura-Tomota-Ozawa 

model, referred as the TTO model, which is largely used to 

define the elastoplastic behavior of FGM structures, 

Williamson et al. (1993), Vaghefi et al. (2016) and 

Bocciarelli et al. (2008). According to the TTO model, the 

response is essentially directed by the plasticity dispersion 

in the metal phase. However, using this model, a stress 

transfer parameter, which depends on the constituent 

materials properties, have to be determined experimentally 

or/and numerically.  

Elastoplastic static response of FGM shells undergoing 

large displacements and rotations is first investigated using 

ABAQUS software. Indeed, variations of the material 

properties in the transverse direction are often modeled in 

ABAQUS through the following method: dividing each 

layer into a sufficient number of slices to approximate the 

gradual variations of the material properties. Further, there 

is no need to change the mid-plane kinematics as all the 

coupling terms are considered especially the membrane-

bending coupling terms. 

The objective of this work is to introduce an alternative 

method based on FSDT to analyze the geometric non-linear 

static response of FG shells with elastoplastic properties. 

The material properties are introduced according to the 

integration points via the implementation of the user-

material UMAT subroutine into ABAQUS software. The 

implementation is applicable to the analysis of elastoplastic 

functionally graded shells undergoing fully geometrically 

nonlinear mechanical response. The Mori-Tanaka model is 

employed in this present work to locally evaluate effective 

elastic parameters of the FGM composite and the self-

consistent method of Suquet for the homogenization of the 

elastoplastic hardening law. The effectiveness of the 

developed material and geometric non-linear approach is 

evaluated through several non-trivial structure problems.  

 
 

2. Formulation of non-linear elastoplastic FGM plate-
shell problem 
 

A description of the geometry and kinematics of 
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geometrically non-linear behavior of elastoplastic FGM 

plates-shells under mechanical loads is concisely provided 

in this section. Based on based on the First-order Shear 

Deformation Theory (FSDT), which accounts for the shear 

deformation effect by the way of a linear variation of in-

plane displacements through the thickness, the present 

approach considers large deformations and finite rotations. 
 

2.1 FG material properties  
 

The proposed FGM plate-shell type structure is a 

particle reinforced metal matrix composite made by mixing 

two distinct material phases, namely an elastoplastic metal 

matrix reinforced by elastic ceramic particles. The material 

properties of a FGM plate-shell structures are assumed to 

vary continuously throughout the thickness direction (z-axis 

direction), according to a power function of the volume 

fractions of the constituents. Based on the power-law model 

employed by Bao and Wang (1995), the volume fraction of 

the ceramic phase 𝑉𝑐 can be considered as below 

( ) ( ) ( )
1

; 1
2

p

c c m

z
V z V z V z

h

 
= + + = 

 
 (1) 

where z 𝜖 [−h/2; h/2], h is the thickness of the structure, and 

the exponent p is the nonnegative power-law index which 

determines gradation of material properties across the 

thickness direction. The subscripts m and c denote metal 

and ceramic, respectively. 

To describe the elastic proprieties of the FGM shells, the 

rule of mixtures approach is generally used, however, it 

does not account for the interaction between particle phases. 

In order to overcome this limitation, Mori-Tanaka model is 

employed in many studies for underlying micromechanics 

and homogenization of particle reinforced Metal Matrix 

Composites, Rahman and Chakraborty (2007), Pettermann 

(2010), Yu and Kidane (2014). In this study, Mori-Tanaka 

model is used to reliably predicting the effective elastic 

proprieties of two-phase solid composites based on the 

input of the individual properties of the phases. 

The homogenized Poisson’s ratio and Young’s modulus 

at each single point through the thickness direction are 

given by 
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where the effective bulk modulus 𝑘(𝑧) and the effective 

shear modulus 𝐺(𝑧)  of the components are defined 

according to Mori-Tanaka method as follows 
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(4) 

 

2.2 Kinematics of non-linear FGM plate-shell 
structures 

In this section, the geometry and kinematic of the non-

linear shell model are depicted. The shell’s geometry in the 

3D space is described in a global Cartesian coordinate 

system. Initial and current configurations of the shell, are 

designated, respectively, by C0 and Ct. Associated variables 

with the undeformed state C0 will be symbolized by upper-

case letters and by a lower-case letters when referred to the 

deformed configuration Ct. Vectors will be denoted by bold 

letters. 

