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1. Introduction  
 

Dynamic response analysis and resonance phenomenon 

have been an interesting research area for civil engineering 

applications. The analysis of exact dynamic behaviour of 

frame structures is a challenging task for safe design 

especially against earthquakes. The exact vibration analyses 

of frames are performed via distributed parameter model 

approach. Due to complicated and time consuming analysis 

procedure, limited studies about exact free vibrations of 

frames can be found in open literatures. Mei (2012) 

performed free vibration analysis of one storey frames by 

using wave vibration approach according to Euler-Bernoulli 

beam theory (EBT). Grossi and Albarracin (2013) obtained 

natural frequencies of inclined frames by variational 

approach. Labib et al. (2014) applied dynamic stiffness 

formulation for free vibrations of cracked frames using 

EBT. Mei and Sha (2015) presented an application of wave 

propagation for vibrations of a spatial frame using EBT. 

Mei (2018) calculated modes and frequency response of 

frames using EBT and Timoshenko beam theory (TBT) via 

wave vibration approach. Banerjee and Ananthapuvirajah 

(2018) obtained natural frequencies of single-bay single-

story portal frames via the dynamic stiffness method 

(DSM). Bozyigit and Yesilce (2018) performed free 

vibration analysis of planar frames using DSM according to 

SVSDT. 

Dynamic response of structures such as beams, beam 

assembly structures and shells are investigated using 

distributed parameter model in several studies. Li et al.  
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(2016) derived dynamic stiffness formulations for in-plane, 

bending vibrations and harmonic response of plates. Free 

vibrations and dynamic response of cross-ply laminated 

shells are investigated via DSM by Thinh and Nguyen 

(2016).  Han et al. (2017) investigated forced vibrations of 

bending-torsion coupled Timoshenko beams using Green’s 

function. Attar et al. (2017) obtained dynamic response of 

cracked Timoshenko beams on elastic foundations under 

moving harmonic loads. Tan et al. (2018) investigated 

dynamic response of non-uniform Timoshenko beams with 

elastic supports under a moving spring-mass system. Ai and 

Ren (2017) obtained dynamic response analysis of an 

infinite Euler-Bernoulli beam supported by a transversely 

isotropic multilayered half-space under moving loads. Miao 

et al. (2018) obtained closed-form solution of dynamic 

response of an infinite Euler-Bernoulli beam on elastic 

foundation under harmonic line load.  

The infill walls have been extensively used in the 

building type frame structures as separators or architectural 

reasons. However, the effects of infill walls on behavior of 

frame structures are neglected in general as analyses of bare 

frames are significantly practical when compared to 

analyses of infilled frames. Thus, the mathematical 

modeling of infill walls has been an attractive research 

field. Polyakov (1950) presented the first study about 

effects of infill walls for analysis of structures. The infill is 

modeled using an equivalent pin-jointed diagonal strut by 

Holmes (1961). In this study, the material properties of strut 

are same as infill’s. In literature, the variations of 

equaivalent strut approach can be found (Holmes 1963, 

Mainstone 1974, El-Dakhakhni et al. 2003). The equivalent 

diagonal strut model which is also called as macro-model, is 

added to several codes such as Eurocode-6 (1996) and 

FEMA-356 (2000). Dynamic analysis of infilled frames are 

performed in limited studies. Chaker and Cherifati (1999) 

measured frequencies of an infilled frame building and bare 

frame building. In this study, it is concluded that 
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fundamental frequency of infilled frame building is much 

higher than bare frame building. Thambiratnam (2009) 

obtained fundamental period of a simple frame structure 

using finite element method (FEM). Tamboli and Karadi 

(2012) applied equivalent diagonal strut method to seismic 

analysis of 3D frames via ETABS. Salama (2015) 

investigated calculation of period of concrete moment 

resisting frame buildings. Beiraghi (2016) calculated 

fundamental period of steel frame buildings via equivalent 

diagonal strut approach and ETABS. Al-Balhawi and Zhang 

(2017) obtained elastic vibration periods of reinforced 

concrete frames with various infill walls by using SAP2000. 

Ozturkoglu et al. (2017) performed nonlinear response 

analysis of RC frames considering masonary infill walls 

with openings. 

The cross-sections of Euler-Bernoulli beams behave 

rigid and remain perpendicular to the neutral axis under 

bending. Thus, natural frequencies of beams are 

overestimated according to EBT. More realistic results of 

dynamic analyses can be obtained by using TBT which 

takes shear deformation and rotational inertia into account. 

However, formulations of TBT are strictly related to a 

parameter called shear coefficient or area reduction factor 

which is used for decreasing the error arised from 

assumption of constant shear stress distribution on the cross 

section (Han et al. 1999). This situation canalized 

researchers to develop high-order beam theories that 

consider a realistic shear stress distribution with the 

assumption of cross section does not remain plane after 

bending (Levinson 1981, Bickford 1982, Reddy 1984, 

Heyliger and Reddy 1988). Ghugal and Shimpi (2001) 

compared EBT, TBT and high-order beam theories for 

isotropic and anisotropic beams. Shimpi (2002) studied on a 

refined plate theory that based on shear and bending 

components of lateral and axial displacements. Shimpi et al. 

