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1. Introduction  
 

Functionally graded materials (FGMs) are a type of 

heterogeneous composite material in which the properties 

change gradually over one or more directions (Mantari 

2015). They have been first proposed by Japanese scientists 

to decrease the thermal stresses in propulsion and airframe 

structural systems of astronautical flight vehicles (Koizumi 

1997). 

In recent years, there is a rapid increase in the use of 

functionally graded (FG) sandwich structures in various 

engineering applications such as aerospace, biomedical and 

civil engineering this is due to the main characteristic 

offered by these materials namely high strength-to-weight 

ratio. With the wide application of these structures, 

understanding behaviors of FG sandwich beams becomes 

an important task and more accurate theories are required to 

predict their bending, buckling and free vibration response. 

Since the shear deformation influences are more found in 

thicker FGBs (functionally graded beams) three main  
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theories that are first-order shear deformation theory, 

higher-order shear deformation theory and quasi-3D shear 

deformation theory have been employed by the researchers 

during the last decade (Armagan 2017). 

Chakraborty et al. (2003) used the first order shear 

deformation theory to study the thermoelastic behaviour of 

FGM beam structures. Li (2008) gave a unified approach 

for analyzing static and dynamic behaviours of FGM 

Timoshenko and Euler–Bernoulli beams.  

For a better accuracy and in order to take into account 

the transverse shear deformation, studies on FGM beams 

were performed based on the higher-order shear 

deformation beam theory (Wang and Li 2016). Based on 

this theory Tounsi and his co-worker have developed 

several models for studying the static and dynamic behavior 

of FGM structures (Bachir Bouiadjra et al. 2013, Fekrar et 

al. 2014, Zidi et al. 2014, Bousahla et al. 2014, Ait Yahia et 

al. 2015, Hamidi et al. 2015, Bourada et al. 2015, 

Bounouara et al. 2016). 

Using an efficient third-order zigzag theory, Kapuria et 

al. (2008) have presented a finite element model for static 

and free vibration responses of layered FG beams and they 

estimated the effective modulus of elasticity, and its 

experimental validation for two different FGM systems 

under various boundary conditions. 

Kadoli et al. (2008) have analyzed the static behavior of 

an FG beam by using higher-order shear deformation theory 

and finite element method. Sina et al. (2009) used a new 

 
 
 

The role of micromechanical models in the mechanical response of 
elastic foundation FG sandwich thick beams 

 
Mohammed Yahiaoui1a, Abdelouahed Tounsi1,2b, Bouazza Fahsi3c, 

Rabbab Bachir Bouiadjra4c and Samir Benyoucef1 
 

1Department of Civil Engineering, Material and Hydrology Laboratory, Faculty of Technology, University of Sidi Bel Abbes, Algeria 
2Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, 31261 Dhahran, 

Eastern Province, Saudi Arabia 
3Laboratoire de Modélisation et Simulation Multi-échelle, Faculté des Sciences Exactes, Université de Sidi Bel Abbés, Algeria 

4Department of Civil Engineering, University Mustapha Stambouli of Mascara, Algeria 

 
(Received January 4, 2018, Revised July 16, 2018, Accepted July 18, 2018) 

 
Abstract.  This paper presents an analysis of the bending, buckling and free vibration of functionally graded sandwich beams 

resting on elastic foundation by using a refined quasi-3D theory in which both shear deformation and thickness stretching effects 

are included. The displacement field contains only three unknowns, which is less than the number of parameters of many other 

shear deformation theories. In order to homogenize the micromechanical properties of the FGM sandwich beam, the material 

properties are derived on the basis of several micromechanical models such as Tamura, Voigt, Reuss and many others. The 

principle of virtual works is used to obtain the equilibrium equations. The elastic foundation is modeled using the Pasternak 

mathematical model. The governing equations are obtained through the Hamilton’s principle and then are solved via Navier 

solution for the simply supported beam. The accuracy of the proposed theory can be noticed by comparing it with other 3D 

solution available in the literature. A detailed parametric study is presented to show the influence of the micromechanical models 

on the general behavior of FG sandwich beams on elastic foundation. 
 

Keywords:  FG sandwich beam, micromechanical model; quasi 3D shear deformation theory; stretching effect; bending; 

buckling; free vibration; Pasternak foundation 

 



 

Mohammed Yahiaoui et al. 

 

beam theory different from the traditional first-order shear 

deformation beam theory to analyze the free vibration of 

FG beams.  Simsek et al. (2009) studied the static analysis 

of an FG beam under uniformly distributed load within the 

framework of the higher-order shear deformation beam 

theory by Ritz method. 

Recently, Tounsi and his co-workers (Hadji et al. 2011, 

Houari et al. 2011, Abdelaziz et al. 2011, Merdaci et al. 

2011, Bourada et al. 2012, Bouberda et al. 2013, Taibi et al. 

2015, Tounsi et al. 2013, Bousahla et al. 2016, Attia et al 

2018, Belabed et al. 2018, Bellifa et al. 2017, Bennoun et 

al. 2016, Abdelaziz et al. 2017, Fourn et al. 2018) 

developed a refined theory for both plate and beam which 

considers only a few unknown variables and yet takes into 

consideration shear deformations. These theories are based 

on the idea of partitioning the vertical displacements into 

the bending and shear components. This theory was used 

for the study of bending response, thermo-mechanical, 

buckling and free vibration of simply supported FGM plate 

and sandwich plate. 

Moreover, Bennai et al. (2015) presented a hyperbolic 

shear and normal deformation beam theory to study the 

vibration and buckling responses of FG sandwich beams 

under boundary conditions. 

Vo et al. (2014) studied vibration and buckling of 

sandwich beams with FG skins - homogeneous core using a 

refined shear deformation theory. 

It should be noted that the studies detailed above neglect 

the effect of stretching. Its effect becomes very important 

for thick beams. In order to include this effect, quasi-3D 

theories have been proposed. 

By using this theory, many works have been developed 

but practically concern only the case of plates. We cite as an 

example the references (Benahmed et al. 2017, Mahmoudi 

et al. 2017, Hebali et al. 2014). The research on FG 

sandwich beams is limited. 

