
Structural Engineering and Mechanics, Vol. 68, No. 2 (2018) 171-182 

DOI: https://doi.org/10.12989/sem.2018.68.2.171                                                                 171 

Copyright © 2018 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 
1. Introduction  
 

In contrast to the traditional composites, in the three-

dimensional or bidirectional functionally graded material 

(BDFGM) the compositional gradients from one component 

to the other in two or more directions, make it possible to 

have a smooth and continues variations of material 

properties. As a result, the properties of both components 

can be utilized with less stress concentration and interface 

problem due to eliminating thermo-mechanical mismatch in 

components bonding. In the case of serve operating 

conditions like the heat-engine components, heat exchanger 

tubes, thermoelectric generators, rocket heat shields, plasma 

facings for fusion reactors and wear-resistant linings for 

handling large heavy abrasive ore particles, the FGM is a 

suitable choice. Many researchers draw attention to analyze 

the behavior of the structural members made up of FGM 

due to their benefits (Chen et al. 2017, Arioui et al. 2018, 

Bouderba 2018, Fallahnejad et al. 2018, Nejad et al. 2018). 

Also many researchers have pointed out the significance of 

the vibration and buckling analyses of the homogeneous 

and heterogeneous beams, plates and shells (Heydari and 

Kazemi 2009 , Heydari 2011, 2013, Wang et al. 2014, 

Heydari 2015, Heydari and Kazemi 2015, Roshan and Neha 

2015, Ranganathan et al. 2016, Heydari 2017, Lal and 

Ahlawat 2017, Li et al. 2017, Shojaeefard et al. 2017, Hadji  
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et al. 2018, Heidari et al. 2018, Heydari and Shariati 2018, 

Rossit et al. 2018, Sachdeva and Padhee 2018, Sun et al. 

2018, Szymczak and Kujawa 2018, Li and Guo 2018). Also, 

the vibrational analysis of the plates is in focus (Ai et al. 

2018, Gibigaye et al. 2018, Lei et al. 2018, Li et al. 2018, 

Park and Choi 2018, Shirmohammadi and Bahrami 2018, 

Yousefzadeh et al. 2018). The elastic bending behavior of a 

transversely isotropic FG solid circular plate subject to 

transverse biharmonic forces applied on its top surface is 

studied by virtue of the generalized England’s method 

(Yang et al. 2018). Based on the three-dimensional 

elasticity equations, buckling analysis of symmetrical 

circular sandwich plates with radially graded metal foam 

core based on nonlinear hypothesis of deformation of the 

normal to the middle plane of the plate is presented 

(Magnucka-Blandzi et al. 2018). Size-dependent three-

dimensional free vibration of rotating FG micro-beams 

based on a modified couple stress theory and von Kármán 

geometric nonlinearity is studied (Fang et al. 2018). The 

new approaches and techniques are the essential tools to 

solve new engineering problems (Toghroli et al. 2018). A 

new numerical scheme for buckling analysis of shear 

deformable through-thickness graded circular plate with 

linear and quadratic tapering patterns subjected to uniform 

radial compression with pinned and clamped edges rested 

on two-parameter elastic medium is presented (Heydari et 

al. 2017). A modified Euler-Lagrange equation is achieved 

and then solved by converting differential equation to an 

algebraic system of equations. Moreover, in mentioned 

work a new displacement field in polar coordinate is 

proposed and a novel approach for buckling analysis based 

on shear stress-free surface without shear correction factor 
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requirement is carried out. The stability equation in the 

