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1. Introduction  
 

In the last three decades, the analysis of stress and 

deformation of fiber reinforced composite materials has 

been an important research area of solid mechanics. Wave 

propagation in a reinforced medium plays a very interesting 

role in civil engineering and geophysics. Fiber reinforced 

composites are used in a variety of structures due to their 

low weight and high strength. The components of a 

reinforced composite act together as a single anisotropic 

unit as long as they remain in elastic condition and this is 

the main characteristic property of reinforced composites. 

Belfield et al. (1983) introduced the idea of continuous self 

reinforcement at every point of an elastic solid. The 

problem of surface waves in fiber reinforced anisotropic 

medium was discussed by Sengupta and Nath (2001). Singh 

and Singh (2004) discussed the problem of reflection of 

plane waves at the free surface of a fiber reinforced elastic 

half space. Abbas et al. (2011) studied wave propagation in 

a fiber reinforced anisotropic thermoelastic half space under 

the effect of magnetic field. Sarkar et al. (2016) 

investigated the influences of fractional parameter, 

hydrostatic initial stress and magnetic field on the plane 

waves in a fiber reinforced generalized thermoelastic solid 

half space. 

In classical theory of elasticity, gravity field is generally 

neglected. The effect of gravity in the problem of wave 

propagation in solids, particularly on vibrations in an elastic  
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globe, was first studied by Bromwich (1898). Subsequently, 

an investigation on the effect of gravity was discussed by 

Love (1911), who showed that the velocity of Rayleigh 

waves is increased to a significant extent by gravitational 

field when wavelengths are large. The effects of rotation 

and gravity in a generalized thermoelastic medium were 

analyzed by Ailawalia and Narah (2009). Abd-Alla et al. 

(2017) investigated the propagation of waves in a 

homogeneous, orthotropic thermoelastic medium under the 

effect of gravity field. 

Due to extensive engineering applications, such as 

pulsed laser cutting and welding, high speed machining and 

grinding, several research works have been devoted to 

problems involving a moving heat source. Danilovskaya 

(1950) was the first who solved a dynamical heat source 

problem under the purview of coupled thermoelasticity. It is 

worthwhile to mention the contributions of Eason and 

Sneddon (1959) and Nowacki (1959) under the coupled 

theory with instantaneous and moving heat source. Baksi et 

al. (2008) studied a thermoviscoelastic problem in an 

infinite isotropic medium in the presence of a point heat 

source by using joint Laplace-Fourier transform technique 

and eigen value approach. Ailawalia and Singla (2015) 

employed the dual-phase lag heat transfer model to study 

the problem of isotropic generalized thermoelastic medium 

with internal heat source. 

Chen and Gurtin (1968) and Chen et al. (1968, 1969) 

presented a new theory including two temperatures of heat 

conduction in deformable bodies. This theory suggests that 

heat conduction comprises of two different temperatures, 

i.e., the conductive temperature   and the 

thermodynamical temperature  . The first is due to the 

thermal process and the second is due to the mechanical 

process inherent between the particles and layers of elastic 

materials. For time independent situations, the difference 

between these two temperatures is proportional to the heat 
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supply and in the absence of heat supply, the two 

temperatures are identical. Ailawalia et al. (2009) studied 

the deformation of a rotating generalized thermoelastic 

medium with two temperature under the influence of 

gravity. Said and Othman (2016) applied the two-

temperature theory of generalized thermoelasticity to study 

the wave propagation in a fiber-reinforced magneto-

thermoelastic medium in the context of the three-phase-lag 

model and Green-Naghdi theory without energy dissipation. 

Recently, Yadav et al. (2017) analyzed the thermoelastic 

interactions in a homogeneous isotropic electro-

microstretch semi-space caused by mechanical source 

acting on the initially stressed surface under the purview of 

two temperature thermoelasticity theory without energy 

dissipation. 

Nowadays, fractional calculus is playing a crucial role in 

developing several models and it has been verified that the 

use of fractional order derivatives/ integrals leads to the 

formulation of certain physical problems, which are more 

economical and appropriate than the classical approach. 

Furthermore, fractional calculus has also been proved to be 

very useful in the areas of diffusion, heat conduction, 

continuum mechanics, viscoelasticity and electromagnetic 

etc. The first application of fractional derivatives was given 

by Abel, who applied fractional calculus in the solution of 

tautochrone problem. Povstenko (2005) developed a quasi-

static uncoupled thermoelastic model based on the heat 

conduction equation with fractional order time derivatives. 