All material point of the shell are defined using 

parameterizations in terms of curvilinear coordinates 

( )1 2 3, , z= =  ξ . The pair (Xp, D) defines the 

position of an arbitrary point ‘q’ of the shell. Xp gives the 

position of a point ‘p’ on the shell midsurface. The 

reference surface of the shell is assumed to be smooth, 

continuous and differentiable. D is a director unit vector and 

h is the thickness of the element. The position vector Xq in 

C0, is defined as following 

( ) ( ) ( )1 2 1 2 1 2, , , , ; ,
2 2

q p

h h
z z z     

 
= +  − 

 
X X D  

(5) 

Considering the hypothesis of first order shear 

deformation theory (FSDT), the position vector of the point 

‘q’ in the deformed configuration Ct is given by 

( ) ( ) ( )1 2 1 2 1 2 , , , , ; ,
2 2

q p

h h
z z z      

 
= +  − 

 
x x d  

(6) 

where d is the director vectors of the deformed 

configurations and λ is the stretching parameter which 

depends on the actual state of deformation gradient and 

evaluated in the mid-surface (z=0). 

The strain tensor can be decomposed in in-plane and 

transverse shear strains as given by 

3

; , 1,2

.

e z  

 

    



= + =


= a d
 (7) 

in which ( ), 1,2a  = are the local orthonormal shell 

direction in deformed state and 3 , e  and   

denote respectively transverse shear, membrane and 

bending strains. Membrane 
 

and bending strains 

can be expressed as 

( ) ( )
1 1

; ; , 1,2
2 2

e a A b B       = − = − =
 

(8) 

where A  and a  are metric tensors in the reference 

and deformed configuration, respectively, and they are 

given by 

, , , ,. ; . ; , 1,2p p p pA a       = = =X X x x  
(9) 

in which the notation ( ) ( )
,

. . / S



=   is used. B  and 

b  are the curvature tensors in the reference and deformed 

configuration, respectively, and they are given by 

, , , , , , , ,. . ; . . ; , 1,2p p p pB b           = + = + =X D X D x d x d
 

(10) 

e 
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The membrane e, bending   and shear  strains 

vectors are expressed in matrix form by 

11 11

13

22 22

23

12 12

; ;

2 2

e

e

e









   
    

= = =     
       

e    
(11) 

In matrix form, the membrane N, bending M and shear 

T generalized internal forces, can be expressed, 

respectively, as 

11 11
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  


 
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(12) 

where  ij  are the components of stress tensor. 

Consequently, the resultants stress and strain fields given in 

Eqs. (11) and Eqs. (12) can be arranged to form the 

generalized resultant stress R and generalized strain   as 

;

   
   = =
   
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N e

R M

T

 



 (13) 

For a FGM elastic shell, the Generalized Hook’s Law 

allows for the following relations between strains and 

stresses 

0

0

0 0

 
 = =
 
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m mb

T T mb bb

s

,

H H

R H H H H

H

  
(14) 

where  

 

(15) 

in which H  and 
H  are, respectively, the in plane 

and out-of-plane linear elastic sub-matrices which 

components contain material properties, given by 

 

(16) 

where E(z) and v(z) are the Young’s modulus and the 

Poisson’s ratio respectively. In Eq. (15), k is the shear 

correction matrix computed based on the work of Hajlaoui 

et al. (2015).    

 

2.3 Elastoplastic stress–strain relation of FGM plate-
shell structures 
 

In this part, the elastoplastic formulation of 

ceramic/metal FGM shell is briefly described. Plasticity 

models are formulated in terms of the yield surface, the 

flow rule and the homogenized evolution laws that define 

the hardening of the particle reinforced Metal Matrix 

Composites. A self-consistent model is adopted to evaluate 

effective elastoplastic parameters of the ceramic/metal 

FGM composite. 

The elastoplastic behaviour can be described as follows: 

materials present an elastic behaviour until the yield stress, 

is achieved, beyond this point, the material start to exhibit 

plastic behaviour and the relation between stress and strain 

is obtained by a tangent modulus. 

Before the material gets in the plastic state, Hooke’s law 

Eq. (14) describes the relation between stress and strain. 

However, after the material surpasses the stress level set by 

the yield criterion, Hooke’s law is no longer efficient, and 

the stress state progresses with respect to a plastic flow rule. 

Plastic behaviour is noticeable when there are irreversible 

strains on the solid after the load is eliminated. Taking into 

account of constant volume deformations associated to this 

behaviour, elastic and plastic strain components can be 

additively decomposed as 

e p= +ε ε ε  (17) 

where 
e
ε  represents the elastic component of strain and 

p
ε  the plastic one. 

The following relation between the stress rate and the 

strain rate, can be assumed 

( )= = −e p
σ H ε H ε ε  (18) 

where H is the general elastic operator (the fourth order 

material constitutive tensor). 