modified coordinate is solved by using shifted Legendre 

polynomials as the basis in the spectral Ritz method. The 

authors show that by taking small numbers of the basis, the 

outcomes in literature are improved. In the framework of 

the nonlocal strain gradient theory, the dispersion relations 

between phase velocity and wave number are employed to 

analyze wave propagation in the porous nanotubes (She et 

al. 2018). Decreasing nonlocal parameter or increasing 

strain gradient parameter yields to increasing of the 

asymptotic phase velocity. The authors show that the 

dispersion relations of nanotubes are affected by the 

material gradation and variation of the temperature, 

considerably. The strain gradient and nonlocal parameters 

have substantial effects on the dispersion relation at high 

wave numbers, in contrast, these effects are insignificant at 

low wave numbers. Moreover, they show that the power 

law index affects phase velocity. A refined beam model 

without correction factor requirement, energy variation 

principle and two-step perturbation method are applied for 

analyzing thermal buckling and post-buckling behaviors of 

thin radially graded hollow cylinder with pinned ends 

subjected to uniform temperature rise in the presence of 

elastic medium (She et al. 2018). The continues material 

variation of the tube was modeled based on the 

conventional power law function. They report the higher 

buckling temperature and post-buckling strength in the case 

of existing an elastic foundation. The size-dependent 

vibration analysis of shear deformable porous nanotubes 

with radial gradation of the temperature-dependent material 

based on refined beam model in the framework of the 

nonlocal strain gradient theory is conducted by employing 

Navier solution method (She et al. 2018). The thermal 

buckling and post-buckling behavior of the nonlocal tubes 

made up of temperature-dependent radially functionally 

graded materials with the both even and uneven porosity 

distributions is performed by applying a refined shear 

deformation beam theory in the framework of the Eringen 

nonlocal continuum mechanics (She et al. 2017). The 

stability equations are derived by using the generalized 

variation principle and solved via two-step perturbation 

method. The authors show that the small-scale parameter 

and porosity volume fraction change the buckling and post-

buckling behavior of the nanotubes. The nonlinear bending, 

thermal buckling and post-buckling analyses of shear 

deformable temperature-dependent radially graded material 

tubes with two clamped ends are investigated by satisfying 

the traction-free natural conditions on the inner and outer 

surfaces without shear correction factor requirement (She et 

al. 2017). In the mentioned research, a two-step 

perturbation method is applied to obtain the asymptotic 

solutions of the FGM tubes under nonlinear bending and 

thermal post-buckling. The nonlinear bending behaviors of 

the infinite temperature-dependent radially graded material 

cylindrical shallow shells with pinned or clamped ends 

subjected to the uniform temperature rise rested on two-

parameter elastic medium is predicted by employing two-

step perturbation method (She et al. 2017). In this research, 

the authors claim that FGM cylindrical shallow shells 

subjected to uniform bending loadings will bring about 

snap-through buckling and jump changes, but the 

foundation can increase the stability of the shells. The 

thermal buckling loads and post-buckling equilibrium paths 

of FG beams with clamped boundary conditions subjected 

to uniform temperature rise are calculated based on various 

beam models including Euler-Bernoulli, Timoshenko and 

various higher-order shear deformation beam theories via 

two-step perturbation method (She et al. 2017). The 

governing equations are developed with respect to the 

neutral plane and temperature dependency of the 

constituents. In the mentioned research, it is shown that in 

the case of uniform temperature rise loading, the post-

buckling equilibrium path is also of the bifurcation type for 

any arbitrary value of the power law index and various 

displacement fields. The thermal buckling loads and post-

buckling equilibrium paths of temperature-dependent 

transversely material graded beams with surface-bonded 

piezoelectric actuators exposed to uniform temperature and 

electric fields are calculated based on high-order shear 

deformation theory, physical neutral surface concept and 

nonlinear von Kármán strain–displacement relationship 

(She et al. 2017). Mechanical buckling of FG 

polyethylene/clay nanocomposites columns based on the 

Engesser-Timoshenko beam theory is performed (Yas and 

Khorramabadi 2018). 
For the first time, damped vibration and buckling 

analyses of love-Kirchhoff arbitrary tapered bidirectional 
functionally graded solid circular nano-plate (BDFGSCNP) 
resting on viscous medium with pinned and clamped 
boundary conditions at edge of the plate is presented. At 
present, notable developments in modeling and simulation 
of functionally graded materials (FGMs) have been reported 
(Gupta and Talha 2015). In light of these efforts on FGMs, 
it is possible to tailor material composition so as to get 
maximum aids from their inhomogeneity. In current work, a 
four variable function is used to model two-directional 
variations of elasticity modulus and mass density based on 
classical rule of mixture. However, in contrast to the 
conventional exponential gradation, the analysis of 
BDFGSCNP based on this function needs more 
computational efforts, but the more accurate variations of 
mechanical and material properties can be modeled. The 
energy method is employed to derive neutral equilibrium 
equation then the characteristic equations are calculated via 
modified spectral Ritz method. In present paper, the 
orthogonal shifted Chebyshev polynomials of the first kind 
in modified coordinate is proposed as the basis in spectral 
Ritz method. The novel proposed basis not only satisfies 
boundary conditions, but also removes the difficulties of 
calculating appropriate auxiliary functions in spectral Ritz 
method. However, the proposed modified basis is used for 
vibration and buckling analyses of BDFGSCNP, but it can 
be used for other analyses like the bending and post-
buckling problems of nanoscale and macroscale BDFGCPs. 
Observing an excellent agreement between results of the 
current work and outcomes of the previously published 
works in literature, indicates the accuracy of the calculated 
results in current work. 

 

 

2. Neutral equilibrium equation  
 

172



 

Size-dependent damped vibration and buckling analyses of bidirectional functionally graded solid circular… 

 

 

Fig. 1 The tapered BDFGSCNP rested on distributed 

viscous damper 

 

 

Fig. 2 The uniform mechanical loading at edge of the plate 

 

 

The geometrical properties and uniform mechanical 

loading of pinned BDFGSCNP with nonlinear thickness 

variation and positive taper constant rested on the 

distributed viscous damper are shown in Figs. 1 and 2, 

respectively. The mid-plane and neutral plane are shown by 

M.P. and N.P., respectively.  

It is assumed that the variations of mass density and 

elasticity modulus are product of two separable functions in 

terms of z and r in cylindrical coordinate. The functions of 

elasticity modulus variations for transverse and radial 

directions are denoted by 𝐸𝑧  (or 𝐸𝑧  in neutral plane 

coordinate) and 𝐸𝑟 , respectively (𝐸 = 𝐸𝑧𝐸𝑟). Similarly, the 

mass density variations in bending and radial directions are 

denoted by 𝜌𝑧 and 𝜌𝑟, respectively (𝜌 = 𝜌𝑧𝜌𝑟). The mass 

density and elasticity modulus are defined based on four 

parameters and two material indexes as follows 

𝜌(𝑟, 𝑧) = ((𝜌𝑡 − 𝜌𝑏) (
𝑧

𝑡
+
1

2
)
𝑛𝑡

+ 𝜌𝑏) 

((𝜌𝑎 − 𝜌0) (
𝑟

𝑎
)
𝑛𝑟

+ 𝜌0) 

𝐸(𝑟, 𝑧) = ((𝐸𝑡 − 𝐸𝑏) (
𝑧

𝑡
+
1

2
)
𝑛𝑡

+ 𝐸𝑏) 

((𝐸𝑎 − 𝐸0) (
𝑟

𝑎
)
𝑛𝑟

+ 𝐸0) 

(1) 

In Eq. (1), the non-negative parameters 𝑛𝑡 and 𝑛𝑟 are 

material constants or material indexes in transverse and 

radial directions, respectively. For the case 𝜌0 = 𝜌𝑎 =
𝐸0 = 𝐸𝑎 = 1, 𝐸𝑡 = 𝐸𝑐 , 𝐸𝑏 = 𝐸𝑚 , 𝜌𝑡 = 𝜌𝑐 , and 𝜌𝑏 = 𝜌𝑚 

the plate has transverse gradient and top and bottom 

surfaces are pure ceramic and pure metal, respectively. The 

parameters 𝐸𝑚 , 𝐸𝑐 , 𝜌𝑚  and 𝜌𝑐  are elasticity modulus 

and mass density of metal and ceramic. Similarly, for the 

case 𝜌𝑏 = 𝜌𝑡 = 𝐸𝑏 = 𝐸𝑡 = 1 , 𝐸0 = 𝐸𝑚 , 𝐸𝑎 = 𝐸𝑐 , 𝜌0 =
𝜌𝑚, and 𝜌𝑎 = 𝜌𝑐 the plate has radial gradient and center 

and edge of the plate are pure metal and pure ceramic, 

respectively. Also, for the cases (𝑛𝑟 = 0) or (𝑛𝑡 = 0), radial 

or transverse gradations are vanished, respectively. For 

other cases, the plate is turned to BDFGCP. It is noteworthy 

to mention that in the case of radial gradation the four 

coefficients 𝐸𝑏 , 𝐸𝑡 , 𝜌𝑏  and 𝜌𝑡  are dimensionless. Also, 

in the case of transverse gradation the four coefficients 𝐸0, 

𝐸𝑎 , 𝜌0  and 𝜌𝑎  are dimensionless. The bending strain 

energy of bidirectional functionally graded solid circular 

plate (BDFGSCP) by considering axisymmetric condition is 

calculated based on assumptions of Love-Kirchhoff plate 

theory after neglecting transverse shear displacement effects 

as follows 

𝑈Plate =
𝜋

1 − 𝜈2
∫ ∫ (𝜖𝑟

2 + 𝜖𝜃
2 + 2𝜈𝜖𝑟𝜖𝜃)𝐸𝑑𝑧𝑟𝑑𝑟

𝑡
2

 −
𝑡
2

𝑎

0

 (2) 