Sherief et al. (2010) has constructed a new model of 

thermoelasticity using fractional calculus with second 

sound. Taking into consideration the new Taylor series 

expansion of time fractional order developed by Jumarie 

(2010), Ezzat (2010) established a new model of fractional 

order generalized thermoelasticity. El-Karamany and Ezzat 

(2011) introduced the two temperature fractional 

thermoelasticity theory for non-homogeneous anisotropic 

elastic solid, proved uniqueness and reciprocal theorems 

and established the convolutional variational principle. 

Deswal and Kalkal (2013) studied a half space problem in 

the context of fractional order micropolar thermo-

viscoelasticity with two temperatures. Youssef (2013) 

solved a one dimensional problem of fractional order two 

temperature generalized thermoelastic medium subjected to 

moving heat source. Recently, Deswal et al. (2017) studied 

the magneto-thermo-viscoelastic interactions in a 

homogeneous, isotropic medium under generalized 

thermoelasticity theory without energy dissipation with 

fractional order strain. 

In the present analysis, the propagation of plane waves 

in a fiber reinforced generalized thermoelastic medium in 

the presence of moving internal heat source and gravity has 

been investigated by employing the fractional order two 

temperature theory. Laplace Fourier double transform 

technique has been used to solve the non-dimensional field 

equations. By using numerical inversion technique, 

expressions for displacement, temperature and stresses are 

computed in the physical domain. Effects of different 

parameters on various fields inside the medium are 

analyzed graphically. Some special cases are also derived. 

 

2. Basic governing equations 
 

Following Belfield et al. (1983) and El-Karamany and 

Ezzat (2011), the constitutive equation and the field 

equations for the proposed model of generalized 

thermoelasticity are given as: 

(i) The constitutive relation 

( )2 2( )ij kk ij T ij k m km ij i j kk L Te e a a e a a e       = + + + + −  

( )i k kj j k ki k m km i j ij ija a e a a e a a e a a   + + −  
(1) 

(ii) The strain-displacement relation 

( ), ,

1

2
= +ij i j j ie u u . (2) 

(iii) Equation of motion 

,ji j i iF u + = . (3) 

(iv) Two-temperature fractional order heat conduction 

equation 

( )
( )0

, 0 ,1
1


   

  
= + +    +  

m m

ij ij E ij i jm
K c T u

t m t
 

( )
01

1

 
− +   +  

m m

m
Q

m t
. 

(4) 

In the above equation, the fractional order derivative 

proposed by Caputo is defined as 

( )
( )

( )
( )

0

1
, [0, 1)

1


 



− 
= − 
 − 

t
mm

f
D f t t d m

m
. 

(v) Relation between thermodynamical and conductive 

temperature 

11 ,11 22 ,22   − = +a a . (5) 

Here 's ij  are the components of stress tensor, 'sije  

are the components of strain tensor, 
kke  is the dilatation, 

, T   are the elastic constant,  ij  is thermoelastic 

coupling tensor, ( ), ,   −L T
 are reinforcement 

parameters,  ij  is the Kronecker delta and 

( )1 2 3, ,=a a a a , 2 2 2

1 2 3 1+ + =a a a . We choose the fiber 

reinforcement direction as ( )1, 0, 0=a .   is the density 

of the medium, 
Ec  is specific heat at constant strain and 

ijK  is thermal conductivity tensor. 'sij
 are the 

coefficients of linear thermal expansion, Q is the heat 

source, 
0  is the thermal relaxation time, 

iF  is the 

gravity force, m is the fractional order parameter and   

denotes the Gamma function. 
11a  and 

22a  are two 

temperature parameters, 
0 = −T T  represents the 

thermodynamical temperature where T is the absolute 

temperature, 
0T  is the reference temperature and 

0 = −T  stands for the conductive temperature. Comma 
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notation denotes partial derivatives with respect to spatial 

co-ordinates and dot notation represents derivative with 

respect to time. 

 

 

3. Problem formulation 
 

We consider a two dimensional problem in a fiber 

reinforced anisotropic half space. We shall use the 

rectangular Cartesian co-ordinate system ( ), ,x y z  having 

the surface of the half-space as the plane x = 0 and x axis is 

assumed to be pointing vertically into the medium ( )0x . 

