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1. Introduction  
 

In Geotechnics and in Foundation Structure Design, 

laterally loaded piles are currently used, for instance, as 

foundation of retaining walls, harbour embankments, off-

shore wharfs, and bridge abutments. These are members 

subjected to prevalent bending with often negligible axial 

loads, see for instance Poulos and Davis (1980) and Bowles 

(1996). Therefore, although currently called “laterally 

loaded piles”, they behave as beams, because they are 

laterally loaded at the top and only restrained by the 

surrounding soil. 

As in the case of other members subjected to bending, 

their design can be optimised through suitably shaping them 

(Haftka and Gürdal, 1993). Additionally, since they are 

constrained by the surrounding soil only (that is without any 

point constraint), their length can also be optimised. In 

laterally loaded piles it is frequently just checked to be 

sufficient, but not optimised.  

Optimisation of laterally loaded piles has been faced by 

some authors. Fenu and Serra (1995) and Fenu (2005) 

optimised the pile shape by first defining the differential 

equation of the laterally loaded pile, and by then solving 

Euler’s equations to find the shape of the pile minimizing 

its horizontal top displacement. Fenu and Madama (2006) 

optimised laterally loaded R/C bored piles made of two 

segments (with different diameters) in order to minimise 

their top displacement. Piles optimal shapes in integral 

abutment bridges has been investigated by Briseghella et al. 

(2017), by taking into account the importance of suitably 

designing the piles of integral abutment bridges, see for  
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instance Zordan and Briseghella (2007), Briseghella and 

Zordan (2007), Zordan et al. (2011), Zordan et al. (2011), 

Kim et al. (2013), Kim et al. (2014). 

Through implementing a genetic algorithm, Nakhaee 

and Johari (2013) optimised the lateral load bearing 

capacity of laterally loaded piles by varying diameter, 

length and mechanical properties. Eicher et al. (2002) 

carried out a parametric study of an offshore concrete pile, 

analysed by finite elements, subjected to combined loading 

conditions. A parametric study of the lateral behaviour of 

cast in drilled hole piles was carried out by Baki et al. 

(2016). A parametric analysis to study the effect of pile 

dimension and soil properties on the nonlinear dynamic 

response of pile subjected to lateral sinusoidal load at the 

pile head was conducted by Mehndiratta et al. (2014). 

Based on a number of experimental data achieved from 

the literature, Gandomi and Alavi (2012) used neural 

networks to design laterally loaded piles and reliably predict 

their performances. Performance functions for laterally 

loaded single concrete piles in homogeneous clays were 

defined by Imancli et al. (2009). 

In this paper, the soil surrounding the pile has been 

modelled as a Winkler’s medium (Winkler 1867, Baguelin 

et al. 1977). Of course, a soil-pile interaction more adherent 

to reality could be accounted for (David and Forth 2011, 

Ashour and Norris 2000, Boulanger et al. 1999, Kim and 

Jeong 2011, Kavitha et al. 2016), McGann and Arduino 

(2011), as well as a better model of the soil behavior 

(McGann and Arduino 2011, McGann et al. 2011, Chik et 

al. 2008, Ahmadi and Ahmari 2009, Juirnarongrit and 

Ashford 2004, Broms 1964, Kok and Huat 2008,  

Krishnamoorthy and Sharma 2008, Phanikanth et al. 2010, 

Wakai et al. 1999, Yang and Jeremic 2002). Since the 

Winkler’s soil model allows to achieve sufficiently well 

approximated results (Poulos and Davis 1988, Reese and 

Desai 1977, Brown and Shie 1990, Han and Frost 2000), 

this simplified model has been adopted. 
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Optimization of the mass distribution along the pile has 

been obtained through a well-known optimality criterion, 

the Fully Stressed Design (FSD) method (see for instance 

Bartholomew and Morris 1976, Haftka and Gürdal 1993, 

Patnaik and Hopkins 1998). 

Structural optimization has been common for a long 

time in mechanical and aeronautical engineering. In civil 

engineering, it is being progressively adopted both for 

buildings and for bridges (Briseghella et al. 2013, 2014, 

2015, 2016, Fiore et al. 2016, Greco et al. 2016, Greco and 

Marano 2016, Lucchini et al. 2014, Marano et al. 2014, 

Marano and Greco 2011, Marano et al. 2013, Quaranta et al. 