(2007) introduced two displacement based shear 

deformation theories involving only two unknown functions 

for plate bending. Even high-order theories provide more 

accurate results when compared to EBT and TBT, the 

formulations of high-order beam theories are significantly 

complicated and time-consuming. Shimpi et al. (2017) 

presented a new SVSDT that considers the parabolic shear 

stress distribution along the cross-section. The governing 

equation of motion of SVSDT is a fourth order partial 

differential equation. Moreover, the shear correction factor 

is not needed according to SVSDT. Klouche et al. (2017) 

applied an original SVSDT to buckling analysis of thick 

isotropic plates. Abdelbari et al. (2018) studied on a single 

variable shear deformation model for bending analysis of 

thick isotropic beams. 
An effective method is necessary for exact vibration 

problems of beam assembly structures like frames because 
of numerous complicated formulations. The DSM is a 
suitable method as analysis procedure can be extended by a 
standard coding technique for structures that have multiple 
members such as frames. The DSM provides exact results 
as uses the exact mode shapes (Banerjee 1997). There are 
many studies in literature about application of DSM for 
various types of structures under different boundary 
conditions (Damanpack and Khalili 2012, Ghandi et al. 
2012, Banerjee and Jackson 2013, Tounsi et al. 2014, Su  

 

Fig. 1 Infilled planar frames and mathematical models 
 
 

and Banerjee 2015, Bozyigit and Yesilce 2016, Naprstek 
and Fischer 2017, Ghandi and Shiri 2017, Howson and 
Watson 2017, Banerjee and Ananthapuvirajah 2018, Zhang 
et al. 2018).  

The novelty of this study is based on calculating exact 

dynamic response of frames considering infill walls for the 

first time. The natural frequencies and HRCs of fully 

infilled and soft storey frame models are obtained using 

DSM for different infill thickness values. The HRCs reveal 

the natural frequencies of infilled frames directly. The 

effects of using SVSDT instead of TBT on dynamic 

response analysis of infilled are observed. The results are 

obtained from algorithms that prepared in Matlab. 

 

 

2. Model and theory  
 

In this study, a single-bay three-storey fixed supported 

planar frame is considered. The schematic view of fully 

infilled model and soft storey model are presented in Figs. 

1(a) and (c), respectively. The infill walls are modeled by 

means of equivalent pin-jointed diagonal strut method 

(Figs. 1(b)-(d)). In Fig. 1, F(t) represents a sinusoidal 

dynamic point load. 

The Young’s modulus and thickness values of diagonal 

struts are taken same as infill’s. The width of the strut is 

defined as (FEMA-356 2000) 

in in

c in

E t sin( φ )
λ

EI h
= 4

2

4
 (1) 

where λ is a coefficient for calculation of equivalent width 

of infill strut, Ein is Young’s modulus of infill, E is Young’s 

modulus of beams and columns, tin and hin are the thickness  
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Fig. 2 Parameters of formulations of equivalent diagonal 

strut approach 

 

 

and height of infill wall, respectively, φ is the angle 

between diagonal strut and horizontal plane, Ic is moment of 

inertia of columns. The equivalent width of the strut is 

written as Eq. (2) by using λ 

( ) 0 4
0 175

.
c inα . λH r
-

=  (2) 

where α is width of the strut and rin is length of the strut. 

Eqs. (1) and (2) present widely used macro-modeling 

parameters of infills. The equivalent width of the strut α is 

obtained after calculating λ  which is a function of infill-

to-frame stiffness parameter.  

The parameters of infill wall are presented in Fig. 2. 

The following assumptions are considered in this study: 

1) The material of frame members and equivalent struts   

are isotropic.  

2) The frame members and struts behave linear and 

elastic. 

3) The effect of damping is ignored. 

 

The transverse deflection function of a beam according to 

SVSDT is defined in Eq. (3) (Shimpi et al. 2017) 

S
b sy y y= +  (3) 

where yS is total transverse displacement, yb is displacement 

component of bending and ys is displacement component of 

shearing. The governing equation of motion of a beam in free 

vibration according to SVSDT is given as follows (Shimpi et 

al. 2017) 

( )

( )

4 4

4 2 2

2 2 4

2 2 4

12 1
1

5

12 1
0

5

b b

b b

y mI y
EI

Ax x t

y m I y
m

t A E t





+  
− + 

   

+ 
+ + =

 

 (4) 

where A is cross-sectional area, μ is Poisson’s ratio, m is 

mass per unit length, I is area moment of inertia, t is time. yb 

is obtained from the solution of Eq. (4). Eq. (5) is written 

using separation of variables method with the assumption of 

yb(x,t)= yb(x)eiωt where ω is angular frequency. 