Carrera et al. (2011) developed Carrera Unified 

Formulation (CUF) using various refined beam theories 

(polynomial, trigonometric, exponential and zig-zag), in 

which non-classical effects including the stretching effect 

were automatically taken into account. 

On the other hand, Beam structures are often found to be 

resting on earth in various engineering applications. These 

include railway lines, geotechnical areas, building 

structures, offshore structures, and transversely supported 

pipe lines (Yas et al. 2017). 

To describe the interactions of the beam and its 

foundation as appropriately as possible, scientists have 

proposed various kinds of foundation models (A.D. Kerr 

1964). The simplest one is that of Winkler. Winkler (1867) 

presented a one-parameter model to describe the 

mechanical behavior of elastic foundations. This model 

does not take into account the coupling effects between the 

separated springs which was corrected later by Pasternak 

(1954) who added a shear layer as a parameter. 

The manufacture of FGMs can be envisaged by mixing 

two discrete phases of materials, for example a separate 

mixture of a metal and a ceramic. Often, accurate 

information on the shape and distribution of particles may 

not be available. Thus, the properties of effective materials, 

such as modulus of elasticity, shear modulus; density, etc. 

are evaluated solely on the basis of the distribution of the 

volume fractions and the approximate shape of the 

dispersed phase. Several micromechanical models have 

been developed over the years to deduce the effective 

properties of macroscopically homogeneous composite 

materials (Jha et al. 2013). Among them, we can cite the 

models of Mori-Tanaka, Tamura, Reuss, Voigt, etc. 

As far as authors known, in literature there is no work 

available using the quasi-3D theories to study bending, 

buckling and free vibration of FG sandwich beams resting 

on elastic foundation using various micromechanical 

models. 

Thus, the present paper presents an analysis of the 

bending, buckling and free vibration of rectangular thick 

sandwich FG beam resting on elastic foundation by using a 

new quasi 3D shear deformation theory. The number of the 

unknowns evoked by the present theory is only three. The 

material properties of the beam through its thickness will be 

calculated using several micro-mechanical models. 

The effect of these models on the overall response of the 

beam will be discussed in detail via a parametric study. 

 

 

2. Effective properties of FGMs 
 

FGMs are manufactured by mixing different material 

phases continuously through a specific spatial direction.  A 

number of micromechanics models have been proposed for 

the determination of effective properties of FGMs. In the 

following, we present some micromechanical models to 

calculate the effective properties of the FG plate. 

 

2.1 Voigt model 
 

The simplest micromechanical model for obtaining 

equivalent macroscopic material properties is the mixing 

rule formulated by Voigt (1889). Voigt’s idea was to 

determine the properties of the materials by averaging the 

stresses on all phases with the uniformity of deformation 

assumption in the material. The Voigt model, frequently 

used in most FGM analysis, estimates the Young’s modulus 

as 

( ) ( ) ( )( )( ) ( ) ( )1n n n

c mE z E V z E V z= + −
 

(1) 

Ec and Em are respectively the Young modulus of the 

ceramic and the metal. V(n) is the volume fraction of each 

layer composing the sandwich beam. 

 

2.2 Reuss model 
 

Reuss assumed the stress uniformity through the 

material and obtained the effective properties as 

(Mishnaevsky 2007, Zimmerman 1994) 

( )
( )( ) ( )

( )

( ) ( )1

n c m

n n

c m

E E
E z

E V z E V z
=

− +
 

(2) 
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2.3 Tamura model 
 

The method of Tamura et al. (Tamura et al. 1973, 

Williamson et al. 1993) assumes a linear rule of mixing for 

the effective Poisson's ratio of a two-phase composite while 

incorporating an empirical adjustment parameter qT (stress 

to strain transfer) in the formulation of the effective Young's 

modulus. The empirical parameter relates the stress and 

strain in the matrix and the particle phases (Akbarzadeh et 

al. 2015).  

1 2

1 2

Tq
 

 

−
=

−

 
(3) 

Estimate Estimate for qT = 0 correspond to Reuss rule 

and with qT = ±∞ to the Voigt rule, being invariant to the 

consideration of which phase is matrix and which is 

particulate. The effective Young’s modulus is found as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

( ) ( )

(1 )
( )

(1 )

n n

m T i c T mn

n n

T c c T m

V z E q E V z E q E
E z

V z q E V z E q E

− − + −
=

− − + −

 
(4) 

 

2.4 Description by a representative volume element 
(LRVE) 
 

The local representative volume element (LRVE) is 

based on a “mesoscopic” length scale which is much larger 

than the characteristic length scale of particles 

(inhomogeneities) but smaller than the characteristic length 

scale of a macroscopic specimen (Ju and Chen 1994). The 

LRVE is developed based on the assumption that the 

microstructure of the heterogeneous material is known. The 

input for the LRVE for the deterministic micromechanical 

framework is usually volume average or ensemble average 

of the descriptors of the microstructures. 

Young’s modulus is expressed as follows by the LRVE 

method (Akbarzadeh et al. 2015) 

( )
( )

( )3

1
1

1

( n )

( n )

m
( n )

m

c

V z
E z E , FE

EFE V z
E

 
 = + =
 − − 

 

(5) 

 

2.5 Mori-Tanaka model 
 

According to Mori-Tanaka homogenization scheme, the 

Young’s modulus is given by (Benveniste 1987, Mori and 

Tanaka 1973) 

( )
( )( )( ) ( )

( )
( )

( )

( )
( )

1 1 ( ) / 1 1 / 3 3

n
n

m c m n

c m

V z
E z E E E

V z E E  

 
 = + −
 + − − + −
 

 
(6) 

The bottom and top sheets of the sandwich plate are 

composed of FG metal/ceramic material, which are graded 

from the metal at the bottom and top surfaces to the ceramic 

at the interfaces (see Fig. 1). While the core layer is 

assumed to be fully ceramic (hardcore).  In this case, the 

volume fraction V(n) can be given 

(1)
2

1

(2)
2 3

(3)
3

2

1 2
, / 2 ,

1 2

1 , ,

1 2
, / 2,

1 2

p

p

z
V h z h

h

V h z h

z
V h z h

h

 +
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+ 

=  

 −
=   + 

− 

 

(7) 

 

 

     

Fig. 1 Coordinate and geometry of a FG sandwich beam 

resting on elastic foundation 

 

 

Where “p” is the power law index. Note that, when p=0, 

one obtains a fully homogeneous ceramic plate. Whereas, if 

p ≈ ∞, a metal-ceramic-metal sandwich plate (m–c–m) is 

obtained. 

