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1. Introduction  
 

Fatality and money losses due to an abrupt structural 

failure and also getting the best performance of a structure 

during its lifetime are important goals which are considered 

while designing structures. These motivations caused civil, 

mechanical and aerospace engineers to seek approaches for 

detecting the presence and location of structural damage as 

well as damage severity. Current non -destructive 

experimental methods such as acoustic or ultrasonic 

methods, magnetic field methods, eddy current methods or 

thermal field methods require the vicinity of the damaged 

parts to be known and accessible. In order to remove these 

drawbacks some techniques are proposed which use 

structural responses of the damaged structure to identify the 

damage location and severity (Doebling et al. 1998 , Fan 

and Qiao 2011). Based on the structural responses used for 

damage detection, these methods are categorized into two 

main groups, static based and vibration based structural 

model updating methods. In the static response based 

methods, measurement of displacement or strain are the 

basis of damage detection algorithms. However, the 

underlying idea of vibration-based damage identification 

methods is the contingency of the dynamic characteristics 

and structural responses to their physical properties such as 

mass, stiffness and damping, which are affected by  
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structural damages. Therefore, one may extract the location 

and intensity of the structural damages from vibration data 

of the damaged structure. Vibration-based damage 

identification methods can be categorized by the dynamic 

characteristic data that are used, or by the employ approach 

to correlate the dynamic properties and structural damages. 

Some techniques investigate changes in natural frequencies 

(Wang and Li 2012, Min et al. 2014), mode shapes (Xu and  

Zhu 2017, Yazdanpanah et al. 2015), curvature of modes 

(Ditommaso et al. 2015), modal strain energy (Entezami et 

al. 2017) or dynamic flexibility (Wei  et al. 2016, Zhang et 

al. 2013) to locate and quantify damage in a structure. 

There are other methods toward this purpose using 

frequency response functions (FRF) (Gang et al. 2014, 

Beyhaqi and Esfandiari 2017 ) and power spectral density 

function (Pedram et al. 2017, Eun et al. 2015, Liberatore  

et al. 2001). Environmental phenomena, not stationary 

and/or nonlinear behaviour of the structures affect dynamic 

responses and cause to variation of the characteristics 

indices such as natural frequencies (Ditommaso et al. 2012 

and Petrovic et al. 2017). Extraction of the dynamic 

characteristic of the structure and distinguishing these 

variations are studied by many researchers (Ditommaso and 

Ponzo 2015).   

Model updating damage detecting methods can be 

categorized as iterative and non-iterative algorithms. The 

non-iterative methods require measurements in all DOFs of 

the damaged structure which is not practical. Also, the 

changes which are the basis of damage detection in this 

category are changes in global structural matrix so that they 

do not have physical interpretation. On the other hand, the 

iterative approaches are used successfully based on the 

incomplete measured data, while the change of unknown 

parameters can be interpreted physically. Iterative model 

updating methods can be conducted by sensitivity-based, 
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genetic algorithms and neural network approaches. The two 

latter methods use random search. So, they have less 

convergence rate and more computation expense. 

Model updating methods can be categorized into the 

model based and non-model based methods or it can also be 

categorized into the direct or iterative methods. The exact 

analytical model of both damaged and intact structures are 

needed in the model based methods, whereas only the 

damaged structure model is needed in the latter. Non-model 

based methods cannot successfully perform with incomplete 

measurements and mostly fail to identify the severity of the 

damage. 

Based on the data used for structural model updating, 

some methods are formulated in the frequency-domain, 

while the others are casted in time-domain (Natke et al. 

1995). Frequency domain approaches have drawn more 

attention due to less data volume and more sensitive 

damage indices in comparison to the time domain 

approaches. Dos Santos et al. (2005) proposed a damage 

detection method based on frequency response functions 

(FRF) sensitivities. Their technique leads to a set of 

sensitivity equations, which are solved using an algorithm 

that constrains the solution to be physically admissible. 

They performed a damage simulation and identification on 

a laminated rectangular plate. Esfandiari et al. (2009) 

correlated the changes of the measured FRF data to the 

changes of stiffness, mass and damping properties through 

damage sensitivity equations, which are solved using the 

least square method. Based on the decomposed form of the 

transfer function and measured natural frequencies of the 

damaged structure, an approximated expression is used to 

deal with the incomplete measurement challenges. 

Esfandiari et al (2010) expressed a sensitivity relation for 

the decomposed FRF based on the sensitivity of the mode 

shapes.  

Although FRF based methods have drawn a lot of 

attention, power spectral density function provides the 

possibility to considering the statistic and random 

characteristics of the structural response and incorporating 

the random inputs into damage detection approaches. 