2014, Zordan et al. 2010). The FSD method, herein adopted, 

holds at the minimum weight design for statically 

determinate structures (Haftka and Gürdal 1993). Moreover, 

also in most cases of statically indeterminate structures 

made of a single material, a fully stressed design near the 

optimum is obtained. For this reason, the FSD method has 

been extensively used, for instance, in the aerospace 

industry (Haftka and Gürdal 1993).  

In this paper laterally loaded piles without any axial load 

are considered. Therefore, since by a mechanical point of 

view they behave as beams, in the following we refer to 

“beams” when describing their mechanical behaviour and 

the procedure to optimize their shape and length. Besides in 

Geotechnics, the optimization method described in the 

following can be applied also in other fields, for instance to 

optimise steel fasteners embedded in wood, in concrete or 

in other materials, through defining the coefficient of 

subgrade reaction of the Winkler’s medium as a function of 

the elastic modulus of the material surrounding the fastener. 

Nevertheless, when explicitly referring to the Geotechnics 

field, we will use the noun “piles”, as usual in Geotechnics 

(Poulos and Davis 1980, Bowles 1996).  

To optimise the beam shape, the FSD method was 

herein coupled with the Finite Element (FE) method. After 

performing the structural analysis of the beam by finite 

elements, the mass was redistributed through the FSD 

method. Structural analysis and mass distribution were then 

still updated, and this procedure iteratively performed until 

convergence was attained. 

A similar problem was studied by Fenu and Serra (1995) 

and Fenu (2005), but, in both cases, the subgrade reaction 

on the beam occurred only along a strip with unit width. 

The optimum solution was found by using the calculus of 

variations and integrating by finite differences the system of 

differential equations obtained from Euler's conditions.  

In this paper, the soil reaction was instead assumed to be 

proportional to the beam width, as it usually happens in real 

problems. This means that, by varying the cross-section 

along the beam, the reaction of the elastic soil varies as well, 

thus obtaining a model more representative of many real 

cases in a number of engineering applications. Of course, 

for soil reaction varying with the beam width, the problem 

becomes more complex. Nevertheless, a simple design 

solution can be achieved by using the FSD method. Finally, 

variational calculus was successfully used to identify the 

optimum length of fully stressed beams in a Winkler’s 

medium. This allowed to define some their peculiar 

characteristics.  

 

 

2. Model of the beam in the Winkler’s medium 
 

The beam with variable cross-sectional area A(x) is 

subjected to a soil reaction proportional to its width D(x). If 

circular sections are used, D(x) is the pile diameter (external 

diameter in case of circular hollow sections). The reference 

system (O,x,y) has its origin at the top of the beam, whose 

axis coincides with the abscissa axis (Fig. 1). P0 is the 

horizontal force acting at the top, V the volume of the beam, 

l its length, kh the coefficient of subgrade reaction of the 

Winkler’s medium. Since rotations at the top are free, the 

moment M0 =M(x=0) is zero. The soil reaction varies along 

the beam as 

𝑘(𝑥) = 𝑘ℎ𝐷(𝑥) (1) 

In many problems kh is constant along the beam length. 

This is the case of steel fasteners embedded in 

homogeneous concrete or in wood. In Geotechnics, in 1948 

Palmer and Thompson (1948) provided the general 

expression kh = kL (z/L)n, where kL is the value of kh at the 

pile tip (z=L), and n  0 is an empirical index, usually 

assumed to be 0 for overconsolidated clays (kh = const) and 

1 for soft clays and granular soils (where kh linearly varies 

with depth). In overconsolidated clays, kh can be considered 

as practically constant along the pile for considerable depths, 

and assumed to be 67 cu per unit pile width (Davisson 1970). 

where cu is the undrained cohesion of the overconsolidated 

clay. For piles in sand, as well as in soft clays, kh can be 

assumed to linearly vary with depth through a 

proportionality coefficient nh, whose values are provided by 

Poulos and Davis (1980). 

Besides determining the behaviour of laterally loaded 

piles together with their mechanical characteristics and 

geometry, the coefficients of subgrade reactions influence 

pile buckling, see for instance Catal and Catal (2006). In 

this paper, both kh and the Young’s modulus E of the beam 

were assumed to be constant. 