The effective mass density   is given by the rule 

mixtures as (Yaghoobi and Torabi 2013, Bessaim et al. 

2013, Benachour et al. 2011), regardless of the utilized 

micromechanical models 

( ) ( )( ) ( ) ( )n n

m c mz V z   = + −
 

(8) 

 

 

3. Kinematics 
 

The displacement field satisfying the conditions of 

transverse shear stresses (and hence strains) vanishing at (x, 

y, ±h/2) on the outer (top) and inner (bottom) surfaces of the 

beam, is given as follows (Zenkour 2013, Bachir Bouiadjra 

et al. 2018) 

( ) ( )

( )

0, , ,

, , , ( )

b s

b s

w w
u x y z t u z f z

x x

w x y z t w g z w

 
= − +

 

= +
 

(9 

With 

'

1
( ) sinh cosh 1

2

1.675
( ) ( ) ( )

15

h z
f z z z

h

g z rf z r






      
= − − − −      

      

= =

 (10) 

The value of the parameter “r” was properly selected to 

provide accurate results of deflection and stresses in a static 

medium. 

Where u0, wb and ws are the three unknown 

displacement functions of the middle surface of the beam. 

The kinematic relations can be obtained as follows 
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( )

( ) ( )

0 0

' 0 0

, '( )x x x x z z

xz xz xz

zk f z g z

f z g z

    
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= + + =

= +
 

(11) 

Where 

0 0

0, ,

0

, ,

, , ,

,

x x z s x b xx

x s xx xz s x

u w k w

w w

 

 

= = = −

= =
 

(12) 

It should be noted that the comma subscript is used for 

space derivative. 

 

 

4. Constitutive relations 
 

The linear constitutive relations are 

11 13

13 33

55

,

,

x x z

z x z

xz xz

Q Q

Q Q

Q

  
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 

= +

= +

=
 

(13) 

where ( x , z , xz ) and ( x , y , z , xy , yz , yx ) 

are the stress and strain components, respectively. The 

stiffness coefficients, Qij can be expressed as 

( )

11 33 2

13 2
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Q
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




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−

=
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=
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(14a) 

(14b) 
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5. Equations of motion 
 

Hamilton’s principle is used herein to derive the 

equations of motion. The principle can be stated in 

analytical form as 

2

1

( ) 0

t

F

t

U U K W dt   + − + =
 

(15) 

Where δU is the variation of strain energy; δK is the 

variation of kinetic energy; δW is the variation of work 

done, and δUF is the variation of strain energy of 

foundation. 

The variation of strain energy of the beam stated as 

( )x x z z xz xzU dx dz      = + +   
(16) 

Substituting Eqs. (11) and (13) into Eq. (16) and 

integrating through the thickness of the beam, we can obtain 

 0 0 0 0
1 1 1 3 5 5x x x z xz xzU N M k P R Q K dx      = + + + + +

 
(17) 

The stress resultants N, M, P, Q and R are defined by 

( ) ( ) ( )

( ) ( ) ( )

( )

1

1

1

3

1

3
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1
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1
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n

n

n

n

n
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h
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

−

−

−

=

=

=

= =

= =

= =

 

 

 

 
(18a) 

(18b) 

(18c) 

Where nh and 1nh − are the top and the bottom z-

coordinates of the nth layer. 

Using Eq. (13) in Eq. (18), the stress resultants of the 

FG beam can be related to the total strains by 

0 0

0 ' 0

0 0

' 0 ' 0

' 0 0

0 ' 0

, ( 1)

, ( 1)

, ( 1)
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R F K k O U i
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 

 
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= + + + =
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= + =

= + + + =
 

(19) 

where Aij, Bij, Cij, etc., are the beam stiffness, defined by  
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(20) 

The variation of kinetic energy is expressed as 

( ( ))K u u w w dxdz   = +   (21) 



0 0 ,

0, , 0 , ,

0, , 0 , ,

1 1 6

2 3
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7 8
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b b s s

b b b b

s s b s s b

b s s b s s

K I u u I w w I w w

I u w w u I w w w

I u w w u I w w w w

I w w w w I w w dx
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  

   
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= + −
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− − + +

+ + +



 (22) 

Where the inertia term are defined by the following 

equations 

( )

( )( )
1

1 2 3 4 5 6 7 8

3
2 2 2

1

, , , , , , ,

1, , , ( ),  ( ), ( ), ( ), ( )

n

n

h

n h

I I I I I I I I

z z z f z z f z f z g z g z dz

−
=

=
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(23) 
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It should be noted that the dot subscript is used for time 

derivative. 

The variation of work done can be expressed as 

0

w w
W q wdx N dx

x x


 

  
= − +  

     (24) 

Where q is the transverse load and N0 is the axial force. 

The variation of strain energy of foundation is expressed 

as 

F eU f wdx =   (25) 

Where fe is the density of reaction force of foundation. 

For the Pasternak foundation model, it is given by 

2

2e w p
w

f k w k
x


= −


 (26) 

Where wk is the Winkler foundation parameter and pk is 

the Pasternak foundation parameter.  

If the foundation is modeled as the linear Winkler 

foundation, the coefficient kp in Eq. (26) is zero. 

Substituting the expressions for δU; δW; δK and δUF 

from Eqs. (17), (22), (24) and (25) into Eq. (15) and 

integrating by parts and collecting the coefficients of u0, wb 

and ws, the following equations of motion of the beam are 

obtained 

0 , ,
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+ − − − = − 0,

, ,5 6 7 8

x

xx xxb s b s

u

I w I w I w I w+ − + +

 
(27) 

Where y*=-g(h/2). 

 

 

6. Solution procedure 
 

For the analytical solution of Eqs. (27), the Navier 

method is used under the specified boundary conditions. 