The whole medium is considered under the influence of 

gravity. The bounding surface of the half space is assumed 

to be isothermal and subjected to a mechanical type load 

0F  with an inclination  to x axis. 

For two dimensional problem in Cartesian co-ordinates 

x and y, the displacement vector u , conductive temperature 

 , thermodynamical temperature   and gravity force F  

takes the form 

( ), , 0=u u v , ( ), ,=u u x y t , ( ), ,=v v x y t , 

( ), , = x y t , ( ), , = x y t , 1 


=


v
F g

x
, 

2 


= −


u
F g

x
, 

3 0=F . 

The governing Eqs. (1) and (3)-(5) in two dimensional 

case assume the shape 

11 12 11  
 

= + −
 

xx

u v
A A

x y
, (6) 

12 13 22  
 

= + −
 

yy

u v
A A

x y
, (7) 

14
  

= + 
  

xy

u v
A

y x
, (8) 

2 2 2 2

11 15 14 112 2 2


  

      
+ + − + =  

       

u v u v u
A A A g

x x y y x x t
, (9) 

2 2 2 2

14 15 13 222 2 2


  

      
+ + − − =  

       

v u v u v
A A A g

x x y y y x t
, (10) 

( )

2 2

0
11 222 2

1
1

      
+ = +      +  

m m

m
K K

x y t m t
 

( )
0

0 11 0 22 1 ,
1

m m

E m

u v
c T T Q

x y m t


   

    
 + + − +       +    

 

(11) 

2 2

11 222 2

 
 

 
− = +

 
a a

x y
, (12) 

where 

 

Fig. 1 Inclined load over a fiber reinforced thermoelastic 

half-space 

 

 

11 2 4 2    = + + − +L TA , 
12  = +A , 

 
13 2 = + TA , 

14 = LA , 
15 12 14= +A A A , 

 ( ) ( )11 11 222 3 4 2         = + + − + + +L T
, 

 ( ) ( )22 11 222 2      = + + + T
. 

Now, we transform the above equations into non-

dimensional forms by introducing the following 

dimensionless parameters 

( ) ( )1, , , , , ,    =x y u v c x y u v , ( ) ( )2

0 1 0, ,    =t c t , 

( ) ( )11

2

1

, ,


   


  =
c

, 

( ) ( )2

1

1
, , , ,     


   =xx xy yy xx xy yy

c
, 

( ) ( )1 2 1 22

1

1
, ,


  =H H H H

c
, ( ) ( )2 2

11 22 1 11 22, ,  =a a c a a , 

2

0 1

1

 
 =

E

Q Q
c T c

, 
3

1

1


 =g g

c
, 

 where 

11


 = Ec

K
 and 

2 11
1


=

A
c . 

Eqs. (6) and (8)-(12) may now be reduced to the 

following system of dimensionless equations (after 

removing the primes for clarity) 

1 
 

= + −
 

xx

u v
B

x y
, (13) 

3
  

= + 
  

xy

u v
B

y x
, (14) 

2 2 2 2

2 3 42 2 2

     
+ + − + =

      

u v u v u
B B B

x x y y x x t
, (15) 
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2 2 2 2

3 2 5 6 42 2 2

     
+ + − − =

      

v u v u v
B B B B B

x x y y y x t
, (16) 

 
(17) 

2 2

11 222 2

 
 

 
− = +

 
a a

x y
, (18) 

where 

12
1

11

=
A

B
A

, 15
2

11

=
A

B
A

, 14
3

11

=
A

B
A

, 
4 =B g , 

13
5

11

=
A

B
A

, 22
6

11




=B , 22

1

11

 =
K

K
, 

( )
2

0 11

2

11





=

E

T

A c
, 0 11 22

3

11

 



=

E

T

A c
, 0 11

4

11


 =

T

A
. 

 

 

4. Solution in the transformed domain 
 

Following the solution methodology through integral 

transform technique, we now operate Laplace and Fourier 

transforms on Eqs. (15)-(18). The Laplace and Fourier 

transforms of a function f(x, y, t) with parameters s and   

are defined by the relations 

( ) ( )
0

, , , , stf x y s f x y t e dt



−=   and (19) 

 

(20) 

where over-bar and over-cap denote the Laplace and 

Fourier transforms respectively. Applying Laplace and 

Fourier transforms on Eq. (18), we get 

 
(21) 

Application of Laplace and Fourier transforms on Eqs. 