 

Fig. 1 Model of the beam in the Winkler’s medium 
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The differential equation of the beam in the Winkler’s 

soil is k(x)v(x)+M(x)II=0, where v(x) is the horizontal 

displacement and M(x) the bending moment. The order of 

the derivative with respect to the variable x is indicated with 

a roman numeral superscript, meaning that, for instance, 

M(x)I is the shear force S(x). In the following, this notation 

is adopted,  

Both D and the moment of inertia J can be related with 

A by means of the relations D=cA and J=hA, respectively, 

where c and h are dimensioned constants and  and  are 

real numbers. Nondimensional quantities are used, so that 

nondimensional abscissa , lateral displacement , cross-

sectional area a, diameter d, moment of inertia j, volume v, 

normal stress ç,  coefficient of subgrade reaction h, 

modulus of the top force p0, shear s and bending moment m 

are assumed to be, respectively 

 =
𝑥

𝑙
 𝜂 =

𝑣
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𝑙
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Therefore, the relations of the nondimensional diameter 

d and moment of inertia j with a (corresponding to the 

previously mentioned ones of D and J with A) can be 

defined as 

𝑑 = 𝜙𝑎 (3) 

𝑗 =  𝑎 (4) 

where both =hV−1/l+1 and =cVl+1are non-dimensional. 
 

 

3. Distribution of the mass by means of the FSD 
method 
 

To distribute the mass by means of the FSD method, an 

iterative algorithm was implemented. At each step, 

structural analysis was performed by finite elements, so 

obtaining the bending moment distribution, while the mass 

distribution was obtained through the FSD method, so 

obtaining the variation of the cross section along the beam.  

 

 

This causes a variation of the moment distribution, that was 

then updated through the FE method, thus leading to obtain 

a new distribution of the cross-section along the beam 

through the FSD method, until the algorithm converged to 

the problem solution. 

Beam elements with subgrade reaction of the Winkler's 

medium were used, where the subgrade reaction is 

dependent on and proportional to the displaced shape of the 

element. The inverse is also true, that is the displaced shape 

of the elements depends on the subgrade reaction.  

Therefore, if Li is the length of each i-th element, the 

following matrix Hi and its related shape functions Ni are 

defined as 

𝐇𝑖 = [

1
0
1
0

0
1
𝐿𝑖

1

0
0
𝐿𝑖
2

2𝐿𝑖
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] (5) 
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−1𝑇
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′

′2
 

′3 ]
 
 
 

 (6) 

where  ' is the local abscissa. For the principle of virtual 

works, the stiffness matrix of each i-th element was 

obtained by integrating the product Ni()II(EJi) Ni()II T 

along it.  

By algebrically adding the virtual work done by the 

subgrade to that done by the other applied loads, the 

stiffness matrix K si of each i-th beam element was obtained 

by adding the matrix Ki of a beam element not subjected to 

any subgrade reaction to the matrix K ri taking into account 

of the contribution of the subgrade reaction. The matrix K ri 

was therefore obtained as the integral of the product 

Ni() (kh Di) Ni()T along the element, where ki=khDi 

represents the subgrade reaction on each i-th element, see 

Carrol (1999). The stiffness matrix K si= Ki + K ri of each 

element is explicitly shown in Table 1. 

After having assembled the global stiffness matrix of the 

n elements, at each step both displacement vi and rotation qi 

at each node were obtained, as well as the bending moment 

and its successive derivatives. An iterative algorithm was 

implemented, where an inner loop distributed the mass of 

the beam through the FSD method, and updated the 

moments through FE analysis, while an outer loop 

optimised the beam length.  

The variational method used to obtain the optimum 

length l is described in the following paragraph, while in 

Table 1 Stiffness matrix of a generic i-th element including the contribution of the soil reaction 
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this paragraph the application of the FSD method is 

illustrated by assuming that l is known. 

For given nondimensional values m and ç̅ of moment 

and allowable stress 𝜎 , respectively, both diameter and 

cross-sectional area can be obtained from Navier’s formula, 

thus allowing to obtain a fully stressed section. Therefore, 

by using Navier’s formula at any beam section, 

nondimensional cross-sectional area and diameter were 

respectively obtained as 

𝐚 = (
1

2

𝜙



1

 ç̅
𝑚)

1
𝛼−

 (7) 

𝑑 =  (
1

2

𝜙



1

 ç̅
𝑚)


𝛼−

 (8) 

where, for solid circular cross sections =2,  =1/2, 

h=1/(4), c=2/ √𝜋  and, for circular thin walled hollow 

sections with wall thickness t, =3,  =1, h=1/(8t2), 

c=1/( t).  