In Eq. (2), the parameters 𝜀𝑟 and 𝜀𝜃 are radial strain 

and circumferential strain, respectively. The poison’s ratio, 

𝜈 , is assumed to be constant. The arbitrary thickness 

variation of the plate is assumed as follows 

𝑡 = 𝑡0 (1 + 𝛼 (
𝑟

𝑎
))

𝛽

 (3) 

In Eq. (3), the parameter 𝛼 is taper constant which 

takes real values. For 𝛽 = 1  the thickness variation is 

linear and for 𝛽 > 1, it is nonlinear. For plate with uniform 

thickness 𝛼  (or 𝛽 ) is zero. Thickness at center of the 

BDFGSCP is presented by the parameter 𝑡0. The distance 

between N.P. and M.P., 𝑧0, is calculated as follows 

𝑧0 =
𝑡0𝑛𝑡(𝐸𝑡 − 𝐸𝑏)

2(𝑛 + 2)(𝑛𝐸𝑏 + 𝐸𝑡)
(1 + 𝛼 (

𝑟

𝑎
))

𝛽

 (4) 

After transforming coordinate from M.P. to N.P., Eq. (2) 

can be rewritten as follows 

𝑈Plate = 

𝜋∫ 𝐷𝐸𝑟

𝑎

0

((𝑤(2))
2
+ (

𝑤(1)

𝑟
)

2

+
2𝜈𝑤(1)𝑤(2)

𝑟
) 𝑟𝑑𝑟 

(5) 

The symbol 𝑤 denotes the transverse displacement or 

deflection of the BDFGCP. The 𝑗𝑡ℎderivative of 𝑤 with 

respect to 𝑟 is presented by 𝑤(𝑗). The bending rigidity of 

the FGSCP, 𝐷, is calculated for 𝑛𝑡 ≥ 0, as follows 

𝐷 =
𝑡0
3

12(1 − 𝜈2)
(1 + 𝛼 (

𝑟

𝑎
))

3𝛽

×
𝜓1𝐸𝑏

2 + 𝜓2𝐸𝑏𝐸𝑡 + 12𝐸𝑡
2

𝜓3𝐸𝑏 + 𝜓4𝐸𝑡 + 12𝐸𝑡
 

(6) 

The constants 𝜓1 to 𝜓4 are  
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𝜓1 = 𝑛𝑡
4 + 4𝑛𝑡

3 + 7𝑛𝑡
2 

 

𝜓2 = 4𝑛𝑡
3 + 16𝑛𝑡

2 + 28𝑛𝑡 
 

𝜓3 = 𝑛𝑡
4 + 7𝑛𝑡

3 + 16𝑛𝑡
2 + 12𝑛𝑡 

 

𝜓4 = 𝑛𝑡
3 + 7𝑛𝑡

2 + 16𝑛𝑡 

(7) 

The response of the viscous medium is 

𝑓damper = 𝐶𝑑
𝜕𝑤

𝜕𝑡
 (8) 

where the parameter 𝑡  denotes time. The Eringen’s 

nonlocal continuum theory is based on continuum 

mechanics approach, in which the stress tensor at a point 

depends on strain tensor at all points in domain of the 

material. Based on Eringen’s nonlocal continuum theory the 

relation between nonlocal stress, 𝜎𝑁𝐿, and local stress, 𝜎𝐿, 

can be expressed as (1 − 𝜂2∇2)𝜎𝑁𝐿 = 𝜎𝐿, in which 𝜂 is 

scale coefficient. The energy of nonconservative forces, 

after using relation between nonlocal stress and local stress 

is calculated as follows 

𝛺damper = 

𝜋𝐼 ∫  𝑐𝑑𝜔
𝑎

0

(𝑤2 − 𝜂2 𝑤 (𝑤(2) +
𝑤(1)

𝑟
)) 𝑟𝑑𝑟 

(9) 

in which I is one of the square roots of -1. The kinematic 

energy caused by vibration is calculated as follows 

𝑈𝜔 = −
𝜋𝜔2𝑡0(𝑛𝑡𝜌𝑏 + 𝜌𝑡)

𝑛𝑡 + 1
 

∫ 𝜌𝑟 (1 + 𝛼 (
𝑟

𝑎
))

𝛽

(𝑤2 + 𝜂2(𝑤(1))
2
) 𝑟𝑑𝑟

𝑎

0

 

(10) 

The Eq. (10) is precise for constant amounts or little 

changes of 𝜌𝑟 and 𝑡. The work done by uniform radial 

compression at edge of the BDFGSCNP is as follows 

𝛺 = 

−𝜋𝑃∫ ((𝑤(1))
2
+ 𝜂2 ((

𝑤(1)

𝑟
)

2

+ (𝑤(2))
2
))𝑟𝑑𝑟

𝑎

0

 
(11) 

The sign of 𝑃 for compression is taken to be positive. 

The neutral equilibrium equation is computed by setting 

total potential energy equal to zero as follows 

∫ [
𝑐1𝐸𝑏

2 + 𝑐2𝐸𝑏𝐸𝑡 + 12𝐸𝑡
2

𝑐3𝐸𝑏 + 𝑐4𝐸𝑡 + 12𝐸𝑡

𝑡0
3

12(1 − 𝜈2)

𝑎

0

 

((𝐸𝑎 − 𝐸0) (
𝑟

𝑎
)
𝑛𝑟

+ 𝐸0)(1 + 𝛼 (
𝑟

𝑎
))

3𝛽

 

((𝑤(2))
2
+ (

𝑤(1)

𝑟
)

2

+
2𝜈𝑤(1)𝑤(2)

𝑟
) + 

𝑐𝑑𝐼𝜔𝑤
2 −

𝜔2𝑡0(𝑛𝑡𝜌𝑏 + 𝜌𝑡)

𝑛 + 1
(1 + 𝛼 (

𝑟

𝑎
))

𝛽

 

((𝜌𝑎 − 𝜌0) (
𝑟

𝑎
)
𝑛𝑟

+ 𝜌0)𝑤
2 − 𝑃(𝑤(1))

2
− 

(12) 

𝜂2[𝑃 ((
𝑤(1)

𝑟
)

2

+ (𝑤(2))
2
) + 𝑐𝑑𝐼𝜔𝑤 

(𝑤(2) +
𝑤(1)

𝑟
) +

𝜔2𝑡0(𝑛𝑡𝜌𝑏 + 𝜌𝑡)

𝑛𝑡 + 1
(1 + 𝛼 (

𝑟

𝑎
))

𝛽

 

(𝑤(1))
2
((𝜌𝑎 − 𝜌0) (

𝑟

𝑎
)
𝑛𝑟

+ 𝜌0)]]𝑟𝑑𝑟 = 0 

 

 

3. Vibration and buckling analysis 
 

In current research, the spectral Ritz method with a 

modified basis in terms of orthogonal shifted Chebyshev 

polynomials of the first kind is proposed to calculate 

optimum deflection and corresponding damped frequencies 

and buckling loads of first modes. The Chebyshev 

polynomial of order 𝑛  is presented by 𝐶𝑛(𝑟) . The 

Chebyshev polynomials of the first kind are orthogonal in 

the interval [-1,1] with respect to the weight function 

1/√1 − 𝑟2 .  