b b
b b

d y d y
A B C y ( z ) D y ( z )

dz dz
+ - + =

4 2
2 2 4

0 0 0 04 2
0w w w  

where 

( )

( )
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2

0 2
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1
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5

EI mI
A ;B ;C m;z x / L

L AL

m I
D

A E





+ 
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 

+
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(5) 

The solution of yb(z) can be written as 

{ } ikz
by ( z ) D e=  (6) 

The bending component of transverse displacement 

function is achieved by substituting Eq. (6) into Eq. (5) 

ik z ik z ik z ik z
by ( z ) ( D e D e D e D e )= + + +1 2 3 4

1 2 3 4  (7) 

where kn (n:1,2,3,4) are characteristic roots of the equation 

that obtained by substituting Eq. (6) into Eq. (5).  

The bending component of slope function can be written 

as follows 

b ik z ik z ik z ik zdy
( ik D e ik D e ik D e ik D e )

dz
= + + +1 2 3 4

1 1 2 2 3 3 4 4  (8) 

The bending moment function and shear force function 

according to SVSDT are defined in Eqs. (9) and (10), 

respectively (Shimpi et al. 2017). 

bS EI d y
M ( z )

L dz
= -

2

2 2
 (9) 

b bS EI d y mIω dy
Q ( z )

AL dzL dz
= - -

3 2

3 3
 (10) 

Eqs. (9)-(10) can be rewritten as Eqs. (11)-(12) using Eq. 

(7) 

S ik z ik z ik z ik zM ( z ) ( Hk D e Hk D e Hk D e Hk D e )= + + +1 2 3 42 2 2 2
1 1 2 2 3 3 4 4

 (11) 

S ik z ik z

ik z ik z

Q ( z ) ( Jik Kik )D e ( Jik Kik )D e

( Jik Kik )D e ( Jik Kik )D e

= - + -

+ - + -

1 2

3 4

3 3
1 1 1 2 2 2

3 3
3 3 3 4 4 4

 (12) 

where ( ) ( )H EI / L ,J EI / L ,K mIω / AL= = =2 3 2  

The shearing component of displacement and total 

displacement functions are written in Eqs. (13) and (14), 

respectively. 

( )
2

2

b
s b

d y
y T H Py z

dz

 
= − − 

 

 (13) 

( ) ( )

( ) ( )

S ik z ik z

ik z ik z

y THk TP D e THk TP D e

THk TP D e NHk TP D e

= - + + - +

+ - + + - +

1 2

3 4

2 2
1 1 2 2

2 2
3 3 4 4

1 1

1 1

 
(14) 

where 
( )

( )
μ

T ;P mIω / A
AE

+
= = 212 1

5
  

The total slope function is obtained as assembly of bdy

dz
 

and sdy

dz
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( ) ( )

( ) ( )

S
ik z ik z

ik z ik z

dy
ik TJik TRik D e ik TJik TRik D e

dz

ik TJik TRik D e ik TJik TRik D e

= + - + + -

+ + - + + -

1 2

3 4

3 3
1 1 1 1 2 2 2 2

3 3
3 3 3 3 4 4 4 4

 
(15) 

where R=P/L 

The axial vibrations are not neglected in this study. The 

governing equation of motion of a beam in free axial 

vibration is given in Eq. (16) (Rao 1995) 

2 2

2 2
0

u( x,t ) u( x,t )
AE m

x t

 
− =

 
 (16) 

where u(x,t) is axial displacement function. By applying 

separation of variables method to Eq. (16) using 

u(x,t)=u(x)eiωt with the assumption of harmonic motion, 

Eq.(17) is obtained. 

d u( z ) mω L
u( z )

AEdz
+ =

2 2 2

2
0  (17) 

Substituting Eq. (18) into Eq. (17), the axial displacement 

function ( )u z and axial force function N(z) are achieved as 

Eqs. (19)-(20), respectively.  

{ } ikzu( z ) D e=  (18) 

ik z ik zu( z ) ( D e D e )= +5 6
5 6  (19) 

ik z ik zN( z ) V(ik D e ik D e )= +5 6
5 5 6 6  (20) 

where V = AE /L and kn (n:5, 6) are characteristic roots of the 

equation that obtained by substituting Eq. (18) into (Eq. 

(17)). 

 

 

3. Dynamic stiffness formulations 
 

The dynamic stiffness formulations of frames are 

derived by using end forces and end displacements of frame 

members. The global dynamic stiffness matrix a frame can 

be constructed when all of the global member dynamic 

stiffness matrices are achieved. The vector of end 

displacements of a frame member and the vector of 

coefficients for SVSDT are presented in Eqs. (21)-(22), 

respectively. 