In general, it is simpler to start from a constant 

distribution of a and then obtain, by finite elements, the 

initial distribution of moment m() from which the first 

non-constant mass distribution a() (coinciding with the 

cross-sectional area distribution for piles with uniform 

density) is obtained through the FSD method by means of 

(7). Then, for each successive step of the inner loop, 

moment and mass distribution are iteratively updated until, 

for any  value, the maximum variation of the mass 

distribution  Δa()max becomes smaller than a given small . 

Therefore, at a generic r-th iteration of the inner loop, the 

moment is known through a r-th application of the FE 

method, while the successive (r+1)-th distribution of a() 

will be achieved by means of the FSD method. Thus, for 

each i-th element one obtains: 

𝐚𝐢
(𝐫+𝟏)

= (
1

2

𝜙



1

 ç̅
𝑚𝑖

(𝑟)
)

1
𝛼−

 (9) 

and, at a N-th step, convergence is achieved when, for an 

assigned sufficiently small positive , |ai
(N)−ai

(N− 1)| <   , for 

i=1  n. 

Figure 2 shows the nondimensional mass distribution 

a() of circular fully stressed beams with solid and hollow 

thin-walled sections, whose length is also optimised, as 

shown in the next section. 

 

 

4. Optimum length 
 

Even if the mass distribution is optimised, a given beam 

length could be either too short or too long for given total 

mass. In both cases the beam is not optimised to react to the 

lateral load, and its top displacement can be minimised 

through optimising the beam length.   

By first reasoning heuristically, if the beam is too short, 

its length could even tend to zero, with all the mass tending 

to be close to the beam top, and the beam only slightly 

embedded in the Winkler’s soil, thus becoming ineffective 

to react to the lateral load. On the contrary, if the beam 

length tends to be too long, its width tends to become too  

 

Fig. 2 Distribution of the cross-sectional area a(x) in two 

different circular beams with optimum length 

 

 

small (for instance, with length tending to infinity and width 

tending to zero for given total mass). A too long laterally 

loaded beam with too small width becomes so slender that 

moments oscillates between positive and negative values: 

therefore, when moments are zero, the mass optimization 

allocates no mass in these points, thus inserting internal 

hinges along the beam, that it means that such a beam can 

become more effective to react to the lateral load if its 

length is decreased.  Therefore, together with optimising 

the mass distribution with the FSD method, the beam length 

has to be optimised, too, in order to minimise the top 

displacement.  

Optimising the beam length is a variable endpoint 

problem where, saying l the optimum length, the abscissa xl 

=l of the bottom end is unknown. By using variational 

calculus, the optimum length l can be obtained by imposing 

a transversality condition at the bottom end (Elsgolts 1980).  

Therefore, if F is the integrand function of 𝜂0
∗ , the 

transversality condition is  

[𝐹 − (𝐼 − 𝑚𝐼)𝑑𝐹𝑚𝐼𝐼/𝑑𝑥]=𝑙=1 = 0 (10) 

where xl =xl /l .   

Since the slope of the abscissa axis is zero, then  I=0 

and, for x =xl=1, we obtain 

[𝑚𝐼𝐼]=𝑙=1 = 0 (11) 

Thus, l is the abscissa xl for which mII=0, meaning that 

there is a flex point at the bottom end, where we also have 

mI=m=0. 

The flow-chart of Fig. 3 describes the algorithm that 

optimises the length of the beam by shortening or 

lengthening it until the transversality condition (11) is 

satisfied. 

Having assigned a length tentative value, in an inner 

loop the mass distribution is obtained through the FSD 

method, and, in an outer loop, the optimum length l is 

obtained by iteratively lengthening or shortening the beam 

until mII= 0 at the variable endpoint of the bottom end. If  
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Fig. 3 Numerical algorithm to design fully stressed beams 

with optimum length 

 

 

Fig. 4 Hinged solution for fully stressed beams with circular 

solid cross section and length longer than optimum. This 

case corresponds, for instance, to a beam 13 m long loaded 

by P0=500 kN, and with E=30 GPa,  =10 MPa, kh=20 

MPa, V=2.219 m3 

 

 

the beam is too short, with also m always positive along the 

beam and mII positive at the bottom end, the beam is 

iteratively lengthened until mII= 0.   