𝐶𝑛(𝑟)  =  𝑐𝑜𝑠(𝑛 × 𝐴𝑟𝑐𝑐𝑜𝑠(𝑟)) (13) 

Eq. (14) presents approximated bending displacement 

function. The function 𝑤 in polar coordinate is replaced by 

the function 𝑤̅ in modified coordinate 𝑟̅ = 2(𝑟/𝑎) − 1, in 

which 𝑤̅(𝑟̅) = 𝑤((1 + 𝑟̅) 𝑎 2⁄ ).  

𝑤̅(𝑟̅) ≈ 𝛾𝑚
𝑇𝛤𝑚 ,     − 1 ≤ 𝑟̅ ≤ 1 (14) 

In Eq. (14), 𝛤𝑚 and 𝛾𝑚 are basis vector and coefficient 

vector with 𝑚 + 1 rows, respectively.  

𝛤𝑚 =

{
 
 

 
 
𝐶0(𝑟̅)

𝐶1(𝑟̅)

𝐶2(𝑟̅)
⋮

𝐶𝑚(𝑟̅)}
 
 

 
 

,          𝛾𝑚 =

{
 
 

 
 
𝜆0
𝜆1
𝜆2
⋮
𝜆𝑚}
 
 

 
 

 (15) 

The orthogonality of 𝐶𝑛(𝑟̅) in the interval [-1,1] with 

respect to the weight function 1/√1 − 𝑟̅2  is shown as 

follows  

∫
𝐶𝑝(𝑟̅)𝐶𝑞(𝑟̅)

√1 − 𝑟̅2
𝑑𝑟̅

1

−1

= {

0                      𝑝 ≠ 𝑞
𝜋            𝑝 = 𝑞 = 0
𝜋/2        𝑝 = 𝑞 ≠ 0

 (16) 

After satisfying boundary conditions, the coefficients 

𝜆0 to 𝜆𝑐−1 in the coefficient vector will be calculated in 

terms of the coefficients 𝜆𝑐  to 𝜆𝑚 . The number of 

boundary equations are equal to 𝑐. In the case of FGSCP, 

the parameter 𝑐 is equal to 3. In current work, boundary 

conditions are 𝑤̅(1) = 𝑤̅(1)(−1) = 0 . After satisfying 

boundary equations the coefficients 𝜆0  and 𝜆1  are 

calculated in terms of the remaining coefficients in 𝛾𝑚 

vector. 

𝜆0 =

{
 
 

 
 

−5
8
−17
⋮

(−1)𝑚+1𝑚2 − 1}
 
 

 
 
𝑇

{
 
 

 
 
𝜆2
𝜆3
𝜆4
⋮
𝜆𝑚}
 
 

 
 

, (17) 
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 𝜆1 =

{
 
 

 
 

4
−9
16
⋮

(−1)𝑚𝑚2}
 
 

 
 
𝑇

{
 
 

 
 
𝜆2
𝜆3
𝜆4
⋮
𝜆𝑚}
 
 

 
 

 

Thereafter, the coefficients 𝜆0 to 𝜆𝑐−1 are obtained in 

terms of the coefficients 𝜆𝑐 to 𝜆𝑚 by satisfying boundary 

condition at edge of the plate. For this purpose, the first and 

second derivatives of 𝐶𝑛(𝑟̅)  with respect to 𝑟̅  are 

calculated as follows  

𝐶𝑛
(1)(𝑟̅) =

𝑛(𝐶𝑛(𝑟̅)𝑟̅ − 𝐶𝑛−1(𝑟̅))

𝑟̅2 − 1
, 

 𝐶𝑛
(2)(𝑟̅) =

𝑛

(𝑟̅2 − 1)2
[(𝑛 − 1)𝐶𝑛−2(𝑟̅)

+ (3 − 2𝑛)𝑟̅𝐶𝑛−1(𝑟̅)

+ ((𝑛 − 1)𝑟̅2 − 1)𝐶𝑛(𝑟̅)] 

(18) 

Eqs. (18) are used to write boundary condition of 

clamped edge in modified coordinate, 𝑟̅, as follows 

∑n2
m

n=1

𝜆n = 0 (19) 

In the case of clamped edge, considering Eqs. (17) and 

Eq. (19), one has  

𝜆0 =

{
 
 

 
 

8
3
24
⋮

m2

8
(5 + 3(−1)𝑚+1) − 1}

 
 

 
 
T

{
 
 

 
 
𝜆3
𝜆4
𝜆5
⋮
𝜆m}
 
 

 
 

, 

𝜆1 =

{
 
 

 
 

−9
0
−25
⋮

m2

2
((−1)𝑚 − 1)}

 
 

 
 
T

{
 
 

 
 
𝜆3
𝜆4
𝜆5
⋮
𝜆m}
 
 

 
 

, 

𝜆2 =

{
 
 

 
 

0
−4
0
⋮

−
m2

8
((−1)𝑚 + 1)}

 
 

 
 
T

{
 
 

 
 
𝜆3
𝜆4
𝜆5
⋮
𝜆m}
 
 

 
 

. 