SS S S S Tδ [u y θ u y θ ]= 0 0 0 1 1 1  (21) 

TD [ D D D D D D ]= 1 2 3 4 5 6  (22) 

where  

S S S S

S S S

u u( z ), y y ( z ),θ θ ( z ),

u u( z ), y y ( z ),θ θ ( z )

= = = = = =

= = = = = =

0 0 0

1 1 1 1

0 0 0

1 1 1  

Eq. (23) can be written by using Eqs. (14)-(15) and (19) 

as 

δS=ΔSD
 

(23) 

where 

( ) ( )
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1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4
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 
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The vector of end forces FS of the frame members is 

written as follows 

S S S S S TF [ N Q M N Q M ]= 0 0 0 1 1 1  (24) 

where 

S S S S

S S S S

N N( z ),Q Q ( z ),M M ( z ),

N N( z ),Q Q ( z ),M M ( z )

= = = = = =

= = = = = =

0 0 0

1 1 1

0 0 0

1 1 1  

The following sign convention is considered
  

S S S SN N , Q Q , M M= - = - = -0 1 0 1 0 1  (25) 

Eq. (26) can be written by using Eqs. (11)-(12) and (20) 

as 

S SF κ D=  (26) 

where 

5 6

1 2 3 4

1 2 3 4

5 6

1 2 3 4

1 2 3 4

5 6

1 2 3 4

1 2 3 4

3 2
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S
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Vik e Vik e
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 
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Eq. (27) is obtained by using relation between Eqs. (23) 

and (26).  

S S S SF κ ( ) δ-= D 1  (27) 

*S S SK κ ( )-= D 1 (28) 

In Eq. (28), K*S represents the local dynamic stiffness 

matrix of a frame member according to SVSDT. The global 

dynamic stiffness matrix of a frame member is obtained by 

transforming the local member dynamic stiffness matrix to 

global member dynamic stiffness matrix. The 

transformation matrix and global dynamic stiffness matrix 

of a frame member are presented in Eqs. (29)-(30), 

respectively (Paz and Leigh 2004). 

 
0 0 0 0

0 0 0 0

0 0 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 1

cos( ) sin( )

sin( ) cos( )

TM
cos( ) sin( )

sin( ) cos( )

  
 −  
 
 

=  
  

 −  
 
 

 (29) 
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*S *SK (TM ) ( K )(TM )-= 1
 (30) 

In Eq. (29), Ω represents the angle between local axes of 

the frame member and global axes of the frame. 

The equivalent pin-jointed diagonal struts vibrate only 

in axial direction. Therefore, the local dynamic stiffness 

matrix of diagonal struts Kin can be given as (Paz and Leigh 

2004) 

in in
in in in

in in

cot βr cos ecβr
K E A β

cos ecβr cot βr

− 
=  − 

 (31) 

where Ain is cross-sectional area of equivalent diagonal 

strut, β equals to in in inm ω / E A2 considering min as mass 

per unit length of diagonal strut.      

The diagonal struts are pin-jointed at nodes that have 2 

degrees of freedom in vertical and horizontal directions. Eq. 

(31) is used to obtain global dynamic stiffness matrix of 

diagonal strut *
inK as 

0 0

0 0

0 0

0 0

in in

in in*
in

in in

in in

cot βr cosφ cs cβr cosφ

cot βr sinφ cs cβr sinφ
K

cs cβr cosφ cot βr cosφ

cs cβr sinφ cot βr sinφ

− 
 −
 =
 −
 

− 

 
(32) 

The global dynamic stiffness matrices of frames can be 

obtained by a standard coding technique via Eqs. (30) and 

(32) for SVSDT. The global dynamic stiffness matrix of 

frames are reduced due to zero displacements at fixed 

support joints. Thus, the ω values that equate the reduced 

global dynamic stiffness matrices of the frames are obtained 

as natural frequencies using Wittrick-Williams algorithm. 

Furthermore, a method that based on a trial and error on 

interpolation can be used for calculating roots. When there 

is a sign change between trial values, there must be a root 

lying in this interval. (Bozyigit and Yesilce 2018).  

It should be noted that formulations of well known 

Timoshenko beams are not presented to simplify the paper. 

The DSM applications of different types of Timoshenko 

beams under various boundary conditions can be 

investigated for further information (Su and Banerjee 2015, 

Deng et al. 2017, Han et al. 2018). 

The HRCs that represent the relationship between 

logarithmic scaled displacement and forcing frequency can 

be obtained by using Eq. (27). Besides observation of 

dynamic response due to a harmonic loading, the HRCs are 

efficient tools for free vibrations as peaks of curves 

represent natural frequencies directly. Thus, HRCs remove 

the necessity of root finding methods such as Wittrick-

Williams algorithms when natural frequencies are searched 

(Thinh and Nguyen 2016). A schematic view of a harmonic 

response curve is presented in Fig. 3 where δ is 

displacement value, ω̅ is forcing frequency, ω1 and ω2 are 

first two natural frequencies, ωARF1 and ωARF2 are first two 

anti-resonant frequencies (ARFs).  