(15)-(17) and the usage of ̂  in terms of ̂  from Eq. (21) 

provides 

 
(22) 

 
(23) 

 
(24) 

where 

 
(25) 

and 2 2

11 2= +G B s , 
12 4 2= −G B B , 2

13 221 = +G a , 

14 11=G a , 
21 4 2= +G B B , 

22 3=G B , 2 2

23 5= +G B s , 

24 6=G B , 
31 2=G sk , 

32 3 =G sk , 2

33 1 =G , 

34 =G sk , 
35 4

ˆ=G k Q , 
( )

01
1

m

mk s
m


= +

 +
. 

Moving source is located at the origin and time 0+=t  

starts moving along the positive y axis with uniform 

velocity v0. The source is assumed to be of the form 

 
(26) 

where 
0Q  is the heat source strength (constant),   is the 

Dirac delta function and H is the Heaviside unit step 

function. 

Taking Laplace and Fourier transforms of Eq. (26), we 

have 

. 

Eliminating û  and ̂  from Eqs. (22)-(24), we get the 

following sixth order ordinary differential equation satisfied 

by v̂  

( )6 4 2 ˆ+ + + =D RD ND I v P ,  (27) 

where 

1

1

=
Q

R
P

, 1

1

=
R

N
P

, 1

1

=
S

I
P

, 1

1

=
T

P
P

, 

( )1 13 21 23 11= − +P H H H H , 

1 22 13 14 21 24 11 23 12= − + +Q H H H H H H H H , 

1 14 22 25 11 12 24= − −R H H H H H H , 
1 12 25=S H H , 

1 12 26=T H H , 
11 24 21= −H G G , 

12 11 24=H G G , 

13 22=H G , 
14 12 24 23= −H G G G , 

21 21 1 24 31 14= +H G G G G G , 
22 21 2 24 31 13= +H G G G G G , 

23 22 1=H G G , 
24 22 2 23 1 32 24 14= + −H G G G G G G G , 

25 23 2 32 24 13= −H G G G G G , 
26 24 13 35=H G G G , 

1 34 141= +G G G , 
2 33 34 13= +G G G G . 

Adopting the same procedure, we can establish the 

following equation satisfied by û  and ̂  

( )( ) ( )6 4 2 ˆˆ, 0,+ + + =D RD ND I u P . (28) 

Eq. (27) can be factorized as 

( )( )( )
22 2 2 2 2

1 2 3
ˆ  − − − =D D D v P , (29) 

where 

( )1

1
2 sin

3
 = −  n q R , 

( ) ( )( )2

1
3cos sin

3
  = − − +

 
R n q q  

218



 

Effect of heat source and gravity on a fractional order fiber reinforced thermoelastic medium 

 

( ) ( )( )3

1
3cos sin

3
  = − + −

 
R n q q  

are the roots with positive real part of the characteristic 

equation 

6 4 2 0  + + + =R N I  

with 2 3= −n R N , 
( )1sin

3

−

=
r

q , 

3

3

2 9 27

2

− + −
= −

R RN I
r

n
 

satisfying the relation 

2 2 2

1 2 3  + + = −R , 2 2 2 2 2 2

1 2 2 3 1 3     + + = N , 
2 2 2

1 2 3   = −I . 

Since the intent is that the solution vanishes at infinity 

so as to satisfy the regularity condition at infinity, we now 

consider the following solutions of Eqs. (27) and (28) 

 
(30) 

where 
3

13 14

2

11 12

 



+
=

−

i i
i

i

H H
d

H H
, 

( )

2

22 23 21

2

24 14 13

 



− +
=

−

i i i
i

i

G G G d
l

G G G
( 1, 2, 3=i ), 

23
4

24 13

=
G

l
G G

, 
4 =

P
A

I
 and ( )1, 2, 3=iA i  are arbitrary 

constants. 

 

 

5. Application 
 

We have considered a fiber reinforced, anisotropic 

thermoelastic half space 0x  with fractional order heat 

conduction. The bounding surface x = 0 is assumed to be 

isothermal and is subjected to a mechanical type inclined 

load 
0F  with an inclination   to x axis as shown in Fig. 