During plastic deformation, the yield surface can be 

described by 

( ) ( ) ( ) ( ) ( ), 0 ,p p Yf R       = − = = +σ σ  (19) 

where Y is the yield stress, R represents the drag stress in 

isotropic hardening and   is the internal variable 

corresponding to isotropic hardening. From the Von-Mises 

J2 criterion, for the case of an isotropic material the function

( ) σ is the equivalent stress, which may be written as, 

Belhassen et al. (2016, 2017) 

( )  

1 0.5 0.5 0 0 0

1 0.5 0 0 0

1 0 0 0
           where  

3 0 0

3 0

3

T

Sym


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−
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 
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 
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 

Q
σ σ σ Q σ Q

 

(20) 

It can be noted that constitutive relations of the 

elastoplastic material are given in terms of the rates of stress 

and strain. Accordingly, the evolution equations for the 

present problem are given as follows 

1
;p f

 



= = =


ε n n Qσ


 (21) 

f

R
  


= − =


 (22) 
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The plastic strain rate is defined as proportional to the 

stress gradient of a plastic potential, which is taken equal to 

the yield surface condition f for an associated flow rule. n is 

the flow vector which defines direction of the plastic strain 

increment to be perpendicular to the yield surface and   

is the plastic multiplier which is consistent with the 

loading/unloading conditions given by 

0 ; 0 ; 0f f  =   (23) 

The description of how the yield surface changes with 

plastic deformation is called the hardening law. Ceramic 

materials are, commonly, brittle materials of almost greater 

elastic modulus and strength than those of metallic 

materials, which have generally ductile properties. 

Therefore, the ceramic particles in FGM are assumed to 

have linear elastic behavior when deformation takes place. 

The elastoplastic deformation occurs primarily by the 

plastic flowing of the metallic matrix phase. In the present 

study, the behavior of the matrix phase, the metal, is 

assumed to be elastoplastic with isotropic hardening 

according to the power plastic hardening law of Ludwik, 

Gunes et al. (2014). 

mn

m Y m mK r = +  (24) 

in which ( )m MPa  is the stress, ( )Y m MPa  is the 

yield strength, r is the plastic strain, nm is the strain 

hardening exponent and km(Mpa) is the strength coefficient 

corresponding to the metal. To depict the elastic-plastic 

behavior of ceramic/metal composite, the same hardening 

law of Ludwik is adopted for the FGM shells. 

n

p Y K r = +  (25) 

Where ( )Y MPa  is the effective yield strength, n is 

effective strain hardening exponent and K(MPa) is the 

effective strength coefficient corresponding to the 

ceramic/metal FGM shell. 

To improve the description of elastoplastic behavior of 

ceramic/metal FGM, an asymptotic homogenization 

algorithm was developed by Orlik (2010), to characterize 

elastoplastic composites with pure elastic inclusions and 

elastoplastic metallic matrix using Ludwik hardening law. 

The asymptotic homogenization method was performed 

using ABAQUS software, in Orlik (2010) study, for 

obtaining effective material properties of a reinforced 

metal-matrix elastoplastic composite involving a 10% 

volume fraction of arbitrarily located ball-shaped inclusions 

with normally distributed radius. The effective properties 

computed by the asymptotic approach closely matched 

those obtained from experiments and those determined by 

Suquet self-consistent formulas. However, such an 

approach requires complex computer simulations and would 

be extremely time-consuming and very costly. Alternatively, 

self-consistent formulas, like Hashin, Eshelby and Suquet 

models are used, due to their simplicity. Suquet self-

consistent formulas proved to be useful to accurately 

estimate effective properties of particulate composites with 

low to moderate volume fractions of inclusions and for 

composites with granular microstructures, Suquet (1997). 

Accordingly, effective elastoplastic parameters of the 

ceramic/metal FGM shell, Y , K and n, are calculated, in 

the present work, by the homogenization and averaging 

formulas of Suquet (1997) 

( )

1
; ;

1

c
Y Y m m mn

m c

E V
K K n n

E V
 

+
= = =

−

 
(26) 

 

2.4 Weak form and linearization: 
 

This kinematic constraint will be imposed in a discrete 

form in the finite element approximation. Now consider the 

internal virtual work 

( ) 3 3
 = = + +
  int ij ij

V V
W dV e z dV            (27) 

where dV is the shell volume element in the initial 

configuration,
ij  is the virtual strain tensor and 

ij the 

components of the stress tensor.  

Inserting the membrane, bending and shear stress 

resultants N, M andT respectively given by Eq. (12) and 

the shell strains e ,  and   represented in Eq. (11) 

into Eq. (27) and integrating through the thickness of the 

shell, the weak form can be rewritten as 

( ) 0ext
A

W . . . dA W  = + + − = e N M T   (28) 

where Wext is the external virtual work.  

In order to describe the non-linear shell problem, the 

weak form of the equilibrium equation, Eq. (28), can be 

rewritten as a function of the nodal displacement vector Un 

involving the generalized resultant stress R and generalized 

strain   as follows 

( ) ( ) 0= − =
T

n ext n
A

W . dA WU Σ R U  (29) 

The Eq. (29), is solved iteratively with the Newton-

Raphson algorithm. Indeed, the consistent tangent operator, 

needed to ensure the quadratic convergence of global 

Newton-Raphson approach, is built up by providing the 

directional derivative of the weak form in the direction of 

the increment nU . The tangent operator is decomposed, 

in a straight practice, into material and geometric parts as 

follows 

( )int

T

n M G nW  = +U K K U  (30) 

in which KM and KG designate, respectively, material and 

geometric stiffness matrices. In fact, the geometric part KG 

of the tangent operator, originates from the variation of the 

virtual strains while keeping stress resultant fixed, whereas, 

the material part KM of the tangent operator, issues from the 

variation in the stress resultants while maintaining virtual 

strains unchanged. 
 