Moreover, since the cross spectral terms are considered in 

PSD-based methods, more data are provided comparing to 

using only auto spectral terms. Furthermore, PSD is a 

second order function of the FRF and exgabits more 

sensitive behaviour with respect to the structural 

parameters. Kammer and Nimityongskul (2009) expressed 

several advantages of using PSD over FRF, such as the 

ability to easily include data from all inputs at once and the 

real metric. Thus, the PSD based damage detection methods 

are intended to be more accurate than FRF-based ones. 

Kumar et al. (2012) identified the structural damages in a 

lightly reinforced concrete beam based on changes in the 

PSD data. Liberatore and Carman (2004) proposed a 

method for identification and localization of the structural 

damages using the most sensitive frequency ranges which 

are the narrow frequency band widths around the near 

resonance. They estimated the corresponding energy by 

power spectral density analysis and calculated the average 

and root mean square values. These values were used along 

with the mode shapes data to locate structural damages of 

an experimental beam. The method does not allocate the 

severity of the damage.  

Zheng et al. (2015) proposed a new model updating 

method based on the power spectral density sensitivity 

analysis. They used the pseudo excitation method to 

calculate structural responses and PSD under stationary and 

random excitations. Li et al. (2015a, b) used experimental 

data of a steel frame for damage identification based on the 

power spectral density transmissibility (PSDT). The 

sensitivity relation is calculated numerically by the finite 

difference method. The location and severity of the 

introduced structural damages are detected accurately. 

Pedram et al. (2016) proposed the exact relation of the 

changes of the PSD with respect to structural parameters. 

An approximated evaluation is used to estimate unmeasured 

parts of structural responses. Pedram et al. (2017) updated 

the FE model of a laboratory concrete beam for 

identification of  extensive distributed damage cases using 

PSD data.    

This study focuses on proposing a structural damage 

detection method based on the power spectral density data 

and a subset of the measured natural frequencies of the 

damaged structure. Structural damage is considered as the 

reduction in structural stiffness parameters. The sensitivity 

equations are formulated implicitly through expressing the 

change of the power spectral density function in terms of 

the changes of structural parameters. The proposed method 

minimized a defined residual by using PSD data of the 

damage structure and an evaluated value using the 

incomplete measured modal data. The sensitivity relation of 

the power spectral density function is derived using the 

decomposed form of the transfer function and the changes 

of the mode shapes. The least square method is adopted to 

solve the sensitivity equation set through a proper weighting 

procedure. The results prove that the proposed method is 

capable of detecting and localizing structural damages and 

is robust against measurement and mass modeling errors. 

 

 

2. Theory 
 

The power spectral density function of a system can be 

defined as (Newland 1993) 

Sxx(ω) = H(ω)Sff(ω)H
∗(ω)𝑇 (1) 

Where H(ω) , Sxx(ω) and Sff(𝜔) are the frequency 

response function, power spectral density of response and 

applied force respectively. H∗(ω) is the complex conjugate 

of the transfer function. The frequency response function of 

a system with 𝑛 degrees of freedom is defined as 

H(ω) = [−Mω2 + iωC + K]−1 (2) 

Where M, C and K are mass, damping and stiffness 

matrices of the structure, respectively, and ω  is the 

frequency of the excitation load. The power spectral density 

function of the damaged structure can be defined as 

Sxxd(ω) = Hd(ω)Sff(ω)H
∗
d(ω)

T (3) 

Where Hd(ω)  and Sxxd(ω)  are the frequency 

response function and the response power spectral density 
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of the damaged system, respectively. In order to establish a 

relation between the spectral density of the damaged 

structure and the changes of structural parameters, the 

decomposed form of  Hd  is used as (Esfandiari et al. 

2010) 

Hil(ω) =∑
Φir Φlr

ωr
2 − ω2 + 2iωξrωr

n

r=1

 (4) 

Hil(ω) represents the FRF of the structure at the ith 

degree of freedom subjected to the excitation load at the lth 

degree of freedom. Φr , ωr and ξr represent the rth mode 

shape, natural frequency and damping ratio, respectively. 