1. Hence, the normal line load 
1H  and tangential line load 

2H  are expressed as 
1 0 cos=H F  and 

2 0 sin=H F  

respectively. In order to solve the problem, mathematically, 

the boundary conditions at the surface x = 0 are expressed 

as 

( ) ( ) ( )10, , = −xx y t H y H t , 

( ) ( ) ( )20, , = −xy y t H y H t , 

( )0, , 0 =y t , 

(31) 

where ( ) y  is the Dirac delta function and ( )H t  is the 

Heaviside unit step function. 

Making use of (13) and (14) in boundary conditions 

(31), applying the transformations defined by (19) and (20) 

and then substituting the expressions from (30) in the 

resulting equations and Eq. (25), we obtain the following 

expressions for the different field quantities in non-

dimensional form 

 

(32) 

where 

( ) ( )1 2 3 3 2 2 1 3 3 1 = − − −l M N M N l M N M N  

( )3 1 2 2 1+ −l M N M N , 

( ) ( )1 4 4 2 3 3 2 2 4 3 3 4 = − − − −l A M N M N l M N M N  

( )3 4 2 2 4l M N M N+ − , 

( ) ( )2 1 4 3 3 4 4 4 1 3 3 1 = − + −l M N M N l A M N M N  

( )3 1 4 4 1l M N M N+ − , 

( ) ( )3 1 2 4 4 2 2 1 4 4 1 = − − −l M N M N l M N M N  

( )4 4 1 2 2 1− −l A M N M N  

and 

( ) ( )2

1 13 14 3,i i i i i i i iM d B G G l N B d    = + + − = + ( 1, 2, 3),i =  

( )1
4 1 13 4 4= − +

H
M B G l A

s
, 2

4 =
H

N
s

. 

 

 

6. Special cases 
 

6.1 Without internal heat source 
 

Neglecting the influence of internal heat source i.e., 

Q0=0, the expressions of displacements, conductive 

temperature, thermodynamical temperature and stresses will 

be obtained from relation (32). If we remove gravitational 

and two temperature effects also, then our results match 

with those of Sarkar et al. (2016) with appropriate changes 

in boundary conditions and solution technique (avoiding 

magnetic effect and initial stress). 

 

6.2 Ignoring the effect of gravity 
 

The gravitational effect can be neglected by taking g = 0 

in the equation of motion. Then we shall be left with the 

relevant problem in a fractional order fiber reinforced 

thermoelastic half space with two temperature. Neglecting 

reinforcement, two temperature and fractional effect also 

and making suitable changes in boundary conditions and 

solution technique, our results coincide with those of 

Ailawalia and Singla (2015). 

 

6.3 Without fiber reinforcement 
 

By setting reinforcement parameters α = β = 0 and µL= 

µT in the constitutive relation, we get corresponding 

expressions of the field variables in the context of fractional 

order two temperature generalized thermoelasticity theory 

with internal heat source and gravity. 

 

6.4 Without fractional order 
 

By taking m = 1 in the heat conduction equation, the 
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problem reduces to a two dimensional problem in a fiber 

reinforced thermoelastic medium with internal heat source 

under gravity in the context of Lord-Shulman theory with 

two temperature. 

 

 

7. Inversion of the transforms 
 

The transformed displacements, stresses and 

temperature distributions are functions of x and the 

parameters s and ξ of Laplace and Fourier transforms 

respectively and hence are of the form ( )ˆ , ,f x s . To get 

the function in the physical domain, first we invert the 

Fourier transform using 

 

(33) 

where 
ef and 

of denote the even and odd parts 

respectively of the function ( )ˆ , ,f x s . 

We shall now outline the numerical inversion method 

used to find the solution in the physical domain. The 

inversion formula of the Laplace transform is defined as 

( ) ( ) ( )1 1
, , , , , ,

2

c

st

c

L f x y s f x y t e f x y s ds






+ 

−

− 

  = =  
, 

(34) 

where ( ), ,f x y s  be the Laplace transform of function 

( ), ,f x y t , c is an arbitrary real number larger than the real 

parts of all the singularities of ( ), ,f x y s . 