The displacement functions that satisfy the equations of 

simply supported FGM beam are selected as the following 

Fourier series 

0

1

cos( )

sin( )

sin( )

i t
m

i t
b bm

i tm
s sm

U x eu

w W x e

w W x e















=

 
   
   

=   
   
    


 

(28) 

Where Um, Wbm and Wsm are arbitrary parameters to be 

determined, ω is the eigen frequency associated with mth 

eigen mode, and α=mπ/l. The transverse load q is also 

expanded in Fourier series as  

1

sin( )m

m

q q x



=

=
 

(29) 

Where qm=4q0/mπ (m=1, 3, 5, etc) for uniformly 

distributed load with density q0. 

Substituting Eqs. (28) and (29) into Eq. (27), the 

following problem is obtained 

11 12 13 11 12 13
2

12 22 23 12 22 23

13 23 33 13 23 33
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m
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− =       
        −          

(30) 

Where y*=-g(h/2). 

In which 
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7. Numerical results and discussion 
 

First, the results of the new refined quasi-3D method for 

different micromechanical models are compared with 

previous published works (Nguyen T.K. and Nguyen B.D. 

2017) to check the accuracy of the model. After that, the 

effects of the different micromechanical models on the 

stress, central deflection and critical buckling load are 

investigated and discussed in detail. 

The sandwich beam adopted here is considered to be 

Hardcore type with homogeneous core Alumina (AL2O3) 

and FG faces with top and bottom surfaces made from 

Aluminum (Al). 

The material properties used are: 

- Alumina, Al2O3: 
9380 10cE = 

 
N/m2; 3.0= ; 

3960c =
 

kg/m3. 

- Aluminium, Al:
 

970 10mE =   N/m2; 3.0= ; 

2702m =  kg/m3. 

For convenience, the following non-dimensional 

parameters are used  
2

m

m

l

h E


 =

 , 

3

4

0

384
( / 2)

60

mh E
w w l

q l
=

 

0

( , )
2

x x

l h
z

q l
 =

 ,  
( )

0

0,xz xz

h
z

q l
 =

, 

2

0 3

12
cr

m

l
N N

E h
=

, 

4

3

12
w w

m

l
K k

E h
=

, 

2

3

12
p p

m

l
K k

E h
=

 

(32) 

57



 

Mohammed Yahiaoui et al. 

 

 

 

Several kinds of sandwich beam are presented according 

to the thickness of the core layer 

-The (1-0-1) FGM sandwich beam: The beam is 

symmetric and made of only two equal-thickness FGM 

layers, that is, there is no core layer. Thus, h2 = h3 = 0. 

-The (1-1-1) FGM sandwich beam: Here the beam is 

symmetric and made of three equal thickness layers. In this 

case, we have, h2 = -h/6, h3 =h/6. 

-The (2-1-2) FGM sandwich beam: The beam is  

 

 

symmetric and we have: h2= - h/10, h3= h/10. 

-The (2-2-1) FGM sandwich beam: The beam is non-

symmetric and we have: h2= - h/10, h3= 3h/10. 

-The (1-2-1) FGM sandwich beam: The beam is 

symmetric and we have h2 = -h/4, h3 =h/4. 

 

7.1 Comparison studies 
 

In order to demonstrate the validity of the present new 

Table 1 Non-dimensional central deflection w of Al/Al2O3 sandwich beam with homogenous Hardcore and without 

elastic foundation 

l/h p Theory 
Scheme 

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 

0 Nguyen T.K. and Nguyen B.D (2017) 0.2026 0.2026 0.2026 0.2026 0.2026 0.2026 

 

Present 

Voigt 0.2007 0.2007 0.2007 0.2007 0.2007 0.2007 

 Reuss 0.2007 0.2007 0.2007 0.2007 0.2007 0.2007 

 LRVE 0.2007 0.2007 0.2007 0.2007 0.2007 0.2007 

 Tamura 0.2007 0.2007 0.2007 0.2007 0.2007 0.2007 

 Mori-Tanaka 0.2007 0.2007 0.2007 0.2007 0.2007 0.2007 

0.5 Nguyen T.K. and Nguyen B.D (2017) 0.3539 0.3282 0.3172 0.3092 0.2964 0.2834 

 

Present 

Voigt 0.3475 0.3224 0.3117 0.3039 0.2915 0.2790 

 Reuss 0.5949 0.5245 0.4883 0.4682 0.4288 0.3923 

 LRVE 0.4813 0.4296 0.4063 0.3909 0.3650 0.3398 

 Tamura 0.4821 0.4317 0.4082 0.3933 0.3671 0.3420 

 Mori-Tanaka 0.5287 0.4698 0.4412 0.4241 0.3926 0.3629 

1 Nguyen T.K. and Nguyen B.D (2017) 0.5014 0.4437 0.4189 0.4012 0.3738 0.3464 

 

Present 

Voigt 0.4893 0.4327 0.4090 0.3918 0.3655 0.3392 

 Reuss 0.7739 0.6717 0.6128 0.5841 0.5216 0.4652 

 LRVE 0.6710 0.5789 0.5344 0.5073 0.4598 0.4148 

 Tamura 0.6620 0.5743 0.5306 0.5052 0.4583 0.4144 

 Mori-Tanaka 0.7112 0.6164 0.5663 0.5391 0.4856 0.4363 

2 Nguyen T.K. and Nguyen B.D (2017) 0.7258 0.6194 0.5689 0.5369 0.4837 0.4325 

 

Present 

Voigt 0.7044 0.5993 0.5513 0.5199 0.4695 0.4206 

 Reuss 0.9269 0.8078 0.7262 0.6940 0.6078 0.5327 

 LRVE 0.8662 0.7433 0.6720 0.6363 0.5619 0.4942 

 Tamura 0.8536 0.7347 0.6650 0.6309 0.5579 0.4919 

 Mori-Tanaka 0.8875 0.7679 0.6928 0.6592 0.5803 0.5102 

5 Nguyen T.K. and Nguyen B.D (2017) 0.9714 0.8450 0.7568 0.7185 0.6267 0.5449 

 