Considering Eq. (3), the frequency response function of the 

damaged structure should be calculated. The rth mode 

shape of the structure after changes due to the damage is 

expressed as 

Φrd = Φr + δΦr (5) 

Where the index "𝑑" ndicates to the damaged structure 

and δΦr represents the changes in the rth mode shape due 

to the damage. Substituting Eq. (5) in Eq. (4) for the 

damaged structure leads to 

Hild(ω) =∑
(Φir +δΦird)(Φlr +δΦlrd)

ωrd
2 − ω2 + 2iωξrdωrd

n

r=1

 (6) 

Supposing that the first 𝑛𝑚 natural frequencies of the 

damaged structure are measurable and neglecting the 

second order term, Eq. (6) can be rewritten as 

Hild(ω) ≅∑
ΦirΦlr

ωrd
2 − ω2 + 2iωξrdωrd

nm

r=1

 

+  ∑
ΦirδΦlr

ωrd
2 − ω2 + 2iωξrdωrd

nm

r=1

 

(7) 

As the measurement of the natural frequencies is 

feasible with high accuracy, the evaluated value by Eq. (7) 

is realistic. The first term of this equation can be calculated 

using the properties of the intact structure and measured 

natural frequencies of the damaged structure. The last term 

of the Eq. (7) is added to the formulation to approximate the 

unmeasured parts of the modal data related to the higher 

mode shapes and compensates the effect of incomplete 

measurement. Moreover, the other terms (the second and 

third terms) of the equation include the mode shape 

changes, should be evaluated as function of structural 

parameters. Accurate formulation of the mode shape 

changes yield to the reliable parameter estimation results. 

By separating the known and unknown terms of Eq. (7), it 

can be rewritten as 

Hild(ω) ≅  H̃il(ω) + ∆H̅il(ω) (8) 

Where 

H̃il(ω) =∑
ΦirΦlr

ωrd
2 − ω2 + 2iωξrdωrd 

nm

r=1

 

+  ∑
ΦirΦlr

ωr
2 − ω2 + 2iωξrωr

n

r=nm+1

 

(9) 

And 

∆H̅il(ω) =  ∑
ΦirδΦlr

ωrd
2 − ω2 + 2iωξrdωrd

nm

r=1

+ ∑
δΦirΦlr

ωrd
2 − ω2 + 2iωξrdωrd

nm

r=1

 

(10) 

To estimate ∆H̅il(ω)  which contains the unknown 

terms of Eq. (7), the rate of changes of mode shapes is 

considered as a linear combination of the eigenvectors of 

the analytical model. Thus, the mode shape changes can be 

defined by the following expression (Fox and Kapoor 1969) 

δΦr ≅∑αrqΦq

n

q=1

 (11) 

Where  

{
 
 

 
 αrq =

Φq
T(δK − ω2iδM)Φi

(ωr
2 − ωq

2)
    for  q ≠ r  

αrr = −
Φr

T(δM)Φr

2
    for    q = r

 (12) 

αrq is the participation factor of the qth mode shapes 

for evaluation of the changes of the rth mode shape. For 

most structures, the mass changes are negligible in reality. 

Therefore, only the stiffness properties are considered as the 

unknown parameters of the model updating process. In that 

case,  αrq is equal to 

αrq =
Φq

T(δK)Φi

(ωr
2 − ωq

2)
 (13) 

Substituting Eq. (13) in Eq. (10), it can be rewritten as 

∆H̅il(ω)

=  ∑∑
Φir(Φq

TδKΦr)Φlq

(ωrd
2 − ω2 + 2iωξrdωrd)(ωr

2 −ωq
2)

n

q=1

nm

r=1

+ ∑∑
Φlr(Φq

TδKΦr)Φiq

(ωrd
2 −ω2 + 2iωξrdωrd)(ωr

2 − ωq
2)

n

q=1

nm

r=1

 

(14) 

The stiffness matrix of each element of a structure can 

be defined as 

Ke = AePeAe
T (15) 

Where Ae is the eigenvector of nonzero eigenvalues of 

the stiffness matrix which shows the geometrical properties 

of the elements and Pe  is the corresponding nonzero 

eigenvalue of the stiffness matrix which contains 

mechanical properties.   

By assembling the stiffness matrices of all elements, the 

stiffness matrix of the structure in the global coordinates is 

defined as 

K =∑T𝑒𝑖
𝑇Aei

ne

i−1

PeiA𝑒𝑖
𝑇 Tei = APA𝑇 (16) 

Where Tei  is the transformation matrix of the ith 

element from the local to global coordinate and 𝑛𝑒 is the 

total number of elements. The stiffness matrix of the 
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damaged structure can be defined as 

Kd = K + δK = A(P + δP)A
T (17) 

Where δP is the change of elemental stiffness due to 

damage. Subtracting Eq. (16) from Eq. (17), δK can be 

expressed as 

δK = AδPAT (18) 

Substituting Eq. (18) in Eq. (14) leads to 

∆H̅il(ω)