Taking s c w= + , the preceding integral takes the form 

( ) ( ), , , ,
2

ct
iwte

f x y t f x y c w e dw




−

= + . (35) 

Expanding the function ( ) ( ), , , ,cth x y t e f x y t−=  in a 

Fourier series in the interval  10, 2t , we obtain the 

approximate formula (Honig and Hirdes 1984) 

( ) ( ), , , , Df x y t f x y t E= + , (36) 

where 

( ) 0 1

1

1
, , , 0 2

2
k

k

f x y t c c t t




=

= +    (37) 

and 

1

1 1

, ,

k tct
t

k

e k t
c e f x y c

t t

 
   

= +  
   

. (38) 

The discretization error 
DE  can be made arbitrarily 

small by choosing c large enough (Honig and Hirdes 1984). 

Since the infinite series in Eq. (37) can be summed upto a 

finite number N of terms, the approximate value ( ), ,f x y t  

becomes 

( ) 0 1

1

1
, , , 0 2

2

N

N k

k

f x y t c c t t
=

= +   . (39) 

Using the preceding formula to evaluate ( ), ,f x y t , we 

introduce a truncation error 
1t

E  that must be added to the 

discretization error to produce the total approximation error. 

Two methods are used to reduce the total error. First, the 

‘Korrektur’ method is applied to reduce the discretization 

error. Next, the ε-algorithm is used to accelerate 

convergence (Honig and Hirdes 1984). 

The Korrektur method uses the following formula to 

evaluate the function ( ), ,f x y t  

( ) ( ) ( )12

1, , , , , 2
ct

Df x y t f x y t e f x t t E
−

 
= − + + , (40) 

where the discretization error 
D DE E  . Thus, the 

approximate value of ( ), ,f x y t  becomes 

( ) ( ) ( )12

1, , , , , , 2
ct

NK N Nf x y t f x y t e f x y t t
−

= − + , (41) 

where N   is an integer such that N N  . 

We shall now describe the ε-algorithm that is used to 

accelerate the convergence of the series in Eq. (39). Let 

2 1N q= + , where q is a natural number and 
1

m

m k

k

s c
=

=  is 

the sequence of the partial sum of the series in Eq. (39). 

 We define the ε-sequence by  

 
(42) 

and 

 
(43) 

It can be shown that (Honig and Hirdes 1984) the 

sequence , converges to ( ) 0, ,
2

D

c
f x y t E+ −  

faster than the sequence of partial sums , 1, 2, 3,ms m = . 

The actual procedure used to invert the Laplace 

transform consists of using Eq. (41) together with the 

ε-algorithm. The values of c and t1 are chosen according to 

the criteria outlined by Honig and Hirdes (1984). 

Following Rakshit and Mukhopadhyay (2007), 

simultaneous computations of the inversion of the Fourier 

transform are performed by evaluating the infinite integral 

(33) numerically by seven-point Gaussian quadrature 

formula for several prescribed values of the variables x and 

y. 
 

 

8. Numerical results and discussions 
 

To illustrate and compare the theoretical results, 

obtained in Section 5, we now present some numerical 

results which depict the variations of displacement, 

temperature and stress fields. Following Abbas et al. (2011), 

we take the following values of the physical constants 
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10 25.65 10 Nm −=  , 
10 22.46 10T Nm −=  , 

10 25.66 10L Nm −=  , 10 21.28 10 Nm −= −  , 

10 2220.90 10 Nm −=  , 
3 1 10.787 10Ec Jkg K− −=  , 

3 1 1 1

11 0.0921 10K Jm K s− − −=  , 

3 1 1 1

22 0.0963 10K Jm K s− − −=  , 4 1

11 0.017 10 K − −=  , 

4 1

22 0.015 10 K − −=  , 
0 0.02s = , 

20.2g ms−= , 
32660 ,kgm −= 0 293 ,T K=

 
2

11 0.02 ,a m=
 

2

22 0.04 .a m=  

Other parameters of the problem are taken as 

0 10Q = , v0=1, 0.5m = , 
0 1F = , 45 =  . 

With these numerical values of the parameters, 

expressions of the non-dimensional field variables have 

been evaluated and results are presented in the form of 

graphs at different positions of x at t = 0.1 and y = 1.0. From 

clarity point of view, we have divided the graphical 

representation into four groups. In first group (Figs. 2-6), 

we have explored the effects of heat source and gravity on 

the spatial variations of physical fields in fractional order 

two temperature generalized thermoelastic medium. The 

variation of different dimensionless variables are 

represented for three different cases: 

1. Fiber reinforced thermoelastic solid with internal heat 

source and gravity (FRTQG), 

2. Fiber reinforced thermoelastic solid with gravity 

(FRTG), 

3. Fiber reinforced thermoelastic solid with internal heat 

source (FRTQ). 