Present 

Voigt 0.9462 0.8139 0.7230 0.6912 0.6043 0.5262 

 Reuss 1.0313 0.9144 0.8148 0.7887 0.6820 0.5934 

 LRVE 1.0103 0.8887 0.7928 0.7613 0.6599 0.5734 

 Tamura 1.0053 0.8838 0.7888 0.7576 0.6571 0.5714 

 Mori-Tanaka 1.0174 0.8992 0.8011 0.7720 0.6686 0.5815 

10 Nguyen T.K. and Nguyen B.D (2017) 1.0425 0.9359 0.8329 0.8042 0.6943 0.6019 

 

Present 

Voigt 1.0231 0.9022 0.8037 0.7725 0.6682 0.5798 

 Reuss 1.0613 0.9473 0.8429 0.8228 0.7093 0.6176 

 LRVE 1.0507 0.9360 0.8328 0.8092 0.6981 0.6069 

 Tamura 1.0490 0.9340 0.8312 0.8074 0.6967 0.6058 

 Mori-Tanaka 1.0547 0.9403 0.8367 0.8146 0.7026 0.6113 
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3D shear deformation theory, the results of FG sandwich 

beams computed by the present theory are compared with 

those obtained by Nguyen T.K. and Nguyen B.D (2017) 

using higher-order shear deformation without the thickness 

stretching effect ( )0z = . 

Tables 1-5 contain respectively dimensionless central 

deflection, dimensionless axial stress, dimensionless 

transverse stress, buckling load and fundamental  

 

 

frequencies for simply supported FG sandwich beams with 

hardcore and without elastic foundation. 

The results of the present method are presented for five 

micromechanical models which are Voigt, Reuss, LRVE, 

Tamura and Mori-Tanaka. 

In general, and for all cases studied, the results of the 

present method calculated by the Voigt model are in very 

good agreement with those of Nguyen T.K. and Nguyen 

Table 2 Non-dimensional axial stress 
x  of Al/Al2O3 sandwich beam with homogenous Hardcore and without elastic 

foundation 

l/h p Theory 
Scheme 

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 

0 Nguyen T.K. and Nguyen B.D (2017) 3.8022 3.8022 3.8022 3.8022 3.8022 3.8022 

 

Present 

Voigt 3.7492 3.7492 3.7492 3.7492 3.7492 3.7492 

 Reuss 3.7492 3.7492 3.7492 3.7492 3.7492 3.7492 

 LRVE 3.7492 3.7492 3.7492 3.7492 3.7492 3.7492 

 Tamura 3.7492 3.7492 3.7492 3.7492 3.7492 3.7492 

 Mori-Tanaka 3.7492 3.7492 3.7492 3.7492 3.7492 3.7492 

0.5 Nguyen T.K. and Nguyen B.D (2017) 1.2547 1.1632 1.0699 1.0939 1.0036 0.9995 

 

Present 

Voigt 1.2399 1.1496 1.1604 1.0809 0.9905 0.9870 

 Reuss 2.1661 1.9252 1.9415 1.7165 1.4380 1.4262 

 LRVE 1.7451 1.5610 1.5767 1.4165 1.2313 1.2216 

 Tamura 1.7457 1.5681 1.5835 1.4254 1.2379 1.2301 

 Mori-Tanaka 1.9198 1.7144 1.7305 1.5448 1.3208 1.3114 

1 Nguyen T.K. and Nguyen B.D (2017) 1.7967 1.5898 1.3885 1.4349 1.2475 1.2330 

 

Present 

Voigt 1.7799 1.5748 1.5910 1.4206 1.2334 1.2119 

 Reuss 2.8295 2.4956 2.5094 2.1706 1.7368 1.7126 

 LRVE 2.4633 2.1403 2.1564 1.8713 1.5396 1.5147 

 Tamura 2.4245 2.1208 2.1369 1.8620 1.5342 1.5129 

 Mori-Tanaka 2.6043 2.2830 2.2983 1.9946 1.6219 1.5991 

2 Nguyen T.K. and Nguyen B.D (2017) 2.6195 2.2400 1.8476 1.9383 1.5874 1.5528 

 

Present 

Voigt 2.5996 2.2223 2.2386 1.9222 1.5716 1.5377 

 Reuss 3.3712 3.0212 3.0302 2.6024 2.0111 1.9792 

 LRVE 3.1836 2.7788 2.7892 2.3781 1.8669 1.8276 

 Tamura 3.1313 2.7434 2.7545 2.3562 1.8539 1.8183 

 Mori-Tanaka 3.2449 2.8701 2.8802 2.4669 1.9247 1.8903 

5 Nguyen T.K. and Nguyen B.D (2017) 3.5001 3.0730 2.4070 2.6124 2.0195 1.9706 

 

Present 

Voigt 3.4758 3.0550 3.0615 2.5954 2.0021 1.9543 

 Reuss 3.6838 3.4235 3.4306 2.9729 2.2432 2.2194 

 LRVE 3.6502 3.3333 3.3392 2.8681 2.1754 2.1406 

 Tamura 3.6316 3.3136 3.3199 2.8530 2.1664 2.1326 

 Mori-Tanaka 3.6574 3.3656 3.3722 2.9088 2.2021 2.1727 

10 Nguyen T.K. and Nguyen B.D (2017) 3.7235 3.4044 2.6296 2.9294 2.2200 2.1827 

 

Present 

Voigt 3.6933 3.3859 3.3912 2.9124 2.0851 2.1661 

 Reuss 3.7373 3.5412 3.5496 3.1046 2.3270 2.3151 

 LRVE 3.7313 3.5040 3.5112 3.0532 2.2930 2.2728 

 Tamura 3.7269 3.4963 3.5036 3.0459 2.2886 2.2683 

 Mori-Tanaka 3.7321 3.5177 3.5255 3.0735 2.3066 2.2901 
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B.D. (2017). The slight difference which exists between the 

two methods for this case can be justified by the fact that 

the method developed by Nguyen T.K. and Nguyen B.D 

(2017) does not take into account the stretching effect. The 

latter becomes important in the case of thick beams. And 

since all results presented in these tables are for a ratio of “l 

/ h = 5” (case of a thick beam) this explains this slight 

difference. 

 

 

As for the other results calculated by the other 

micromechanical models, the difference can be explained 

by the way in which the Young's modulus is estimated. 