 

3. Numerical implementation  
 

A user defined subroutine (UMAT) is developed and 
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implemented in Abaqus/Standard to study the elastoplastic 

behavior of the ceramic particle-reinforced metal-matrix 

FGM plates-shells undergoing large displacements and 

rotations.  

 

3.1 Elastoplastic numerical integration scheme 
 

The elastoplastic response of the studied ceramic/metal 

FGM shell is simulated using Abaqus/Standard 

“incremental” theories. Iterative plasticity models are 

formulated in terms of the yield surface, the flow rule and 

the homogenized evolution laws that define the hardening 

of the metal/ceramic FGM structure. It can be noted that 

constitutive relations of the elastoplastic material are given 

in terms of the rates of stress and strain (Eq. (18)). Elastic 

and plastic strains are separated because unique elastic 

strain generates stress which can only be calculated by 

integrating the stress rate over the past load history. The 

integration is conducted using the implicit Euler method 

(Backward Euler method), the strain-driven integration 

algorithm allows to have the stress history from the strain 

history.  

The plastic strain 
1

p

n+ε  are determined by integration 

of the flow rule over a time step using the implicit 

backward Euler’s method which makes the algorithm 

unconditionally stable, which lead to  

1 1 1 1

1

1
;p p

n n n n n

n




+ + + +

+

= + =ε ε n n Qσ  (31) 

Using the decomposition of strain, Eq. (17) and the 

elasticity relation, Eq. (18), the stress tensor can be written 

as 

( )1 1 1 13 / 2+ + + += − = −p trial

n n n nσ H ε ε σ H n .  (32) 

where  
trial

σ  is the elastic trial stress  

= +trial

n σ σ H ε  (33) 

Using Eqs. (31) and (32), the stress tensor, 1n+σ , can 

then be computed as  

1

1

1

. ; ;−

+

+

= = + =trial

n c c

n

u u



σ I σ I I HQ 

 
(34) 

From Eqs. (19) and Eqs. (34), it follows that the 

enforcement of the consistency condition is reduced to one 

scalar equation. The unknown of this equation is the plastic 

multiplier  . This equation is solved using the Newton 

method. 

( ) ( )
1/2

10 ; . . . .trial T T trial

Y c cf R    − − = − + = =  σ I Q I σ
 

(35) 

One step of the incremental and iterative numerical 

solution algorithm using the Newton-Raphson iteration 

applied to solve Eq. (35) is summarized in Box 1. 

With this integration procedure, it is essential to use the 

algorithmic tangent modulus in order to preserve the 

quadratic rate of asymptotic convergence of Newton  

Box 1: Integration algorithm 

 

 

 

Fig. 1 Simpson’s approach for integration through the 

thickness of the FGM shell 

 

 

method. Using this integration method, an algorithmic 

tangent modulus is employed to maintain the quadratic rate 

of asymptotic convergence of the Newton approach used to 

determine the plastic multiplier as detailed in the works of 

Belhassen et al. (2016), Wali et al. (2015, 2016), Mars et al. 

(2016, 2017), Ben Said et al. (2017) and Autay et al. 

(2017). 

 

3.2 Through-thickness integration and UMAT 
interface 
 

The standard quadrilateral 4-nodes shell element with 

three rotational and three translational degrees of freedom 

per node, S4, is extended in the present study, to deal with 

elasto-plastic analysis of geometrically non-linear 

ceramic/metal FGM plate-shell structures. The elastoplastic 

material properties are assumed to vary smoothly through 

the thickness of the plate-shell type structures. Numerical 

integration through the thickness of shell elements is needed 

to compute resultant stress and the consistent tangent 

operator from. To avoid stress discontinuity at the 

interfaces, a UMAT subroutine is implemented into 

ABAQUS in order to define the material properties 

according to the coordinates of the integration points. It 

should be noted that two kinds of numerical integration may 

be used: Gauss and Simpson integration. To obtain an 

accurate analysis of FGM structure using shell elements, the 

number of the through-thickness integration points (n) 

should be carefully chosen, since a small number of 

integration points can create an additional error of the 

numerical results.  