Second group (Figs. 7-11) exhibits the behaviour of 

field variables for different values of fractional order 

parameter which are taken as 0.1, 0.5, 1.0. Without 

fractional order case corresponds to m = 1.0. Third group 

(Figs. 12-16) is meant for analysing the effects of 

reinforcement parameter (under the cases, with 

reinforcement (WRE) and no reinforcement (NRE)) and 

time (t = 0.1, 0.2) on various fields. Fourth group (Figs. 

17-21) shows the effect of different inclinations 

( )0 , 45 , 90 =     of the inclined load on various field 

quantities. 

Group I 

In Fig. 2, we have depicted the normal displacement 

distribution with distance x to investigate the effects of heat 

source and gravity, by taking all other parameters as 

constant. Displacement field exhibits significant sensitivity 

towards heat source and gravity. Absence of heat source 

(FRTG) causes decrement in the magnitude of 

displacement. In the absence of gravity (FRTQ), 

displacement is negative initially and numerical values are 

small as compared to FRTQG case. Ultimately, in all the 

cases, displacement field tends to zero. 

Figs. 3 and 4 describe that the conductive temperature 

starts with zero value for all the three cases, which is in 

accordance with the boundary condition, while 

thermodynamical temperature starts with non zero value. 

For both the temperatures, their profiles are quite similar for 

FRTQG and FRTQ cases and tend to non zero value. 

 

Fig. 2 Effect of heat source and gravity on normal 

displacement 

 

 
Fig. 3 Effect of heat source and gravity on conductive 

temperature 

 

 

Fig. 4 Effect of heat source and gravity on thermodynamical 

temperature 

 

 

But the magnitude of both the temperatures is very small 

in the case FRTG and tends to zero value. Also, presence of 

heat source increases and presence of gravity decreases both 

the temperatures numerically. 

Figs. 5 and 6 demonstrate the distributions of normal 

and tangential stress respectively. According to the 

boundary conditions and numerical data, both the stresses 
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Fig. 5 Effect of heat source and gravity on normal stress 

 

 

Fig. 6 Effect of heat source and gravity on tangential stress 

 

 

Fig. 7 Effect of fractional parameter on normal 

displacement 

 

 

start with the same value. Presence of heat source causes 

increasing effect while presence of gravity causes 

decreasing effect on normal stress. It is clear from Fig. 6 

that heat source and gravity exhibit very small effect on 

tangential stress. Normal stress tends to non zero value in 

the presence of heat source and tends to zero in the absence 

of heat source while tangential stress tends to zero in the 

absence and presence of heat source. This can be verified 

from the expression of both the stresses in relation (32). 

 

Fig. 8 Effect of fractional parameter on conductive 

temperature 

 

 

Fig. 9 Effect of fractional parameter on thermodynamical 

temperature 

 

 

Group II 

In Fig. 7, we have plotted the normal displacement 

against distance x at three different mentioned values of 

fractional parameter m. Fractional parameter exhibits 

decreasing effect in the range 0 ≤ x ≤ 1 and increasing effect 

for 1 < x ≤ 7. Removal of fractional parameter causes 

decrement in the value of normal displacement before x = 1 

and increment after x = 1. Finally, displacement tends to 

zero for x > 7. 

Figs. 8 and 9 are drawn to demonstrate the profiles of 

conductive and thermodynamical temperatures respectively 

for the considered values of fractional parameter. For all the 

three cases, initially, conductive temperature begins with 

zero value which is in accordance with the boundary 

condition and thermodynamical temperature starts with 

non-zero value. For both the temperatures, fractional 

parameter shows decreasing effect before x = 2 and 

increasing effect after x = 2. Absence of fractional 

parameter numerically decreases both the temperatures for 

0 ≤ x ≤ 2 and increases for x > 2. 