 

7.3 Parametric studies 
 

The impact of the micromechanical models on the 

estimated buckling load, the out-of-plane displacement and 

Table 3 Non-dimensional transverse shear stress xz of Al/Al2O3 sandwich beam with homogenous Hardcore and 

without elastic foundation 

l/h p Theory 
Scheme 

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 

0 Nguyen T.K. and Nguyen B.D (2017) 0.7350 0.7350 0.7350 0.7350 0.7350 0.7350 

 

Present 

Voigt 0.7005 0.7005 0.7005 0.7005 0.7005 0.7005 

 Reuss 0.7005 0.7005 0.7005 0.7005 0.7005 0.7005 

 LRVE 0.7005 0.7005 0.7005 0.7005 0.7005 0.7005 

 Tamura 0.7005 0.7005 0.7005 0.7005 0.7005 0.7005 

 Mori-Tanaka 0.7005 0.7005 0.7005 0.7005 0.7005 0.7005 

0.5 Nguyen T.K. and Nguyen B.D (2017) 0.8959 0.8371 0.8354 0.8087 0.8032 0.7830 

 

Present 

Voigt 0.9666 0.9010 0.8883 0.8635 0.8466 0.8218 

 Reuss 1.4258 1.1765 1.1407 1.0610 1.0180 0.9514 

 LRVE 1.1918 1.0465 1.0224 0.9718 0.9414 0.8955 

 Tamura 1.2054 1.0539 1.0293 0.9768 0.9458 0.8985 

 Mori-Tanaka 1.2930 1.1046 1.0756 1.0122 0.9764 0.9212 

1 Nguyen T.K. and Nguyen B.D (2017) 1.0349 0.9139 0.9106 0.8602 0.8496 0.8141 

 

Present 

Voigt 1.1799 1.0407 1.0169 0.9685 0.9383 0.8938 

 Reuss 1.7929 1.3512 1.2965 1.1727 1.1119 1.0171 

 LRVE 1.5027 1.2186 1.1785 1.0903 1.0428 0.9702 

 Tamura 1.5118 1.2222 1.1817 1.0921 1.0443 0.9709 

 Mori-Tanaka 1.6262 1.2771 1.2308 1.1271 1.0738 0.9913 

2 Nguyen T.K. and Nguyen B.D (2017) 1.2664 1.0208 1.0152 0.9263 0.9091 0.8511 

 

Present 

Voigt 1.5057 1.2223 1.1817 1.0939 1.0457 0.9733 

 Reuss 2.2405 1.5233 1.4464 1.2727 1.1941 1.0712 

 LRVE 1.9222 1.4070 1.3459 1.2076 1.1409 1.0376 

 Tamura 1.9233 1.4069 1.3456 1.2071 1.1404 1.0370 

 Mori-Tanaka 2.0562 1.4578 1.3899 1.2363 1.1644 1.0524 

5 Nguyen T.K. and Nguyen B.D (2017) 1.7725 1.1854 1.1755 1.0133 0.9873 0.8940 

 

Present 

Voigt 2.1083 1.4782 1.4086 1.2493 1.1754 1.0607 

 Reuss 2.8500 1.7056 1.6006 1.3683 1.2710 1.1182 

 LRVE 2.5726 1.6286 1.5368 1.3296 1.2403 1.1003 

 Tamura 2.5623 1.6257 1.5341 1.3281 1.2390 1.0994 

 Mori-Tanaka 2.6880 1.6618 1.5643 1.3464 1.2536 1.1081 

10 Nguyen T.K. and Nguyen B.D (2017) 2.3128 1.3065 1.2888 1.0670 1.0347 0.9165 

 

Present 

Voigt 2.6222 1.6426 1.5504 1.3371 1.1658 1.1050 

 Reuss 3.2233 1.7967 1.6752 1.4124 1.3056 1.1383 

 LRVE 3.0213 1.7485 1.6364 1.3895 1.2877 1.1281 

 Tamura 3.0087 1.7456 1.6339 1.3880 1.2866 1.1275 

 Mori-Tanaka 3.1051 1.7690 1.6529 1.3993 1.2954 1.1325 
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the fundamental frequency of sandwich beams resting on 

elastic foundation is studied in this section. 

In Fig. 2, the relative percentage difference of the 

buckling load between micromechanical models versus 

power law index p is presented. 

The discrepancy between the estimated buckling load of 

sandwich beams by the Voigt, Reuss and other 

micromechanical models depends considerably on the 

power law index p. 

 

 

The discrepancy between the Voigt model and other 

micromechanical models for the estimated values of the 

buckling load reaches a maximum of 32% between Voigt 

and Reuss and it is 27% between Voigt and Mori-Tanaka.  

While between Voigt and other models namely LRVE 

and Tamura it exceeds 20%. 

The second comparison shown in this figure is the 

discrepancy between the values of the buckling load 

Table 4 Non-dimensional critical buckling load crN of Al/Al2O3 sandwich beam with homogenous Hardcore and 

without elastic foundation 

l/h p Theory 
Scheme 

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 

0 Nguyen T.K. and Nguyen B.D (2017) 48.5960 48.5960 48.5960 48.5960 48.5960 48.5960 

 

Present 

Voigt 48.4529 48.4529 48.4529 48.4529 48.4529 48.4529 

 Reuss 48.4529 48.4529 48.4529 48.4529 48.4529 48.4529 

 LRVE 48.4529 48.4529 48.4529 48.4529 48.4529 48.4529 

 Tamura 48.4529 48.4529 48.4529 48.4529 48.4529 48.4529 

 Mori-Tanaka 48.4529 48.4529 48.4529 48.4529 48.4529 48.4529 

0.5 Nguyen T.K. and Nguyen B.D (2017) 27.8374 30.0141 31.0576 31.8649 33.2339 34.7551 

 

Present 

Voigt 28.0714 30.2564 31.2845 32.0940 33.4473 34.9399 

 Reuss 16.4242 18.6409 20.0145 20.8796 22.7898 24.9016 

 LRVE 20.2938 22.7386 24.0345 24.9868 26.7501 28.7269 

 Tamura 20.2598 22.6296 23.9263 24.8343 26.5970 28.5423 

 Mori-Tanaka 18.4790 20.8039 22.1425 23.0414 24.8789 26.9084 

1 Nguyen T.K. and Nguyen B.D (2017) 19.6531 22.2113 23.5246 24.5598 26.3609 28.4444 

 