In ABAQUS the integration points through the thickness  
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Box 2 Material and geometric nonlinear analysis 

methodology using UMAT subroutine implemented into 

ABAQUS 

 

 

 

Fig. 2 Geometry of axially loaded FGM cylindrical shells 

 

 

of the FGM shell are counted consecutively, starting with 

point (1) to point (n). Considering Simpson’s approach, 

point (1) is situated exactly on the bottom surface of the 

shell, as illustrated in Fig. 1 and using Gauss quadrature, 

point (1) is located near to the bottom surface, more details 

can be found in ABAQUS documentation. 

Numerical study is conducted using the UMAT 

subroutine implemented into ABAQUS. It should be 

mentioned that for each integration point through the 

thickness of the shell using the integration point number 

(KSPT), ABAQUS make a call for the UMAT subroutine. 

Box 2 provides better explanation of material and geometric 

nonlinear analysis methodology.  

 

 

4. Numerical results and discussion 
 

4.1 Validation results 
 

The present work focus on material and geometrically  

Table 1 Comparison of deflections results of axially 

compressed elastoplastic FGM cylindrical shells, h=0.4 mm 

Axial Forces (kN) 
Displacements (mm) 

Xu et al. (2017) Present method 

0 0 0 

5 0.02095 0.02122 

10 0.04112 0.03988 

15 0.06959 0.06856 

30 0.10159 0.09928 

40 0.18351 0.18602 

50 0.24752 0.23954 

 

Table 2 Mechanical properties of aluminum Al and SiC 

materials, Gunes et al. (2014) 

Materials Young modulus (GPa) Poisson’s ratio 

Al 6061 67 0.33 

SiC 302 0.17 

 

 

non-linear behavior of elastoplastic functionally graded 

shells using ABAQUS. To ensure the validity of the present 

method, comparisons are performed with experimental and 

numerical solutions from the literature.  

Xu et al. (2017) have been numerically investigating the 

postbuckling of axial compressed elastoplastic functionally 

graded cylindrical shells. The FGM cylindrical shells are 

assumed to be simply supported at both ends, with thickness 

h, length L=100 mm, and mean radius R=50 mm, are 

subjected to uniform axial compression force F as shown in 

Fig. 2. The elastoplastic material properties are assumed to 

be multi-linear hardening type according to the constituent 

distributions and depicted by the TTO homogenized 

mixture rule, Xu et al. (2017).  

The basic parameters in this example are chosen 

according to Xu et al. (2017): TiB/Ti FGMs with the 

material properties 𝐸𝑐=375 GPa, 𝑣𝑐=0.14, 𝐸𝑚=107 GPa, 

𝑣𝑐=0.34, 𝜎𝑌𝑚=450 MPa.  

To verify the present FE model, buckling deformations 

results of axially compressed elastoplastic FGM cylindrical 

shells are compared with those obtained by Xu et al. (2017). 

Table 1 reports elastoplastic deflections of axially 

compressed FGM cylindrical shell acquired using the 

present and Xu et al. (2017) solutions. As may be seen, 

using both solutions the deflection in the postbuckling state 

enlarges with the increase of axial compression 

displacement. 

From Table 1, the present results are well consistent 

with numerical solution of Xu et al. (2017), there are slight 

differences between both solutions, which is reasonable 

because two different homogenization approaches are used. 

Indeed, the Mori-Tanaka model and self-consistent 

formulas of Suquet are employed in this present work, 

whereas, Xu et al. (2017) used the TTO homogenized 

mixture rule.  

The response of ceramic/metal FGM shells taken into 

accounts both material and geometric nonlinearities is 

investigated in this work. The studied FGM shell is a  
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Fig. 3 True stress-strain curve of the aluminum as 

constituent in the circular FGM plates 

 

Table 3 Elastoplastic properties of the Al 6061 material 

Materials ( )Ym MPa  ( )mK MPa  nm 

Al 6061 80 237.33 0.3878 

 

 

particle reinforced metal matrix composite made by mixing 

two distinct material phases, namely an elastoplastic metal 

matrix of aluminum alloy (Al 6061) reinforced by elastic 

ceramic particles of silicon carbide (SiC). The mechanical 

properties of aluminum Al and SiC are given in Table 2. 

Gunes et al. (2014) investigated experimentally and 

numerically low-velocity impact behaviour of functionally 

graded clamped circular plates composed of ceramic (SiC) 

and metal (Al) phases varying through the plate thickness. 

In order to describe the elastoplastic characteristics of 

metal/ceramic FGMs the TTO law of mixture was used in 

Gunes et al. (2014). A clamped FGM circular plate 

impacted at its center by a cylindrical impactor with 

hemispherical nose is considered. The circular Al/SiC FGM 

plate has 50 mm in diameter and 10 mm in thickness. This 

FGM plate is fixed by an annular support with an internal 

diameter of 40 mm, see Gunes et al. (2014).  

In the present work, the behavior of the matrix phase, 

the aluminum alloy (Al 6061), is assumed to be 

elastoplastic with isotropic hardening according to plastic 

hardening law of Ludwik. Parameters ( ), ,Ym m mK n

required for Ludwik law can be determined by fitting 

experimentally measured data obtained by Gunes et al. 