Contrarily, if the beam is longer than l, the sign of the 

bending moment changes and m can oscillate several times 

between positive and negative values, depending on beam 

and soil stiffness, magnitude of the external load, and beam 

length. When m changes its sign and becomes zero, for (7) 

also a becomes zero, meaning that the optimization 

procedure inserts an internal hinge along the beam (Figure 

4). Then, if in the inner loop internal hinges are inserted, in 

the outer loop the beam is iteratively shortened until m 

becomes always positive and the transversality condition 

(11) is satisfied (see Fig. 3). 

 

 

5. Fully stressed beams with optimum length 
 

Therefore, besides the two cases of too short and too 

long beams, there is the intermediate one of fully stressed 

beams with optimum length with mII=0 at the lower end, 

m>0 along the beam, and m=0 at the ends to meet the 

boundary conditions.  

It can be noted that, for same type of cross section, the 

mass distributions a(x) of all fully stressed beams with 

optimum length in a Winkler’s medium is always the same, 

and is therefore a peculiar characteristic of these beams 

with same type of cross-section. The mass distributions of 

Fig. 2 are therefore referred to all the circular fully stressed 

beams with optimum length with solid and hollowthin-

walled sections, meaning that a(x) remains unchanged when 

changing the mechanical properties of the beam material, 

the coefficient of subgrade reaction of the Winkler’s 

medium, and any constant defining the cross section (i.e. 

the wall thickness of hollow sections). 

Therefore, if the volume V is assigned, the top 

displacement of fully stressed beams with optimum length 

results minimised with respect to any fully stressed beam 

but without optimum length. For beams shorter than l, this 

minimum results flat. For instance, given the volume 

V=2.219 m3, for fully stressed beams with solid circular 

cross section (E=30 GPa, 𝜎=10 MPa, kh=20 MPa) loaded 

by P0=500 kN, the length decrease from the optimum 

(l=8.482 m) to the shorter length 6.711 m increases the top 

displacement v0 from 26.4 mm to 26.7 mm, that is by only a 

1%. 

On the contrary, for beams longer than l, the increase of 

v0 is higher, because the FSD method inserts inner hinges, 

thus causing loss of bending stiffness and structural 

efficiency of the lower part of the embedded beam. For 

instance, for the beam longer than optimum of Fig. 4 loaded 

by P0=500 kN, with same volume 2.219 m3 but length 13 m, 

the top displacement is 27.8 mm, that is 5.3% higher than 

optimum. 

It is worth noting that for lengths l0 longer than l a 

further optimum exists: in this case, for 0 x l, the 

distribution of A(x) is the same of the previous case, while, 

for l x l0 , A(x) coincides with the abscissa axis, namely 

A(x) =0. For instance, consider the curve of Fig. 5 and the 

curve of Fig. 2, both referred to a circular solid section 

beam. In Fig. 5, the abscissa of all points with a(x)>0 and 

x< ̅= l / l 0 =0.8  i s  decreased  b y (1 - ̅ )100  pe rcen t  
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Fig. 5 One-sided variation problem in the lower part of a 

fully stressed beam 

 

 

with respect to the abscissa of the corresponding points of a 

beam with same a(x) obtained through the FSD method but 

distributed along the optimum length l, as in Fig. 2. hence, 

apart from the different nondimensional abscissa, for 0 

x̅ the solution of Fig. 5 is identical to that with optimum 

length l of Fig. 2. Since for ̅ x>̅  both m(x) and a(x) are 

zero, than for 0≤x ≤1 (that is 0≤x≤ l0) there is a point ̅ =l/l0 

where mII(̅)=0, as well as mI(̅)=m(̅)=0.  