Present 

Voigt 19.9698 22.5798 23.8834 24.9350 26.7167 28.7824 

 Reuss 12.6307 14.5706 15.9626 16.7553 18.7545 21.0206 

 LRVE 14.5716 16.8988 18.2998 19.2791 21.2598 23.5619 

 Tamura 14.7680 17.0323 18.4280 19.3614 21.3304 23.5850 

 Mori-Tanaka 13.7464 15.8729 17.2712 18.1476 20.1363 22.4043 

2 Nguyen T.K. and Nguyen B.D (2017) 13.5808 15.9158 17.3248 18.3591 20.3748 22.7862 

 

Present 

Voigt 13.8881 16.3311 17.7439 18.8171 20.8293 23.2434 

 Reuss 10.5417 12.1220 13.4786 14.1132 16.1058 18.3715 

 LRVE 11.2887 13.1737 14.5651 15.3886 17.4166 19.7958 

 Tamura 11.4547 13.3271 14.7157 15.5181 17.5385 19.8869 

 Mori-Tanaka 11.0142 12.7508 14.1261 14.8504 16.8641 19.1788 

5 Nguyen T.K. and Nguyen B.D (2017) 10.1473 11.6685 13.0272 13.7218 15.7307 18.0914 

 

Present 

Voigt 10.3347 12.0349 13.4124 14.1725 16.2006 18.6006 

 Reuss 9.4608 10.7103 12.0133 12.4241 14.3596 16.5010 

 LRVE 9.6659 11.0206 12.3493 12.8694 14.8390 17.0753 

 Tamura 9.7139 11.0817 12.4104 12.9330 14.9021 17.1337 

 Mori-Tanaka 9.5945 10.9037 12.2207 12.6914 14.6453 16.8361 

10 Nguyen T.K. and Nguyen B.D (2017) 9.4526 10.5356 11.8372 12.2611 14.1995 16.3787 

 

Present 

Voigt 9.5444 10.8567 12.1825 12.6852 14.6556 16.8872 

 Reuss 9.1831 10.3363 11.6122 11.9095 13.8084 15.8563 

 LRVE 9.2818 10.4628 11.7544 12.1096 14.0297 16.1364 

 Tamura 9.2967 10.4852 11.7772 12.1370 14.0579 16.1663 

 Mori-Tanaka 9.2440 10.4143 11.6988 12.0293 13.9400 16.0204 
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between the Reuss model and other micromechanical 

models. The difference is insignificant between Reuss and 

Mori-Tanaka and it reached a maximum of 5% between 

Reuss and other models. The difference between Reuss and 

Mori-Tanaka is close to 9%. While between Reuss and 

Tamura on one side and Reuss and LRVE on the other side 

exceeds 15%. 

It is also observed that the difference between the results 

obtained by the Reuss model and the other models becomes  

 

 

insignificant from a value of p = 6 and tends to 0 with the 

increase of p. 

The relative Percentage difference of the out-of-plane 

displacement between micromechanical models versus 

power law index p is presented in Fig. 3. 

The discrepancy between the Reuss model on one side 

and the Tamura and LRVE models on the other side is really 

insignificant and reaches a maximum of 14% for a material 

index value just under 1. Exceeding this value, the  

Table 5 Non-dimensional fundamental frequency  of Al/Al2O3 sandwich beam with homogenous Hardcore and 

without elastic foundation 

l/h p Theory 
Scheme 

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 

0 Nguyen T.K. and Nguyen B.D (2017) 5.1528 5.1528 5.1528 5.1528 5.1528 5.1528 

 

Present 

Voigt 5.1646 5.1646 5.1646 5.1646 5.1646 5.1646 

 Reuss 5.1646 5.1646 5.1646 5.1646 5.1646 5.1646 

 LRVE 5.1646 5.1646 5.1646 5.1646 5.1646 5.1646 

 Tamura 5.1646 5.1646 5.1646 5.1646 5.1646 5.1646 

 Mori-Tanaka 5.1646 5.1646 5.1646 5.1646 5.1646 5.1646 

0.5 Nguyen T.K. and Nguyen B.D (2017) 4.1254 4.2340 4.2943 4.3294 4.4045 4.4791 

 

Present 

Voigt 4.1557 4.2644 4.3237 4.3587 4.4329 4.5057 

 Reuss 3.1767 3.3441 3.4548 3.5123 3.6554 3.8004 

 LRVE 3.5316 3.6946 3.7873 3.8436 3.9619 4.0834 

 Tamura 3.5287 3.6858 3.7788 3.8319 3.9505 4.0702 

 Mori-Tanaka 3.3698 3.5334 3.6346 3.6904 3.8201 3.9514 

1 Nguyen T.K. and Nguyen B.D (2017) 3.5735 3.7298 3.8206 3.8756 3.9911 4.1105 

 

Present 

Voigt 3.6123 3.7709 3.8606 3.9160 4.0296 4.1470 

 Reuss 2.8723 3.0272 3.1536 3.2076 3.3732 3.5414 

 LRVE 3.0848 3.2606 3.3773 3.4415 3.5925 3.7503 

 Tamura 3.1057 3.2736 3.3893 3.4489 3.5985 3.7522 

 Mori-Tanaka 2.9964 3.1599 3.2808 3.3386 3.4959 3.6566 

2 Nguyen T.K. and Nguyen B.D (2017) 3.0680 3.2365 3.3546 3.4190 3.5718 3.7334 

 

Present 

Voigt 3.1105 3.2863 3.4034 3.4698 3.6207 3.7805 

 Reuss 2.7112 2.8306 2.9651 3.0036 3.1820 3.3594 

 LRVE 2.8047 2.9509 3.0825 3.1367 3.3095 3.4877 

 Tamura 2.8254 2.9681 3.0985 3.1500 3.3211 3.4957 

 Mori-Tanaka 2.7709 2.9031 3.0357 3.0816 3.2564 3.4327 

5 Nguyen T.K. and Nguyen B.D (2017) 2.7448 2.8440 2.9789 3.0181 3.1965 3.3771 

 