The ARFs are useful dynamic parameters that become 

important on behaviour of nonstructural elements under 

excitation. The response of elements diminishes to zero 

when the forcing frequency is near an ARF. The peaks and 

valleys of a logarithmic scaled harmonic response curve 

shows natural frequencies and ARFs, respectively (Lien and  

 

Fig. 3 Shematic view of logarithmic scaled harmonic 

response curve 

 

Table 1 First three natural frequencies of bare frame model 

ω(rad/s) TBT SVSDT ANSYS 

1st 31.2758 28.39940 31.6120 

2nd 107.7087 101.3153 108.3598 

3rd 205.2537 201.8114 205.4225 

 

Table 2 First three natural frequencies of infilled frames for 

different wall thickness values 

 tin (cm) ω (rad/s) TBT SVSDT ANSYS 

Soft 

10 

1st 37.3879 34.8892 35.7526 

Story 2nd 127.9294 120.1342 121.6110 

Frame 3rd 234.7838 226.4529 224.7056 

Fully 1st 42.1982 38.8298 38.9199 

Infilled 2nd 134.1800 125.5259 125.6637 

Frame 3rd 236.1210 227.8360 224.7056 

Soft 

15 

1st 38.6015 36.3298 36.7208 

Story 2nd 134.7135 126.5661 126.2920 

Frame 3rd 246.0921 236.1763 231.9124 

Fully 1st 45.4947 42.0196 41.2711 

Infilled 2nd 142.9009 133.7190 131.6641 

Frame 3rd 247.4648 237.7093 232.0380 

Soft 

20 

1st 39.3598 37.3092 37.3724 

Story 2nd 140.4562 132.0544 130.3321 

Frame 3rd 256.1729 244.9792 238.7045 

Fully 1st 48.1794 44.6425 43.2214 

Infilled 2nd 150.1953 140.6618 136.7787 

Frame 3rd 257.4055 246.5022 238.5663 

 

 

Yao 2000). The ARFs are also used by researchers on crack 

detection and finite element model updating (Jones and 

Turcotte 2002, Dilena and Morassi 2004, Hanson et al. 

2007, Rubio et al. 2015).   

 

 

4. Numerical examples and discussions 
 

The numerical examples of the study include free and 

forced vibration analyses of bare frame and infilled single-

bay three-storey frames. The numerical analyses of the study 

are performed based on the following data:  

• Unit weight of frame members = 24.525 kN/m3 
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Fig. 4 Relative error between DSM and FEM results for 

TBT 

 

 

Fig. 5 Increment of fundamental frequencies of infilled 

frames by means of DSM 

 

 

• Unit weight of infill walls = 7.85 kN/m3 

• Young’s modulus of frame members = 2.94x107 kN/m2 

• Young’s modulus of infill walls = 9.81x105 kN/m2 

• Poisson’s ratio of frame members = 0.2 

• Height of the columns = 3.5 m 

• Length of the beams = 5 m 

• Cross-sectional area of the columns = 0.15 m2 

• Cross-sectional area of the beams = 0.125 m2 

• Moment of inertia of the columns = 3.125x10-3 m4 

• Moment of inertia of the beams = 2.604x10-3 m4 

• Shear correction for TBT, 𝑘̅ = 1.2 

• F(t) = 20sin(ω̅t) 

Using DSM and FEM (ANSYS), the first three natural 

frequencies of bare frame and infilled frame models are 

presented in Tables 1-2, respectively. 

It is seen from Table 1 that SVSDT provides slightly 

lower natural frequencies in comparison with TBT for bare 

frame model. The DSM and FEM solutions are in very well 

agreement for bare frame. It should be noted that ANSYS 

performs finite element analysis according to TBT and 

frame elements are divided into 50 elements in this study. 

Table 2 shows that natural frequencies of infilled frame 

models using TBT are overestimated according to SVSDT 

results. Moreover, the agreement of ANSYS and DSM 

solutions is decreased when infill walls are taken into 

account. The relative error between DSM and ANSYS 

results can be observed from Fig. 4 where SSF and FIF 

denote soft storey frame and fully infilled frame, 

respectively. For infilled frame models, an augmentation of 

natural frequencies is arised with increasing wall thickness 

value for all modes. The increment of fundamental 

frequencies by considering infills is plotted in Fig. 5. 

In the forced vibration analyses part of numerical  

 

Fig. 6 HRCs of Δh for fully infilled frame model according 

to TBT 

 

 

Fig. 7 HRCs of Δh for fully infilled frame model according 

to SVSDT 

 

 

Fig. 8 HRCs of Δh for soft storey frame model according to 

TBT 

 

 

Fig. 9 HRCs of Δh for soft storey frame model according to 

SVSDT 

 

 

examples, the HRCs of frame models are plotted for 

horizontal displacement of node under dynamic load (Δh). 