Figs. 10 and 11 depict the space variation of normal 

stress and tangential stress respectively. As we increase the 

value of fractional parameter, normal stress is decreased 

numerically in the range 0 ≤ x ≤ 2 and is increased for 
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Fig. 10 Effect of fractional parameter on normal stress 

 

 

Fig. 11 Effect of fractional parameter on tangential stress 

 

 

Fig. 12 Effect of reinforcement and time on normal 

displacement 

 

 

x > 2. It attains it minimum value at x = 1. The increment in 

the value of fractional parameter causes very less effect in 

the numerical value of tangential stress. We can see from 

the profile that removal of fractional parameter exhibits 

negligible effect on tangential stress while the numerical 

value of normal stress without fractional order case is less 

in the range 0 ≤ x ≤ 2 and greater for x > 2 as compared to 

the fractional order case. 

 

Fig. 13 Effect of reinforcement and time on conductive 

temperature 

 

 

Fig. 14 Effect of reinforcement and time on 

thermodynamical temperature 

 

 

Fig. 15 Effect of reinforcement and time on normal stress 

 

 

Group III 

Figs. 12-16 represent the values of considered physical 

variables for two values of time which are taken to be 0.1 

and 0.2 in the presence and absence of reinforcement. It is 

observed from the figures that increment in the value of 

time is making the magnitudes of field variables small for 

both the cases (WRE and NRE). Thus, time has a 

decreasing effect on all the field quantities. Also, the effect 

of reinforcement is quite pertinent on all the fields. 

Reinforcement exhibits increasing effect before x = 1 and 
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Fig. 16 Effect of reinforcement and time on tangential stress 

 

 

Fig. 17 Effect of inclination of load on normal displacement 

 

 

decreasing effect after x = 1 on the magnitude of normal 

displacement, which can be easily noticed from the Fig. 12. 

Figs. 13-16 exhibit the decreasing effect of reinforcement 

on all the other field variables as the numerical values of all 

the field quantities in WRE case are less than those of case 

NRE for both the values of time. 

Group IV 

The dynamic effect of inclination of load 

( )0 , 45 , 90 =     on normal displacement has been 

studied in Fig. 17. The profile begins with positive value for  

45 , 90 =    and with negative value for δ = 0°. Magnitude 

of displacement increases as the angle of inclination 

increases. So, inclination causes increasing effect on 

displacement. 

Fig. 18 shows that the profile of conductive temperature 

is same for all the values of δ and starts with zero value 

satisfying the boundary condition. Inclination of angle 

causes increasing effect on conductive temperature. It is 

clear from Fig. 19 that inclination has decreasing effect on 

thermodynamical temperature. However, the profile is 

similar for all the three values of δ and begins with non-zero 

value. 

Normal stress and tangential stress are plotted in Fig. 20 

and Fig. 21 respectively for considered values of δ. It is 

clear from the figures that increment in the angle of 

inclination decreases the magnitude of normal stess. Normal 

stress vanishes initially for δ = 90◦ while tangential stress 

 

Fig. 18 Effect of inclination of load on conductive 

temperature 

 

 

Fig. 19 Effect of inclination of load on thermodynamical 

temperature 

 

  

 

Fig. 20 Effect of inclination of load on normal stress 

 

 

vanishes initially for δ = 0◦. The numerical values of 

tangential stress have been magnified by 101 for δ = 0, to 

depict the effect of inclination simultaneously on all the 

curves. 

 

 

9. Conclusions 
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Fig. 21 Effect of inclination of load on tangential stress 

 

 

 

This article presents an in-depth analysis of inclined 

load problem in the context of fractional order two 

temperature theory of generalized thermoelasticity in fiber 

reinforced thermoelastic medium with internal heat source 

and gravity. The main conclusions due to influence of 

different parameters can be summarized as follows: 

• All the considered fields are found to be sensitive 

towards heat source effect. In the absence of heat source, all 

the field variables tend to zero. 

• Presence of gravity acts to decrease the magnitude of 

all the physical fields except normal displacement and 

tangential stress. 

• The fractional parameter causes slight impact over all 

the considered field variables. 

• Reinforcement parameter causes decreasing effect on 

all the physical fields except normal displacement. 

• Time factor has decreasing effect on all the field 

quantities. 

• Angle of inclination of load has also affected the 

studied fields significantly. As the angle increases from δ = 

0° to 90°, normal displacement, conductive temperature and 

tangential stress increase while thermodynamical 

temperature and normal stress decrease numerically. 
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