(20) 

Eqs. (18) are used to write boundary condition of pinned 

edge in modified coordinate, 𝑟̅, as follows 

∑(3νn2 + 2(n4 − n2))

m

n=1

𝜆n = 0 (21) 

In the case of pinned edge, considering Eqs. (17) and 

Eq. (21), one has  

𝜆0 =

{
 
 

 
 

5(9ζ − ς3)/ϱ + 8

−5(16ζ + ς4)/ϱ − 17

5(25ζ − ς5)/ϱ + 24
⋮
Λm
0 }

 
 

 
 
T

{
 
 

 
 
𝜆3
𝜆4
𝜆5
⋮
𝜆m}
 
 

 
 

, (22) 

𝜆1 =

{
 
 

 
 
4(−9ζ + ς3)/ϱ − 9

4(16ζ + ς4)/ϱ + 16

4(−25ζ + ς5)/ϱ − 25
⋮
Λm
1 }

 
 

 
 
T

{
 
 

 
 
𝜆3
𝜆4
𝜆5
⋮
𝜆m}
 
 

 
 

, 

𝜆2 =

{
 
 

 
 
(−9ζ + ς3)/ϱ

(16ζ + ς4)/ϱ

(−25ζ + ς5)/ϱ
⋮
Λm
2 }

 
 

 
 
T

{
 
 

 
 
𝜆3
𝜆4
𝜆5
⋮
𝜆m}
 
 

 
 

. 

The unknown parameters in Eqs. (22) are presented in 

Eqs. (23).  

ζ = −3ν, 
ϱ = 24(1 + ν), 

ςm = (2 − 3ν)m
2 − 2m4, 

Λm
0 = −5((−1)mm2ζ + ςm)/ϱ + (−1)

m+1m2 − 1, 
Λm
1 = 4((−1)mm2ζ + ςm)/ϱ + (−1)

mm2, 
Λm
2 = ((−1)mm2ζ + ςm)/ϱ 

(23) 

The Eq. (14) is rewritten as follows 

𝑤̅(𝑟̅) ≈ 𝛾̅𝑚
𝑇𝛤𝑚 ,     − 1 ≤ 𝑟̅ ≤ 1 (24) 

in which, 𝛤𝑚  is modified basis vector for clamped or 

pinned edge and 𝛾̅𝑚 is coefficient vector with 𝑚 − 𝑐 + 1 

rows. In the case of clamped edge, one has 

𝛤𝑚 = 

{
 
 

 
 

8 − 9𝑟̅ + 𝐶3(𝑟̅)

3 − 4(2𝑟̅2 − 1) + 𝐶4(𝑟̅)

24 − 25𝑟̅ + 𝐶5(𝑟̅)
⋮

m2

8
(𝛿0 + 𝑟̅𝛿1 + (1 − 2𝑟̅

2)𝛿2) − 1 + 𝐶𝑚(𝑟̅)}
 
 

 
 
𝑇

, 

𝛾̅𝑚 =

{
 
 

 
 
𝜆3
𝜆4
𝜆5
⋮
𝜆m}
 
 

 
 

 

(25) 

where the parameters 𝛿0 to 𝛿2 are  

𝛿0 = {
2   𝑚 ∈ 𝐸𝑣𝑒𝑛
8    𝑚 ∈ 𝑂𝑑𝑑

 

 

𝛿1 = {
0   𝑚 ∈ 𝐸𝑣𝑒𝑛
−8    𝑚 ∈ 𝑂𝑑𝑑

 

 

𝛿2 = {
2   𝑚 ∈ 𝐸𝑣𝑒𝑛
0    𝑚 ∈ 𝑂𝑑𝑑

 

(26) 

In the case of pinned edge, it holds 

𝛤𝑚 =

{
 
 

 
 
Λ3
0 + 𝑟̅Λ3

1 + (2𝑟̅2 − 1)Λ3
2 + 𝐶3(𝑟̅)

Λ4
0 + 𝑟̅Λ4

1 + (2𝑟̅2 − 1)Λ4
2 + 𝐶4(𝑟̅)

Λ5
0 + 𝑟̅Λ5

1 + (2𝑟̅2 − 1)Λ5
2 + 𝐶5(𝑟̅)

⋮
Λ𝑚
0 + 𝑟̅Λ𝑚

1 + (2𝑟̅2 − 1)Λ𝑚
2 + 𝐶𝑚(𝑟̅)}

 
 

 
 
𝑇

, (27) 
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 𝛾̅𝑚 =

{
 
 

 
 
𝜆3
𝜆4
𝜆5
⋮
𝜆m}
 
 

 
 

 

The neutral equilibrium equation is rewritten in 

modified coordinate, 𝑟̅, as follows 

∫ [
𝑐1𝐸𝑏

2 + 𝑐2𝐸𝑏𝐸𝑡 + 12𝐸𝑡
2

𝑐3𝐸𝑏 + 𝑐4𝐸𝑡 + 12𝐸𝑡

4𝑡0
3

3(1 − 𝜈2)

𝑎

0

 

((𝐸𝑎 − 𝐸0) (
1 + 𝑟̅

2
)
𝑛𝑟

+ 𝐸0)(1 + 𝛼 (
1 + 𝑟̅

2
))

3𝛽

 

((𝑤̅(2))
2
+ (

𝑤̅(1)

1 + 𝑟̅
)

2

+
2𝜈𝑤̅(1)𝑤̅(2)

1 + 𝑟̅
) + 𝑎4𝑐𝑑𝐼𝜔𝑤̅

2 

−
𝜔2𝑎4𝑡0(𝑛𝑡𝜌𝑏 + 𝜌𝑡)

𝑛 + 1
(1 + 𝛼 (

1 + 𝑟̅

2
))

𝛽

 

((𝜌𝑎 − 𝜌0) (
1 + 𝑟̅

2
)
𝑛𝑟

+ 𝜌0) 𝑤̅
2 − 4𝑃𝑎2(𝑤̅(1))

2
− 

𝜂2[16𝑃 ((
𝑤̅(1)

1 + 𝑟̅
)

2

+ (𝑤̅(2))
2
) + 4𝑎2𝑐𝑑𝐼𝜔 

(𝑤̅(2) +
𝑤̅(1)

1 + 𝑟̅
) 𝑤̅ +

2𝑎𝜔2𝑡0(𝑛𝑡𝜌𝑏 + 𝜌𝑡)

𝑛𝑡 + 1
(𝑤̅(1))

2
 

(1 + 𝛼 (
1 + 𝑟̅

2
))

𝛽

((𝜌𝑎 − 𝜌0) (
1 + 𝑟̅

2
)
𝑛𝑟

+ 𝜌0)]] 

(28) 

The unknown coefficients 𝜆𝑐 to 𝜆𝑚 are determined to 

calculate optimum deflection function in Eq. (24) and 

minimum amount of 𝑃 or 𝜔 in Eq. (28). For this purpose, 

following equations must be satisfied 

𝜕𝛱

𝜕𝜆𝑖
= 0,     𝑖 ∈ {𝑐, 𝑐 + 1, 𝑐 + 2,… ,𝑚} (29) 