This is a one-sided variation problem for both m(x) and 

a(x) (Myskis 1979), both constrained to coincide with the 

abscissa axis for x  ̅ . The necessary condition [( I - 

mI )dFmII /dx] =    =0 is then required, that is 

[𝑚𝐼]=̅ [𝑚
𝐼𝐼]=̅ [𝑚

𝐼𝐼𝐼]=̅ = 0 (12) 

Therefore, either only one of the following three 

equations is separately satisfied  

[𝑚𝐼]=̅ = 0 [𝑚𝐼𝐼]=̅ = 0 [𝑚𝐼𝐼𝐼]=̅ = 0 (13) 

or, as it in this case, Eq. (9) are together satisfied, that is 

[𝑚𝐼]=̅ = [𝑚𝐼𝐼]=̅ = [𝑚𝐼𝐼𝐼]=̅ = 0 (14) 

This means that, besides the condition (11), optimum 

beams with optimum length require the further condition 

mIII=0 at the bottom end. Fig. 5 shows that, at the point with 

abscissa ̅  along the abscissa axis, Eq. (14) are satisfied 

for both the left derivatives (on the side with a(x)>0, 

m(x)>0), and the right derivatives (where m(x)=a(x)=0, thus 

coinciding with the abscissa axis). Therefore, at this point 

with abscissa ̅ , Weierstrass-Erdmann conditions are 

satisfied, meaning that m and a are free from break-points 

and smoothly merge with the abscissa axis (Banichuk and 

Karihaloo 1977).  
 

 

6. Examples 
 

Consider for instance the case of a fully stressed beam 

with optimum length with solid circular cross-section. This 

type of cross-section, whose nondimensional mass 

distribution a(x) is shown in Fig. 2, is characterized by 

h=1/(4𝜋) and c=2/√𝜋 (see Section 3).  

 

Fig. 6 Bending moment in a fully stressed beam with 

optimum length with circular solid cross-section. Material 

properties and external load are indicated in the legend 

 

 

Fig. 7 Shape of the fully stressed beam with optimum 

length whose mechanical characteristics are shown in Fig. 6 
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Fig. 8 Moment distribution in hollow section piles subjected 

to the same lateral load of 500 kN and made of concrete 

with different material characteristics 

 
 

The lateral load at the top is P0=500 kN. Elastic 

modulus and allowable stress of the beam material are 

E=30 GPa and 𝜎 =10 MPa, respectively; the coefficient of 

subgrade reaction is kh=20 MPa/mm. Using the algorithm 

described in Fig. 3, functions m() and a() are drawn  and, 

for mI
|==mII

|= =0, the optimum length l=8.481 m with 

volume V=2.219 m3 is also obtained (with ç̅=316.63 and 

 h=5372, v=3.637·10−3, =0.0681 and =2.894·10−4).  

The nondimensional lateral force applied at the top, 

coinciding with the first derivative dm/d |= at the top 

boundary, is therefore p0=P0 l+(EhV)=  

The moment distribution M(x) along the beam is then 

obtained (see Fig. 6), together with the mass distribution 

A(x) that allows to obtain the shape of the laterally 

loaded pile under consideration (Fig. 7). This example can 

be referred to an optimised laterally loaded pile made of 

reinforced concrete, and embedded in an overconsolidated 

cohesive soil with undrained cohesion cu=0.30 MPa, with 

kh67 cu/mm = 20.1 MPa/mm [1]. 

A laterally loaded pile made of reinforced concrete with 

solid circular cross section and with optimum shape and 

length could be constructed by first prefabbricating a 

hollow section pile with same shape made of centrifuged  

concrete, and, after embedding the pile into the soil, by then 

pouring the fluide concrete into the hollow-section pile, 

thus obtaining a solid cross-section pile. The procedure of 

filling with concrete a hollow section pile after embedding 

it is used in “Multiton” piles (Fenu 2006), where steel tubes 

with diameter decreasing with depth are first embedded into 

the soil and then filled with concrete to increase their load 

bearing capacity. 

On the contrary, if hollow-section piles are chosen (that 

are much lighter than the solid-section ones, depending on 

the wall thickness), there is no need to fill them with 

concrete, because their shape is optimised to maximize their 

performance.  

Consider therefore a hollow-section pile laterally loaded 

at the top by the same force P0=500 kN, embedded in the 

same above soil with coefficient of subgrade reaction kh=20 

MPa/mm. Since to prefabricate a hollow-section pile, 

centrifuged concrete reinforced by steel meshes can be used, 

concrete with higher mechanical properties is considered, 

for instance with E=90 GPa and σ̅=30 MPa. 

Using the same procedure described in Fig. 3, the 

optimum length l=5.292 m and the volume V=0.246437 m3 

are obtained (with ç=511.033, h=1803, v=1.663·103, 

=0.0560 and =3.923·10−4).  