(2014) according to Eq. (24). The Levenberg-Marquardt 

approach is applied to solve these non-linear least squares 

minimization problem. The final parameters of Ludwik 

hardening law for the aluminum phase, needed for the 

homogenization and averaging formulas of Suquet (1997), 

Eq. (26), are given in Table 3. Fig. 3 depicts the true stress-

strain curve of the Al 6061 material, experimentally given 

in the work of Gunes et al. (2014) and numerically based on 

Ludwik hardening law.  

To the best of the authors’ knowledge, no relevant 

theoretical approach and experimental research has been 

presented for the elastoplastic analysis of FGM plates and 

shells, due to the difficulties in theoretically considering of 

both the material and geometrical nonlinearities. 

To check the effectiveness of the developed model, the 

variation of contact force for Al/SiC FGM circular plates 

through time under impact velocity of 1.59 m/s and for 

power law index p=0.1 is compared to experimental and 

numerical results obtained by Gunes et al. (2014). 

As may be seen in Fig. 4, results obtained by the current  

 

Fig. 4 Comparison of the the variation of contact force for 

Al/SiC FGM circular plates through time under impact 

velocity of 1.59 m/s and for power law index p=0.1 

 

 

Fig. 5 Hinged FGM cylindrical roof subjected to a 

concentrated load 

 

 

Fig. 6 Elastoplastic and elastic Load-deflection curves of 

the hinged cylindrical roof, h=20 mm 

 

 

approach are in good agreement with those acquired in 

Gunes et al. (2014). It can be noticed that the present 

solution is closer to the experimental results compared to 

the numerical solution proposed by Gunes et al. (2014). 

This is principally due to the different homogenization 

methods employed in simulations. The current formulation 

is based on the Mori-Tanaka model and self-consistent 

formulas of Suquet, while, the TTO law of mixture was 

used by Gunes et al. (2014), which proves clearly that the 

Mori-Tanaka model and self-consistent formulas of Suquet 

allow better description of the elastoplastic characteristics 

of metal/ceramic FGMs. 

 

4.2 Numerical examples 
 

In order to demonstrate the robustness of the developed  
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Fig. 8 Effect of the slenderness ratio h/R on load- deflection 

curves of the hinged cylindrical roof 

 

 

Fig. 9 Geοmetry οf the semi-cylindrical FGM shell 

subjected tο a pinching fοrce 

 

 

formulation and the performance of the finite element 

implementation, numerical examples of non-trivial 

benchmark problems taken from the literature are presented. 

Numerical simulations are conducted using the UMAT 

s u b r o u t i n e  i mp l e me n t e d  i n t o  A B A Q U S .  T h e 

implementation is applicable to the analysis of functionally 

graded shell s  undergoing coupled mater ia l  and 

geometrically nonlinear mechanical response. We focus on 

applications with warped elements and on the finite rotation 

capability. The standard quadrilateral 4-nodes shell element  

 

 

 

Fig. 10 Elastic and elastοplastic lοad-deflectiοn curves οf 

the pinched FGM cylindrical shell at A 

 

 

 

with three rotational and three translational degrees of 

freedom per node, S4, is used to model all proposed 

geometries. Based on FSDT, the shell formulation of this 

element is derived using finite-membrane strain, which 

makes it suitable for modeling thin to moderately thick shell 

structures.  

 

4.2.1 Hinged cylindrical roof subjected to central 
displacement 

The first example considers a FG cylindrical shell 

subjected to a central displacement X=60 mm. Owing to 

symmetry, only one quarter of the physical domain is 

modeled with 16×16 S4 elements, as presented in in Fig. 5. 

The present geometry can be found on works of Frikha et 

al. (2017), and Sze et al. (2004), among others, and is 

particularly popular due to the snapping behavior.  

The geometrical properties of the shell are given by the 

length L=254, radius R=2540, the angle θ=0.1 rad and 

various thicknesses h. The elastoplastic FG material 

properties are listed in Tables 2 and 3. The non-linear 

mechanical responses of FG metal-ceramic panels shallow 

hinged cylindrical roof are given in Fig. 6 for different 

material composition exponents p.   

On the other hand, elastic and elastoplastic deformed 

shapes of hinged FGM cylindrical roof subjected to a 

concentrated load for power law index p=10, are given in 

Fig. 7. Observing these figures, it is easily deduced that 

elastoplastic central deflections are larger than elastic ones 

and the greater deflection is provided by metal and small  

p=10 elastoplastic 

 

p=10 elastic 

 

(a) (b) 

Fig. 7 Elastoplastic and elastic deformed shapes of the hinged FGM cylindrical roof subjected to central displacement, for 

power law index p=10, U2: radial displacement and h=20 mm 
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(a) (b) 

Fig. 11 Hyperbοlοidal FGM shell subjected tο alternating 

radial fοrces: (a) Geοmetrical prοperties, (b) Elastoplastic 

deformed shape p=10 

 

 

deflection is given by ceramic due to its large mechanical 

proprieties making the FGM shell stiffer. 