The characteristic equation of tapered BDFGSCNP is 

calculated by vanishing determinant of coefficient matrix of 

homogeneous equations in Eq. (29). The 𝑀𝑡ℎ positive root 

of the characteristic equation is damped natural frequency 

or buckling load of 𝑀𝑡ℎ mode. The buckling deflection or 

mode shape of transverse oscillating nonlocal tapered 

BDFGSCP for 𝑀𝑡ℎ mode with clamped or pinned support 

at edge of the plate in the presence of viscous medium is 

obtained by calculating coefficient vector as follows 

𝛾̅𝑚 = {
−[Υ1](𝑚−𝑐)×(𝑚−𝑐)

−1 {Υ2}(𝑚−𝑐)×1
1

} 𝜆𝑚 (30) 

The element located in 𝑖𝑡ℎ  row and 𝑗𝑡ℎ  column of 

coefficient matrix, Υ, is the coefficient of the 𝜆𝑗+𝑐−1 in 

derivative of 𝛱  with respect to 𝜆𝑖+𝑐−1  ( 𝑖, 𝑗 ∈
{1,2,3, … ,𝑚 − 𝑐 + 1}). The matrix [Υ1] is constructed by 

deleting last row and last column of matrix [Υ] . The 

column vector {Υ2} is the last column of matrix Υ, in 

which the last row is deleted. It is noteworthy to mention 

that for buckling or vibration analysis, the vector {Υ2} and 

inverse of the matrix [Υ1] are calculated by assuming 𝑃 

or 𝜔  equal to 𝑀𝑡ℎ  positive root of the characteristic 

equation, respectively. 

4. Numerical results 
 

For conducting numerical analyses, the numerical values 

of geometrical properties, mechanical properties and 

dimensionless parameters are assumed as follows. 

 

 

Table 1 The numerical values of geometrical properties of 

macroscale plate 

𝑡0(m) 𝑎(m) 

0.02 0.5 

 

Table 2 The numerical values of mechanical properties 

𝑐𝑑 (
MN. s

m3 ) 𝜌𝑎 (
kg

m3) 𝜌0 (
kg

m3) 𝐸𝑎(GPa) 𝐸0(GPa) 

0.01 3970 2700 380 70 

 

Table 3 The numerical values of dimensionless parameters 

𝛽 𝛼 𝜈 𝑛𝑡 𝑛𝑟 

1 0.1 0.3 1 1 

 

 

The ratio of 𝐸𝑡/𝐸𝑏 for buckling analysis and the ratios 

of 𝐸𝑡/𝐸𝑏  and 𝜌𝑡/𝜌𝑏  for vibration analysis are assumed 

equal to 𝑅. For the case that the viscous medium is 

neglected, the dimensionless buckling load of BDFGSCP 

(𝑃𝑎2/𝐷0) is independent from dimensionless parameter 𝑅, 

but the dimensionless undamped natural frequency of 

BDFGSCP (𝜔𝑎2√𝜌0𝑡0/𝐷0) is dependent on 𝑅. Since the 

parameter 𝑅 does not affect radial gradation, which is the 

main part of this study, this parameter can be taken equal to 

1. In the case of 𝑅 = 1, the BDFGSCP is turned to radially 

functionally graded solid circular plate (RFGSCP). As an 

example, the effect of parameter 𝑅 on frequencies is 

presented in numerical results section. The subscript zero in 

dimensionless buckling load and normalized damped 

angular frequency of vibration denotes the value of the 

quantities at center of the plate (𝐷0 = 𝐸0𝐷). For numerical 

examples, the numerical values in Table (1) to Table (3) are 

used unless certain numerical values were mentioned. The 

comparison and validity of the results, buckling and 

vibration results for local plate as well as results for size-

dependent analysis are presented in numerical result 

section. Fig. 3(a) illustrates error plot as well as 

convergence of modified spectral Ritz method for nonlocal 

critical load of clamped BDFGSCNP and Fig. 3(b) 

illustrates error plot as well as convergence of modified 

spectral Ritz method for nonlocal damped angular 

frequency of vibration for third mode (without in-plane pre-

load). It is noteworthy to mention that for small number of 

basis vector components, the relative error of fundamental 

and second frequencies are approached to zero. Increasing 

number of rows in basis vector yields to decreasing error 

percent. The subscript 𝑚 in 𝑃𝑚 or 𝜔𝑚 denotes value of 

nonlocal first buckling load or nonlocal third damped 

natural frequency corresponding to basis vector with 𝑚 

rows (𝜂 𝑎⁄ = 0.1). According to Fig. 3, using basis vector 

with small dimension, yields to obtain results with high  
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(a) 

 
(b) 

Fig. 3 The convergence of spectral Ritz method for (a) 

buckling and (b) vibration analysis 

 

 

accuracy. Fig. 3 shows that the convergence for vibrational 

analysis is more than buckling analysis. 

The results of current work are compared and validated 

with the known data in literature. Buckling analysis results 

of local transverse functionally graded solid circular plate 

(FGSCP), ( 𝜂 = 0 , 𝐸0 = 𝐸𝑎 =1), with linear thickness 

variation (𝛽 = 1) are compared with previously published 

results in literature (Nae et al. 2007). The results show an 

excellent agreement for various values of Poisson’s ratio 

(𝜈), taper constant (𝛼) and various boundary conditions of 

FGSCP. It is noteworthy to mention that the results are 

independent from R. Increasing Poisson’s ratio yields to 

increasing critical load of clamped FGSCP with negative 

taper constant and yields to decreasing critical load of 

clamped FGSCP with positive taper constant. The critical 

load of uniform thin FGSCP (𝛽 = 0) with clamped edge is 

independent from Poisson’s ratio. The critical load of 

simply supported FGSCP increased by increasing Poisson’s 

ratio. Increasing taper constant, yields to increasing critical 

load of simply supported and clamped FGSCPs.  

The results of current work for undamped free vibration 

analysis are compared with the available results in literature 

(Liew et al. 2006, Mohammadi et al. 2013, Mohammadi et 

al. 2013). However different geometrical and mechanical 

properties are used in various references, but the same 

results are obtained due to independency of normalized 

frequency from mentioned properties. The results in Tables 

5 and 6 are calculated for circular plate of diameter 𝑑 by 

setting the parameters 𝑛𝑟, 𝑛𝑡, 𝑐𝑑 and 𝛼 equal to zero.  

Table 4 Result validation for buckling analysis (𝑃𝑎2/𝐷0) 

Boundary 

condition 

 𝛼 

𝜈 −0.3 −0.1 0.0 0.1 0.3 

Pinned-

Naei et al. 

(Naei et al. 