For different wall thickness values, the harmonic responses 

of fully infilled frame model using TBT and SVSDT are 

presented in Figs. 6 and 7, respectively. Similarly, the HRCs 

of soft storey frame are obtained for different wall thickness 

values according to TBT and SVSDT (Figs. 8 and 9). 

Figs. 6-9 show that peak and valley locations of  
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Fig. 10 HRCs of Δh for frame models using TBT (tin = 10 

cm) 

 

 

Fig. 11 HRCs of Δh for frame models using SVSDT (tin = 10 

cm) 

 

 

Fig. 12 HRCs of Δh for frame models using TBT (tin = 15 

cm) 

 

 

Fig. 13 HRCs of Δh for frame models using SVDST (tin = 15 

cm) 

 

 

harmonic response curves are shifted positively with 

increasing lateral stiffness of frame as a result of 

augmentation of infill wall thickness. 

By taking tin as 10 cm, the harmonic responses of soft 

storey and infilled frames are presented comparatively for 

TBT and SVSDT in Figs. 10 and 11, respectively. The  

 

Fig. 14 HRCs of Δh for frame models using TBT (tin = 20 

cm) 

 

 

 

Fig. 15 HRCs of Δh for infilled frame models using SVSDT 

(tin = 20 cm) 

 

 

 

Fig. 16 HRCs of Δh for all frame models using TBT and 

SVSDT (tin = 20 cm) 

 

 

HRCs of infilled frame models for tin = 15 cm and tin = 20 

cm are presented in Figs. 12-13 and Figs. 14-15, 

respectively. Fig.16 represents HRCs of all frame models 

comparatively using TBT and SVSDT for tin = 20 cm. 

According to Figs. 10-15, resonant and anti-resonant 

frequency values of fully infilled frame model are higher in 

comparison with soft story frame model. Fig. 16 reveals 

that SVSDT provides lower resonant frequencies and ARFs 

when compared to TBT for infilled frames. 

 

 

5. Conclusions 
 

In this study, the effects of infill walls on dynamic 

behaviour of frames are revealed by means of dynamic 

stiffness formulations. A realistic beam theory called 
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SVSDT which considers parabolic shear stress distribution 

along the cross-section is used with well known TBT. The 

numerical analyses are performed for different wall 

thickness values and two types of planar frames which are 

soft storey and fully infilled models. The natural 

frequencies are detected as resonant frequencies from HRCs 

without using any root finding algorithm of DSM 

procedures. The results of SVSDT are tabulated with TBT 

results. The importance of considering infill walls on 

dynamic analysis of frame structures is highlighted by 

results of several numerical examples. 

  

 

References 
 
Abdelbari, S., Amar, L.H.H., Kaci, A. and Tounsi, A. (2018), 

“Single variable shear deformation model for bending analysis 

of thick beams”, Struct. Eng. Mech., 67(3), 291-300. 

Ai, Z.H. and Ren, G.P. (2017), “Dynamic response of an infinite 

beam on a transversely isotropic multilayered half-space due to 

a moving load”, Int. J. Mech. Sci., 133, 817-828. 

Al-Balhawi, A. and Zhang, B. (2017), “Investigations of elastic 

vibration periods of reinforced concrete moment-resisting frame 

systems with various infill walls”, Eng. Struct., 151, 173-187. 

Attar, M., Karrech, A. and Regenauer-Lieb, K. (2017), “Dynamic 

response of cracked Timoshenko beams on elastic foundations 

under moving harmonic loads”, J. Vibr. Contr., 23(3), 432-457. 

Banerjee, J.R. (1997), “Dynamic stiffness for structural elements: 

A general approach”, Comput. Struct., 63(1), 101-103. 

Banerjee, J.R. and Ananthapuvirajah, A. (2018), “Free vibration of 

functionally graded beams and frameworks using the dynamic 

stiffness method”, J. Sound Vibr., 422, 34-47.  

Banerjee, J.R. and Jackson, D.R. (2013), “Free vibration of a 

rotating tapered Rayleigh beam: A dynamic stiffness method of 

solution”, Comput. Struct., 124, 11-20. 

Beiraghi, H. (2016), “Fundamental period of masonry infilled 

moment-resisting frame buildings”, Struct. Des. Tall Spec., 

26(5), 1-10. 

Bickford, W.B. (1982), “A consistent higher order beam theory”, 

Develop. Theoret. Appl. Mech., 11, 137-150. 

Bozyigit, B. and Yesilce, Y. (2016), “Dynamic stiffness approach 

and differential transformation for free vibration analysis of a 

moving Reddy-Bickford beam”, Struct. Eng. Mech., 58(5), 847-

868. 