The moment distribution M(x) along the beam (Fig. 8) is 

then drawn, together with the mass distribution A(x), that 

leads to the shape of the hollow-section pile under 

consideration shown in Figure 9a, with maximum diameter 

Dmax = 0.585 m. 

If a concrete with lower mechanical properties is used 

(E=60 GPa and σ̅=20 MPa), the optimum length does not 

change, but the pile volume is increased to V=0.301823  m3  

(with ç̅ =278.17,  h=1472, v=2.036·10−3, =0.0686 and 

=5.884·10−4). Fig. 8 shows that the moment level becomes 

much higher (Mmax about 2 times higher), while Fig. 9(b) 

shows the related pile shape with increased diameters (Dmax 

= 0.705 m). By further decreasing elastic modulus and 

allowable stress (E=30 GPa and σ̅=10 MPa), the optimum 

length is still the same, but the volume of the  

pile is to be increased to V=0.426842 m3(with ç̅=98.348, 

 h=1041, v=2.880·10−3, =0.0970 and =1.177·10−3). The  

related moment distribution M(x) of Figure 8 shows that the 

moment level becomes much higher (Mmax about 4 times 

higher than in the previous case), while a stocky pile is 

obtained (Fig. 9(c)) with maximum diameter further 

increased to almost 1 m (namely 0.976 m). Therefore, by 

shaping optimum hollow-section piles laterally loaded at 

the top, if high performance concrete is not used, too stocky 

piles are obtained.  

A further example with different materials is also 

presented. Consider a dowel fastener made of steel 

embedded in wood. Since in this case a circular solid cross 

section is used, the nondimensional mass distribution a() is 

the same of the pile with solid circular section considered 

above (see Fig. 1). By assuming kh=10500 MPa, 

E=205 GPa, and σ̅=300 MPa, if the orthogonal load on the 

fastener is P0 = 3 kN, the optimum length is l=117 mm with 

V=6000 mm3 (and with ç̅ =1290.730,  h=5366, 

v=3.775·10−3, =0.0693 and =3.004·10−4). The maximum 

diameter is Dmax= 11.2 mm.  

 

 

7. Conclusions 
 

 The optimised design of laterally loaded beams in a 

Winkler’s medium can be iteratively obtained through the 

Fully Stressed Design method, a simple optimality criterion 

that has shown to be effective for this aim. 

Structural analysis of the beam with variable cross-

sectional-area has been carried out by finite elements (thus 

determining bending moments), while the cross-sectional 

area has been contemporarily updated through the FSD 

method until achieving convergence.  

A simple method of optimising the length of optimum 

beams has been defined by using variational calculus. 

Therefore, while in an inner loop the optimum mass 

distribution is obtained, in an outer loop the beam length is  
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increased or decreased until the necessary condition defined 

through variational calculus to obtain the optimum beam 

length is met. 

The method has shown to be robust and efficient 

because the FSD method does not require any derivative to 

find the optimum mass distribution, while the necessary 

condition that must be satisfied to find the optimum length 

requires to calculate the second derivative only at the beam 

bottom end. 

Some examples referred to different fields are reported. 

In fact, both steel fasteners embedded in wood and laterally 

loaded piles embedded in soil can be considered as laterally 

loaded beams surrounded by a Winkler’s medium. For the 

mass production of steel fasteners can be useful to optimise 

both their length and their mass distribution, depending on 

the service conditions. Additionally, some examples show 

that in Geotechnics laterally loaded piles with optimum 

mass distribution and length could be prefabricated with 

hollow sections. In this case, centrifuged concrete with high 

mechanical properties reinforced with steel meshes can be 

used. Optimum laterally loaded piles made of concrete with 

high characteristics have shown to have much lower 

moments and smaller cross-sections with respect to piles 

made of normal concrete.  

 

 

Normal concrete can be instead used for optimum 

laterally loaded piles with solid cross-section. In this case 

the pile should be still constructed with centrifuged concrete 

with hollow section, but suitably shaped to work with solid 

section, that can be obtained by pouring fluid concrete into 

the hollow section pile after embedding it. .  
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Fig. 9 Shape of hollow section piles made of concrete with different mechanical characteristics.  (a) E=90 GPa, 𝜎=30 MPa; 

(b) E=60 GPa, 𝜎=20 MPa; (c) E=30 GPa, 𝜎=10 MPa 
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