2007) 

0.0 1.916 2.857 3.389 3.985 5.380 

0.1 2.144 3.103 3.668 4.296 5.758 

0.2 2.325 3.343 3.937 4.594 6.110 

0.3 2.503 3.577 4.199 4.879 6.438 

0.4 2.680 3.805 4.448 5.150 6.741 

Pinned-

Present 

work 

0.0 1.9616 2.8571 3.3899 3.9852 5.3804 

0.1 2.1444 3.1033 3.6687 4.2969 5.7584 

0.2 2.3251 3.3433 3.9379 4.5947 6.1107 

0.3 2.5036 3.5772 4.1977 4.8791 6.4381 

0.4 2.6802 3.8052 4.4487 5.1505 6.7416 

Clamped-

Naei et al. 

(Naei et al. 

2007) 

0.0 7.706 12.081 14.681 17.566 24.213 

0.1 7.822 12.135 14.681 17.496 23.952 

0.2 7.938 12.188 14.681 17.427 23.691 

0.3 8.054 12.242 14.681 17.357 23.429 

0.4 8.169 12.296 14.681 17.287 23.167 

Clamped-

Present 

work 

0.0 7.7061 12.0815 14.6819 17.5666 24.2135 

0.1 7.8224 12.1352 14.6819 17.4968 23.9525 

0.2 7.9383 12.1889 14.6819 17.4269 23.6911 

0.3 8.0540 12.2425 14.6819 17.3570 23.4294 

0.4 8.1693 12.2961 14.6819 17.2871 23.1674 

 

Table 5 Result validation for vibration of simply supported 

circular nano-plate (𝜔√𝜌𝑡𝑑4/𝜋4𝐷 ) 

 𝜂/𝑎 

Results 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 

(Liew et al. 

2006) 
2.000 1.997 1.990 1.974 1.964 1.944 1.921 1.895 1.866 1.835 1.802 

(Mohammadi 

et al. 2013) 
2.000 1.997 1.990 1.974 1.964 1.944 1.921 1.895 1.866 1.835 1.802 

(Mohammadi 

et al. 2013) 
2.000 1.997 1.990 1.974 1.964 1.944 1.921 1.895 1.866 1.835 1.802 

Current work 2.000 1.997 1.990 1.974 1.964 1.944 1.921 1.895 1.866 1.835 1.802 

 

Table 6 Result validation for vibration of nonlocal uniform 

circular plate (𝜔𝑎2√𝜌𝑡/𝐷 ) 

Boundary 

condition 

 𝑃 = 0 𝑃 = 𝐷/𝑎2 𝑃 = 3𝐷/𝑎2 

𝜂

𝑎
 

Current 

work 

(Mohammadi 

et al. 2013) 

Current 

work 

(Mohammadi 

et al. 2013) 

Current 

work 

(Mohammadi 

et al. 2013) 

Simply 

supported 

0.00 4.9351 4.9345 4.3076 4.3076 2.6366 2.6366 

0.05 4.8997 4.8997 4.2709 4.2697 2.5893 2.5830 

0.10 4.7979 4.7979 4.1652 4.1602 2.4504 2.4248 

0.15 4.6415 4.6409 4.0019 3.9910 2.2265 2.1666 

0.20 4.4462 4.4455 3.7963 3.7775 1.9229 1.8081 

Clamped 

0.00 10.2158 10.2158 9.8704 9.8704 9.1372 9.1372 

0.05 10.1285 10.1283 9.7727 9.7727 9.0158 9.0158 

0.10 9.8788 9.8784 9.4928 9.4928 8.6659 8.6659 

0.15 9.5001 9.4999 9.0660 9.0660 8.1253 8.1253 

0.20 9.0351 9.0348 8.5380 8.5380 7.4420 7.4420 
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(a) 

 
(b) 

Fig. 4 The effect of taper constant and pattern of thickness 

variation on two first buckling loads of (a) pinned (b) 

clamped BDFGSCP 

 

 

In the case of pinned plate, the results for some values 

of scale coefficients are slightly different from each other in 

Table 6. For simplest cases (𝜂 = 𝑃 = 0), the exact solutions 

are available. The characteristic equations of vibration for 

first natural frequency based on classical plate theory for 

pinned and clamped edges are 𝐼1(𝜉)/𝐼0(𝜉) + 𝐽1(𝜉)/
𝐽0(𝜉) = 2𝜉/(1 − 𝜈)  and 𝐼0(𝜉) 𝐽1(𝜉) + 𝐼1(𝜉)𝐽0(𝜉) = 0 , 

respectively. The parameters 𝐽 and 𝐼 are the Bessel and 

modified Bessel functions of the first kind. The exact 

normalized first natural frequency is equal to 𝜉2. In the 

case of 𝜂 = 𝑃 = 0 , the exact normalized first natural 

frequencies for simply supported and clamped edges are 

4.9351 and 10.2158 that are coincide with the current work 

results.  

Figs. 4 and 5 demonstrate dimensionless buckling loads 

and dimensionless damped natural frequencies of first two 

modes in pinned and clamped BDFGSCP or RFGSCP for 

various amounts of 𝛼 and 𝛽. The subscript 𝑖 in 𝜔𝑖 and 

𝑃𝑖  denotes mode number. Increasing the values of the 

parameters 𝛼 and 𝛽 yields to increasing damped natural 

frequencies and buckling loads of two first modes. The 

effect of taper constant, 𝛼, on damped natural frequencies 

and buckling loads of two first modes for nonlinear 

thickness variation (𝛽 > 1) is more than linear variation of 

thickness (𝛽 = 1). 

According to Fig. 6, the damped natural frequency of 

vibration is approached to zero by approaching in-plane 

compressive radial load to buckling load of corresponding  

 
(a) 

 
(b) 

Fig. 5 The effect of taper constant and pattern of thickness 

variation on two first damped frequencies of (a) pinned and 

(b) clamped RFGSCP 

 

 
(a) 

 
(b) 

Fig. 6 The effect of in-plane pre-load on first three damped 

frequencies of (a) pinned and (b) clamped RFGSCP 
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(a) 

 
(b) 

Fig. 7 The effect of viscous medium on dimensionless first 

three damped frequencies of (a) pinned and (b) clamped 

BDFGSCP (R = 3, nt = 1) 

 

 

mode. The compressive radial load decreases damped 

natural frequency of vibration and the tensile radial load 

imposed at edge of the plate, increases damped natural 

frequencies of vibration. The first three damped frequencies 

of vibration in clamped RFGSCP is more than first three 

damped frequencies of vibration in pinned RFGSCP. 