Present 

Voigt 2.7776 2.8947 3.0297 3.0738 3.2514 3.4321 

 Reuss 2.6600 2.7309 2.8674 2.8777 3.0604 3.2319 

 LRVE 2.6877 2.7701 2.9071 2.9288 3.1112 3.2879 

 Tamura 2.6944 2.7778 2.9144 2.9361 3.1179 3.2935 

 Mori-Tanaka 2.6782 2.7554 2.8920 2.9085 3.0908 3.2647 

10 Nguyen T.K. and Nguyen B.D (2017) 2.6934 2.7356 2.8715 2.8809 3.0629 3.2357 

 

Present 

Voigt 2.7149 2.7832 2.9200 2.9363 3.1186 3.2927 

 Reuss 2.6651 2.7160 2.8512 2.8451 3.0270 3.1903 

 LRVE 2.6787 2.7324 2.8685 2.8689 3.0512 3.2184 

 Tamura 2.6808 2.7353 2.8712 2.8721 3.0543 3.2214 

 Mori-Tanaka 2.6735 2.7261 2.8617 2.8594 3.0414 3.2068 
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Fig. 2 Relative percentage difference of the buckling load 

between micromechanical models 

 

 

difference between these three models tends to 0 and they 

give practically the same results. 

The second comparison between the Voigt model and 

the other models reveals that there is a big difference 

between the results of the different models, especially 

between Voigt and Reuss. Indeed, the difference between 

Voigt and Reuss reaches a maximum of 50% for a value of 

p just below unity. Then, exceeding this value, there is a 

rapid reduction in the difference in results between these 

two models. Also, the same observation is found between 

Voigt and Mori-Tanaka models, where the gap reaches 37%.  

For the other two remaining models (Tamura and LRVE), 

the maximum of the difference is also considerable but 

reaches a peak of 28%. 

Fig. 4 shows the relative Percentage difference of the 

fundamental frequency between the different 

micromechanical models. For this case, the difference 

found between the different models is not considerable 

enough as in the case of displacement. 

Indeed, the difference between Voigt model is the other 

models reaches a maximum of 18% for the case of 

comparison with Reuss, 14% for the difference with Mori-

Tanaka and 11% with LRVE and Tamura. 

The comparison between the Reuss model and the other 

models namely Mori-Tanaka, Tamura and LRVE is not 

considerable. It reaches a maximum of 8%. 

Therefore, the need for appropriate micromechanical 

modeling of FGM is evident to accurately estimate 

mechanical properties. 

The variation of out-of-plane displacement as a function 

of the power index “p” of a sandwich beam type 1-1-1 is 

shown in Fig. 5 for different micromechanical models and 

for both cases with and without elastic foundation. The first 

observation that can be drawn from this figure is that the 

presence of an elastic foundation type Pasternak greatly 

reduces the value of the maximum displacement. The 

second finding is that the Voigt model gives the smallest 

displacement values compared to the other models and that 

the Reuss model gives the highest results. In addition, there 

is a rapid variation of the displacement values for the low 

values of “p”. But this variation tends to stabilize with the  
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Fig. 3 Relative percentage difference of the out-of-plane 

displacement between micromechanical models 
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Fig. 4 Relative percentage difference of the fundamental 

frequency between micromechanical models 

 

 

increase of “p”. This observation is valid for both cases of 

the sandwich beam with and without foundation. 

Fig. 6 depicts the variation of the fundamental frequency 

versus the power law index for different micromechanical 

models. The presence of an elastic foundation increases the 

values of the frequencies. It is to be noted that, in contrast to 

displacements, for this case the Voigt model gives the 

highest values of the fundamental frequency and that of 

Reuss the smallest. In addition, increasing the values of the 

power index “p” reduces the fundamental frequencies. 

Fig. 7 contains plots of the buckling load of a FG 

sandwich beam (1-1-1) versus the power law index for 

different micromechanical models. The same statement 

established for Fig. 6 remains valid. Namely the model of 

Voigt presents the highest values of buckling load and that 

of Reuss gives the weakest. 

In Fig. 8, we present the variation of the out-of-plane 

displacement w  through the thickness direction for 

different values of the power index “p”. It is found that the 

out-of-plane displacement w  of metal plates is larger than 

the corresponding one of ceramic beam and in general, the 

transverse displacement increases as the power index “p” 

increases. 

63



 

Mohammed Yahiaoui et al. 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0,2

0,3

0,4

0,5

0,6

0,7

0,8

K
w
=10, K

p
=2

K
w
=0, K

p
=0

 Voigt

 Reuss

 LRVE

 Tamura

 Mori-Tanaka w  

 

p
 

Fig. 5 Variation of the out-of-plane displacement versus the 

power law index for different micromechanical models 

(beam sandwich type 1-1-1, l/h=5) 
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8. Conclusions 
 

A new quasi 3D shear deformation theory was proposed 

to analyze the buckling, the bending and the free vibration 

of functionally graded sandwich thick beam resting on 

Winkler-Pasternak elastic foundations.  

The theory accounts for parabolic distribution of the 

transverse shear strains and satisfies the zero traction 

boundary conditions on the surfaces of the functionally 

graded sandwich beam without using shear correction 

factors. The highlight of this theory is that, in addition to 

including the thickness stretching effect, the displacement 

field is modeled with only three unknowns, which is even 

less than the other shear and normal deformation theories 

where we find four or more variables. 

Different micromechanical models were used to 

determine the effective properties of such sandwich FG 

beam. The equilibrium equations and associated boundary 

conditions of the beam are obtained using Hamilton’s 

principle. The Navier method is used for the analytical  
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Fig. 7 Variation of the buckling load versus the power law 

index for different micromechanical models (beam 

sandwich type 1-1-1, l/h=5) 
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Fig. 8 The transverse displacement w through the thickness 

of FG sandwich beam 

 

 

solutions of the FG sandwich beam with simply supported 

boundary conditions. The results obtained using this new 

theory, are found to be in excellent agreement with previous 

studies.  

Furthermore, the influences of micromechanical models 

on the bending, buckling and free vibration of sandwich 

thick beam have been comprehensively investigated. From 

these results and comparisons between different 

micromechanical models, it has been found significant 

differences between some models. This proves the need for 

a proper micromechanical modeling of FGMs to accurately 

estimate the general response of FG sandwich beam. 
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