Bozyigit, B. and Yesilce, Y. (2018) “Investigation of natural 

frequencies of multi-bay and multi-storey frames using single a 

variable shear deformation theory”, Struct. Eng. Mech., 65(1), 

9-17. 

Chaker, A.A. and Cherifati, A. (1999), “Influence of masonary 

infill panels on the vibration and stiffness characteristics of R/C 

frame building”, Earthq. Eng. Struct. Dyn., 28, 1061-1065. 

Damanpack, A.R. and Khalili, S.M.R. (2012), “High-order free 

vibration analysis of sandwich beams with a flexible core using 

dynamic stiffness method”, Compos. Struct., 94(5), 1503-1514. 

Deng, H., Chen, K., Cheng, W. and Zhao, S. (2017), “Vibration 

and buckling analysis of double-functionally graded 

Timoshenko beam system on Winkler-Pasternac elastic 

foundation”, Compos. Struct., 160, 152-168. 

Dilena, M. and Morassi, A. (2004), “The use of antiresonances for 

crack detection in beams”, J. Sound Vibr., 276, 195-214. 

El-Dakhakhni W.W., Elgaaly, M. and Hamid, A.A. (2003), “Three-

strut model for concrete masonary-infilled steel frames”, J. 

Struct. Eng., 129(2), 177-185. 

Eurocode 6 (1996), Design of Masonry Structures-Part 1-1: 

General Rules for Reinforced and Unreinforced Masonry 

Structures, European Committee for Standardization, Brussels, 

Belgium. 

FEMA-356 (2000), Prestandard and Commentary for the Seismic 

Rehabilitation of Buildings, Federal Emergency Management 

Agency, Washington, U.S.A. 

Ghandi, E. and Shiri, B. (2017), “On triply coupled vibration of 

eccentrically loaded thin-walled beam using dynamic stiffness 

matrix method”, Struct. Eng. Mech., 62(6), 759-769. 

Ghandi, E., Rafezy, B. and Howson, W.P. (2012), “On the bi-

planar motion of a Timoshenko beam with shear resistant in-

fill”, Int. J. Mech. Sci., 57(1), 1-8. 

Ghugal, Y.M. and Shimpi, R.P. (2001), “A review of refined shear 

deformation theories for isotropic laminated beams”, J. Reinf. 

Plast. Comp., 20(3), 255-272. 

Grossi, R.O. and Albarracin, C.M. (2013), “Variational approach 

to vibrations of frames with inclined members”, Appl. Acoust., 

74(3), 325-334. 

Han, F., Dan, D. and Cheng, W. (2018), “An exact solution for 

dynamic analysis of a complex double-beam system”, Compos. 

Struct., 193, 295-305. 

Han, H., Cao, D. and Liu, L. (2017), “Green’s functions for forced 

vibration analysis of bending-torsion coupled Timoshenko 

beam”, Appl. Math. Model., 45, 621-635. 

Han, S.M., Benaroya, H. and Wei, T. (1999), “Dynamics of 

transversely vibrating beams using four engineering theories”, 

J. Sound Vibr., 225(5), 936-988. 

Hanson, D, Waters, T.P., Thompson, D.J., Randall, R.B. and Ford, 

R.A.J. (2007), “The role of anti-resonance frequencies from 

operational modal analysis in finite element model updating”, 

Mech. Syst. Sign. Pr., 21(1), 74-97. 

Heyliger, P.R. and Reddy, J.N. (1988), “A higher order beam finite 

element for bending and vibration problems”, J. Sound Vibr., 

126(2), 309-326. 

Holmes, M. (1961), “Steel Frames with brick work and concrete 

infilling”, Proceedings of the Institution of the Civil Engineers, 

19(4), 473-478. 

Holmes, M. (1963), “Combined loading on infilled frames”, 

Proceeding of the Institution of Civil Engineers, 25(1), 31-38. 

Howson, W.P. and Watson, A. (2017), “Exact eigensolution of a 

class of multi-level elastically connected members”, Eng. 

Struct., 143, 375-383. 

Jones, K. and Turcotte, J. (2002), “Finite element model updating 

using antiresonant frequencies”, J. Sound Vibr., 252(4), 717-

727. 

Klouche, F., Darcherif, L., Sekkal, M., Tounsi, A. and Mahmoud, 

S.R. (2017), “An original single variable shear deformation 

theory for buckling analysis of thick isotropic plates”, Struct. 

Eng. Mech., 63(4), 439-446. 

Labib, A., Kennedy, D. and Featherstone, C. (2014), “Free 

vibration analysis of beams and frames with multiple cracks for 

damage detection”, J. Sound Vibr., 333(20), 4991-5003. 

Levinson, M. (1981), “A new rectangular beam theory”, J. Sound 

Vibr., 74(1), 81-87. 

Li, H., Yin, X. and Wu, W. (2016), “Dynamic stiffness formulation 

for in-plane and bending vibrations of plates with two opposite 

edges simply supported”, J. Vibr. Contr., 24(9), 1652-1669. 