The effect of viscous medium response on the first three 

frequencies of vibration of pinned and clamped BDFGSCP 

is presented in Fig. 7. The transverse material gradation 

index, 𝑛𝑡 , and the dimenssionless parameter 𝑅  are 

assumed equal to 1 and 3, respectively. The subscript 𝑛 in 

parameter 𝜔𝑛 denotes mode number. The dimenssionless 

first three undamped frequencies of BDFGSCP with pinned 

edge are 5.953, 35.415 and 86.430. By increasing 

dimenssionless ratio of viscous damper coefficient 

(𝑐𝑑 (𝜌0𝑡0𝜔𝑛)⁄ ) to 500, the frequencies are decreased to 

4.7619, 28.172 and 69.020, respectively. In the case of 

clamped edge, by increasing dimenssionless ratio of viscous 

damper coefficient to 500, first three normalized 

frequencies are decreased from 13.835, 48.215 and 104.675 

to 10.773, 38.318 and 83.558, respectively.  

The effect of material index in radial direction, 𝑛𝑟, and 

the ratio of top surface to bottom surface properties, 𝑅, on 

undamped natural frequencies of Love -Kirchhoff 

BDFGSCP with quadratic thickness variation and various 

boundary conditions is presented in Table 7. Since the 

parameters 𝑛𝑟  and 𝑅 are mechanical properties of the  

Table 7 The normalized fundamental undamped frequency 

(𝜔𝑎2√𝜌𝑡/𝐷0   ) of BDFGSCP with quadratic thickness 

variation (𝛽 = 2) for various material gradation and edge 

condition 

𝑃 = 𝐷0/𝑎
2 𝑃 = 0 𝑃 = −𝐷0/𝑎

2   

2.0 1.0 0.5 2.0 1.0 0.5 2.0 1.0 0.5 
𝑅- 

𝑛𝑟 

Boundary 

condition 

8.821 10.013 10.912 9.182 10.306 11.160 9.529 10.591 11.403 0.5 

Pinned 7.640 8.671 9.450 7.952 8.925 9.665 8.252 9.172 9.875 1.0 

6.238 7.080 7.716 6.493 7.287 7.891 6.738 7.489 8.063 2.0 

22.492 24.301 25.370 22.711 24.476 25.516 22.926 24.649 25.661 0.5 

Clamped 19.479 21.045 21.971 19.668 21.197 22.098 19.855 21.347 22.223 1.0 

15.904 17.183 17.939 16.059 17.307 18.043 16.211 17.430 18.145 2.0 

 

 

Fig. 8 The effect of scale coefficient on first three damped 

frequencies of pinned and clamped BDFGSCNPs 

 

 

Fig. 9 The effect of taper constant on nonlocal buckling 

analysis  

 

 

plate, the response of viscous medium is ignored (𝑐𝑑 = 0) 

to investigate only effects of the mechanical properties and 

edge conditions of plate on vibrational behavior. According 

to assumptions in Table 1, the radius to thickness ratio is 25; 

consequently, the effect of shear deformation can be 

neglected. In the case of material and mechanical properties 

which are presented in Tables 1 to 3, increasing material 

index in radial direction or increasing ratio of top surface to 

bottom surface properties yields to decreasing normalized 

frequencies. Fig. 8 presents the effect of scale coefficient on 

vibrational behavior of BDFGSCP. The ratio of nonlocal 

damped natural angular frequency of vibration to local  
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Fig. 10 The effect of scale coefficient on normalized first 

three vibrational mode shapes 

 

 

frequency is decreased by increasing scale coefficient. By 

increasing number of mode, the effect of scale coefficient 

on decreasing of the ratio of nonlocal structural response to 

local structural response is increased.  

The effect of scale coefficient on size-dependent 

vibration analysis is presented in Fig. 9. The ratio of 

nonlocal damped frequency to local damped frequency is 

decreased by increasing scale coefficient. Increasing taper 

constant yields to increasing the difference between results 

of local and nonlocal continuum mechanics. Moreover, in 

the case of clamped BDFGSCNP the difference between 

results of local and nonlocal continuum mechanics is more 

than pinned BDFGSCNP. 

The effect of scale coefficient on normalized first three 

vibrational mode shapes is presented in Fig. 10. The effect 

of scale coefficient on normalized mode shape is decreased 

by decreasing mode number. 

 
 

5. Conclusions 
 

For the first time, nonlocal damped vibration and 

buckling analysis of arbitrary tapered love-Kirchhoff 

bidirectional functionally graded solid circular nano-plate 

(BDFGSCNP) with various boundary conditions at edge of 

the plate in the presence of viscous medium is presented. A 

new function with more variables for modeling of two-

directional material gradation with more precision than 

conventional exponential gradation is used to consider 

variations of mass density and elasticity modulus of 

bidirectional functionally graded material in cylindrical 

coordinate. Based on energy method, the neutral 

equilibrium equation is calculated then the characteristic 

equations are obtained via fast convergence modified 

spectral Ritz method by employing a modified basis in 

terms of orthogonal shifted Chebyshev polynomials of the 

first kind to eliminate the auxiliary functions. A nontrivial 

solution is used to calculate undamped natural frequencies 

of vibration and buckling loads of first modes. The damped 

and undamped natural frequencies and buckling loads of 

local BDFGSCP and nonlocal BDFGSCNP are increased by 

increasing taper constant. Also, the mentioned parameters 

for plate with clamped boundary condition are more than 

pinned edge condition. The frequencies of vibration are 

decreased by increasing response of viscous medium. The 

critical load of uniform thin FGSCP with clamped edge is 

independent from Poisson’s ratio. The critical load of 

simply supported FGSCP is increased by increasing of 

Poisson’s ratio. The damped natural frequency is 

approached to zero by approaching in-plane compressive 

radial load to buckling load of corresponding mode. The 

compressive radial load decreases damped natural 

frequency of vibration and the tensile radial load increases 

damped natural frequency of vibration. The effect of taper 

constant on local and nonlocal damped and undamped 

natural frequencies and buckling loads, in the case of 

nonlinear thickness variation is more than linear variation of 

thickness. The difference between results of local and 

nonlocal continuum mechanics is increased by increasing 

scale coefficient and taper constant. In the case of clamped 

BDFGSCNP the difference between results of local and 

nonlocal continuum mechanics is more than pinned 

BDFGSCNP. The effect of scale coefficient on normalized 

mode shape is decreased by decreasing number of mode. 

For the simpler cases, an excellent agreement between 

current work results and outcomes of the previously 

published results in literature, wherever possible is observed 

and validity of the current methodology is proved.  
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