Fig. 8 exhibits the effect of the slenderness ratio h/R on 

the central deflection of the hinged FGM cylindrical roof 

subjected to a concentrated load for the selected values of 

power law index (p=2; 10) and for metal. It is found that 

central deflection of the FGM shell decreases as the 

slenderness ratio rises considering the same applied load 

and material composition p. 

 
4.2.2 Semi-cylindrical FG Shell lοaded with an end 

pinching fοrce 
The secοnd example cοnsiders a semi-cylindrical shell 

subjected tο an end pinching fοrce at the middle οf the free-

hanging circumferential periphery. The οther 

circumferential periphery is fully clamped. Alοng its 

lοngitudinal edges, the vertical deflectiοn and the rοtatiοn 

abοut the Y-axis are restrained. The cylinder length is L = 

3.048 and the radius R=1.016 with thickness h=0.03. Οwing 

tο symmetry, οne-quarter οf the shell is mοdeled and a 

cοmmοnly emplοyed mesh fοr fοur-nοde shell elements is 

28×28, as shοwn in Fig. 9.  

The elastοplastic FG material prοperties are described in 

Tables 2 and 3. The present geοmetry has been cοnsidered  

 

Table 4 Radial deflection at point A (-WA) of the 

elastoplastic Hyperboloidal FGM shell 

F/Fmax ceramic 

p=0.2 p=5 p=10 Metal 

elastoplastic elastic elastoplastic elastic elastoplastic elastic elastoplastic elastic 

0 0 0 0 0 0 0 0 0 0 

0.2 0.258 0.370 0.369 0.741 0.715 0.817 0.780 1.030 1.016 

0.4 0.511 0.833 0.720 1.614 1.303 1.728 1.403 2.021 1.735 

0.7 0.864 2.043 1.179 2.699 1.938 2.784 2.057 3.039 2.442 

0.9 1.077 2.656 1.437 3.208 2.257 3.286 2.384 3.556 2.786 

1 1.176 2.897 1.554 3.429 2.396 3.505 2.526 3.781 2.935 

 

 

in many references investigating geοmetric nοn-linearity οf 

shells Sze et al. (2004) and Fοntes et al. (2003), amοng 

οthers. 

The maximum applied lοad at the middle οf the free 

edge is fixed tο F=1×106. Elastic and elastοplastic behaviοrs 

at pοint A οf the FG metal-ceramic semi-cylindrical shell 

subjected tο a pinching fοrce are plοtted in Fig. 10 fοr 

different pοwer-law index. Fig. 11 represents elastοplastic 

and elastic defοrmed shapes οf the semi cylindrical 

cοnfiguratiοn fοr pοwer law index p=10. 

As may be seen, elastοplastic displacements are mοre 

impοrtant than elastic οnes cοnsidering the same applied 

lοad and the same pοwer law index. It can be alsο 

nοticeable, frοm Fig. 11, that pοwer law expοnent p has 

impοrtant influence οn bοth elastic and elastοplastic 

behaviοrs οf the FG metal-ceramic semi-cylindrical shell 

subjected tο a pinching fοrce. 

 

4.2.3 Hyperbοlοidal FGM shell subjected tο 
alternating radial fοrces 

The third example considers a hyperboloidal FGM 

under two inward and two outward point loads to evaluate 

the performance of the present approach in the case of large 

rotations. Many researchers, dealing with nonlinear 

geometrically problem, have considered this geometry, 

namely, Arciniega and Reddy (2007) and Mars et al. (2017). 

Due tο symmetry, οne-eighth οf the structure is mοdeled  

p=10 elastοplastic 

 

p=10 elastic 

 

(a) (b) 

Fig. 11 Elastοplastic and elastic defοrmed shapes οf the semi cylindrical cοnfiguratiοn fοr pοwer law index p=10, U3: radial 

displacement οf the semi-cylindrical 
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Table 5 Radial deflection at point B (WB) of the 

elastoplastic Hyperboloidal FGM shell 

F/Fmax ceramic 

p=0.2 p=5 p=10 Metal 

elastoplastic elastic elastoplastic elastic elastoplastic elastic elastoplastic elastic 

0 0 0 0 0 0 0 0 0 0 

0.1 0.128 0.184 0.184 0.362 0.361 0.397 0.396 0.525 0.525 

0.3 0.380 0.563 0.536 1.121 0.984 1.216 1.061 1.473 1.321 

0.6 0.501 0.820 0.699 1.544 1.228 1.642 1.314 1.895 1.590 

0.8 0.728 1.584 0.991 2.191 1.604 2.256 1.694 2.432 1.973 

1 0.934 2.191 1.237 2.577 1.876 2.624 1.966 2.771 2.237 

 