Lien, N. and Yao, G.C. (2000), “Identification of anti-resonance 

frequency in buildings based on vibration measurements”, 

Proceedings of the 12th World Conference on Earthquake 

Engineering, Auckland.  

Mainstone, R.J. (1974), Supplementary Note on the Stiffness and 

Strenght of Infilled Frames, Building Research Establishment, 

London, U.K.  

Mei, C. (2012), “Free vibration analysis of classical single-storey 

multi-bay planar frames”, J. Vibr. Contr., 19(13), 2022-2035. 

Mei, C. (2018), “Analysis of in- and out-of plane vibrations in a 

rectangular frame based on two- and three dimensional 

190



 

Dynamic stiffness formulations for harmonic response of infilled frames   

 

structural models”, J. Sound Vibr., 1-28. 

Mei, C. and Sha, H. (2015), “Analytical and experimental study of 

vibrations in simple spatial structures”, J. Vibr. Contr., 22(17), 

3711-3735. 

Miao, Y., Shi, Y., Luo, H. and Gao, R. (2018), “Closed-form 

solution considering the tangential effect under harmonic line 

load for an infinite Euler-Bernoulli beam on elastic foundation”, 

Appl. Math. Model., 54, 21-33. 

Náprstek, J. and Fischer, C. (2017), “Investigation of bar system 

modal characteristics using dynamic stiffness matrix polynomial 

approximations”, Comput. Struct., 180, 3-12.  

Ozturkoglu, O., Ucar, T. and Yesilce, Y. (2017), “Effect of 

masonary infill walls with openings on nonlinear response of 

reinforced concrete frames”, Earthq. Struct., 12(3), 333-347. 

Paz, M. and Leigh, W. (2004), Structural Dynamics-Theory and 

Computation, Kluwer Academic Publishers, U.S.A. 

Polyakov, S.V. (1950), Investigation of the Strength and of the 

Deformational Characteristics of Masonry Filler Walls and 

facing on Framed Structures, Construction Industry Instıtute 3. 

Rao, S.S. (1995), Mechanical Vibrations, Addison-Wesley 

Publishing Company, U.S.A. 

Reddy, J.N. (1984), “A simple higher-order theory for laminated 

composite plates”, J. Appl. Mech., 51(4), 745-752. 

Rubio, L., Fernández-Sáez, J. and Morassi, A. (2015), 

“Identification of two cracks in a rod by minimal resonant and 

antiresonant frequency data”, Mech. Syst. Sign. Pr., 60, 1-13. 

Salama, M.I. (2015), “Estimation of period of vibration for 

concrete moment-resisting frame buildings”, Hous. Build. Nat. 

Res. Center, 11(1), 16-21. 

Shimpi, R.P, Patel, H.G. and Arya, H. (2007), “New first order 

shear deformation plate theories”, J. Appl. Mech., 74(3), 523-

533. 

Shimpi, R.P, Shetty, R.A. and Guha, A. (2017), “A simple single 

variable shear deformation theory for a rectangular beam”, J. 

Mech. Eng. Sci., 231(24), 4576-4591. 

Shimpi, R.P. (2002), “Refined plate theory and its variants”, AIAA 

J., 40(1), 137-146. 

Su, H. and Banerjee, J.R. (2015), “Development of dynamic 

stiffness method for free vibration of functionally graded 

Timoshenko beams”, Comput. Struct., 147, 107-116. 

Tamboli, H.R. and Karadi, U.N. (2012), “Seismic analysis of RC 

frame structure with and without masonary infill walls”, Ind. J. 

Nat. Sci., 3(14), 1137-1194. 

Tan, G., Wang, W., Cheng, Y., Wei, H., Wei, Z. and Li, H. (2018),  

“Dynamic response of a nonuniform Timoshenko beam with 

elastic supports, subjected to a moving spring-mass system”, 

Int. J. Struct. Stab. Dyn., 18(5), 1850066-1-1852266-23. 

Thambiratnam, D. (2009), “Modelling and analysis of infilled 

frame structures under seismic loads”, Open Constr. Build. 

Technol. J., 3, 119-126. 

Thinh, T.I. and Nguyen, M.C. (2016), “Dynamic stiffness matrix 

of continuous element for vibration of thick cross-ply laminated 

composite cylindrical shells”, Compos. Struct., 98, 93-102. 

Tounsi, D., Casimir, J.B., Abid, S., Tawfiq, I. and Haddar, M. 

(2014), “Dynamic stiffness formulation and response analysis of 

stiffened shells”, Comput. Struct., 132, 75-83. 

Zhang, C., Jin, G., Ye, T. and Zhang, Y. (2018), “Harmonic 

response analysis of coupled plate structures using the dynamic 

stiffness method”, Thin Wall Struct., 127, 402-415. 

 

 
CC 

191