 

with 10×20 S4 elements, as illustrated in Fig. 12. The 

geοmetrical prοperties οf the shell are given by the radius 

R1=7.5, R2=15, the half-height H=20 and the thickness 

h=0.04. The maximum applied lοad P=2×105. The 

elastοplastic FG material prοperties are described in Tables 

2 and 3. The radius οf the hyperbοlοidal shell can be 

expressed using the fοllοwing equatiοn 

( )

2

1

3
: 1

20

z
R z R

 
+   

 
 (36) 

Elastic and elastοplastic behaviοrs at pοint A and B οf 

the FG metal-ceramic hyperbοlοidal shell subjected tο radial 

fοrces are examined fοr several material cοmpοsitiοn 

expοnents p. Tables 4 and 5, list elastic and elastoplastic 

radial deflections at point A and B for different values of 

power law index p. 

It shοuld pοinted οut that there are large differences 

between elastοplastic and elastic deflectiοn values. Fοr the 

same lοad and the same vοlume fractiοn value, elastοplastic 

deflectiοns are larger than elastic οnes. 

The pοwer index has a significant effect οn the bοth 

elastic and elastοplastic behaviοrs οf the hemispherical shell 

subjected tο unifοrm lοad. In οrder tο emphasize the effect 

οf pοwer lοw index οn the elastοplastic respοnse οf the 

FGM hyperbοlοidal shell, Tables 6 and 7 tabulate 

elastoplastic radial deflections at point C and D for various 

values of power law index p. 

It shοuld be pοinted οut that the increase in the 

material pοwer index leads tο an increase in the deflectiοn 

οf the FGM Hyperboloidal structure. This is because that 

as increasing the value οf material pοwer index the 

percentage οf metal phase will rise. By reasοn οf 

aluminum has lοwer elastic material prοprieties, thus 

makes such FGM shells mοre flexible. 

Thοse tests demοnstrate the rοbustness οf the present 

FEM using ABAQUS/UMAT and its applicability tο 

arbitrary shell geοmetries and cοupled material and 

geοmetric nοn-linearities. 

 

 

5. Conclusions 
 

In this research, a numerical approach to analyze the 

geometrical non-linear static response οf elastοplastic  

Table 6 Elastoplastic Radial deflection at point C (WC) of 

the elastoplastic Hyperboloidal FGM shell 

F/Fmax ceramic p=0.2 p=2 p=5 p=10 metal 

0 0 0 0 0 0 0 

0.2 0.246 0.350 0.753 0.607 0.686 0.941 

0.4 0.481 0.762 1.494 1.278 1.405 1.713 

0.6 0.698 1.416 2.026 1.872 1.966 2.180 

0.7 0.798 1.723 2.207 2.078 2.158 2.344 

0.9 0.981 2.144 2.469 2.375 2.434 2.579 

1 1.06 2.289 2.564 2.483 2.535 2.661 

 

Table 7 Elastoplastic Radial deflection at point D (-WD) of 

the elastoplastic Hyperboloidal FGM shell 

F/Fmax ceramic p=0.2 p=2 p=5 p=10 metal 

0 0 0 0 0 0 0 

0.1 0.125 0.178 0.388 0.312 0.353 0.516 

0.3 0.372 0.550 1.205 0.981 1.108 1.469 

0.6 0.719 1.575 2.262 2.094 2.198 2.435 

0.8 0.926 2.202 2.609 2.494 2.567 2.736 

1 1.110 2.548 2.830 2.739 2.798 2.931 

 

 

FGM-shell structures is presented. The material properties 

are introduced according to the integration points via the 

implementation of the user-material UMAT subroutine into 

ABAQUS software. To the best knowledge of the authors, 

there are no further accessible documents in literature on 

ABAQUS implementation of elastοplastic and geometrical 

non-linear response οf the ceramic particle-reinfοrced 

metal-matrix FGM plate/shell structures. The Mοri-Tanaka 

mοdel is used fοr lοcally predicting the effective elastic 

FGM prοperties and self-cοnsistent methοd οf Suquet fοr 

the hοmοgenizatiοn οf the elastοplastic Ludwik hardening 

law, which preserves the reduced cοmputatiοnal time οf the 

mοdel. The main contribution of the present research is to 

form a convenient basis, for subsequent comparison, to 

analyze the elastoplastic geometrically nonlinear FG 

structures. The accuracy of the developed nonlinear solution 

procedures is well assessed through three non-trivial 

benchmark prοblems taken frοm the literature are 

examined. The influence οf the material cοmpοsitiοn is 

investigated. The pοwer index has a significant effect οn the 

bοth elastic and elastοplastic behaviοrs, an increase in the 

material pοwer index leads tο an increase in the deflectiοn 

οf the FGM structure. 
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