= [ ∑∑
Φir(Φq

TAdiag(ATΦr))Φlq

(ωrd
2 − ω2 + 2iωξrdωrd)(ωi

2 − ωq
2)

n

q=1

nm

r=1

+∑∑
Φiq(Φq

TAdiag(ATΦr))Φlr

(ωrd
2 − ω2 + 2iωξrdωrd)(ωi

2 − ωq
2)

n

q=1

nm

r=1

] δP 

(19) 

Where, the operator 𝑑𝑖𝑎𝑔 converts a vector to a 

diagonal matrix and vice versa. By naming the coefficient 

of δP as SH , and considering Eq. (19), Eq. (8) can be 

rewritten as 

Hild(ω) ≅  H̃il(ω) + S𝐻
(𝑖,𝑙)(ω)δP (20) 

The matrices SH  express the ∆H̅il(ω) as a function of 

the unknown parameters. The (k,j) entries of the power 

spectral density function of the damaged structure can be 

expressed as 

Sxxd
(𝑘,𝑗)(ω) ≅ H̃𝑘(ω)Sff(ω)H̃𝑗

∗(ω)T

+ Δ𝐻𝑘(ω)Sff(ω)H̃𝑗
∗(ω)T

+ H̃𝑘(ω)Sff(ω)Δ�̅�𝑗
∗(ω)T

+ Δ𝐻𝑘(ω)Sff(ω)Δ𝐻𝑗
∗(ω)T 

(21) 

H̃𝑘(ω) and H̃𝑗(ω) represents the kth and jth rows of 

the H̃(ω). By subtracting the first term at the right hand 

side of Eq. (21) from the left hand side, ΔSxx(ω) can be 

defined as 

ΔSxxd
(𝑘,𝑗)(ω) = Sxxd

(𝑘,𝑗)(ω) − S̃xxd
(𝑘,𝑗)(ω) 

and      S̃xxd
(𝑘,𝑗)(ω) = H̃𝑘(ω)Sff(ω)H̃𝑗

∗(ω)T 
(22) 

Sxxd
(𝑘,𝑗)(ω)  is the PSD of the damaged structure and  

S̃xxd
(𝑘,𝑗)(ω) is calculated using the properties of the intact 

structure and the measured natural frequencies and damping 

ratios of the damaged structure. Hence, ΔSxxd
(𝑘,𝑗)(ω) has a 

known value.  

Using Eq. (20), ∆H̅k(ω) which represents the kth row 

of the matrix ∆H̅(ω) can be expressed as 

ΔH̃𝑘
𝑇(ω) =

[
 
 
 
 S𝐻
(1,𝑘)(ω)

S𝐻
(2,𝑘)(ω)

⋮

S𝐻
(𝑛,𝑘)(ω)]

 
 
 
 

δP = S𝐻
𝑘 (ω)δP (23) 

Using Eq. (23) and neglecting the second order term, 

Eq. (21) can be rewritten as 

ΔSxxd
(𝑘,𝑗)(ω) ≅ ∆H̅k(ω)Sff(ω)H̃𝑗

∗(ω)T

+ H̃𝑘(ω)Sff(ω)ΔH̅𝑗
∗(ω)T

= 𝑆𝑃𝑆𝐷
(𝑘,𝑗)

(ω)δP 
(24) 

Where 

𝑆𝑃𝑆𝐷
(𝑘,𝑗)(ω) = H̃𝑗

∗(ω)Sff(ω)S𝐻
𝑘 (ω)

+ H̃𝑘(ω)Sff(ω)S𝐻
𝑗 (−ω)T 

(25) 

For all measured responses, cross spectral density and 

auto spectral density values can be represented as 

∆Sxx(ω) = S𝑃𝑆𝐷(ω) δP (26) 

Where S𝑃𝑆𝐷(ω) is the sensitivity matrix and δP is the 

vector of stiffness parameter changes. It is possible to solve 

Eq. (26) with different methods such as the least square 

method (LS), non-negative least square (NNLS) and 

singular value decomposition method (SVD). In this study 

the least square method is used to solve the equation. 

Equations with larger coefficients may dominate the 

least square solution. Therefore, a weighting technique 

should be used to prevent overshadowing the information of 

some equations by some others. There are different methods 

for weighting the equations. The sensitivity of the PSD 

increases at higher frequency ranges. However, due to large 

approximations of the formulation of the changes of the 

mode shapes at higher frequencies (higher mode shapes), 

the weight of the sensitivity equations in this range must be 

decreased. Thus, in this study each sensitivity equation is 

multiplied by ω−0.5 . 

Another noteworthy issue in sensitivity-based model 

updating methods is the noise polluted the experimental 

data which may cause a convergence to a local minimum. 

In the vicinity of natural the frequencies of the damaged 

structure this noise can have serious effects on the response 

because of the term ωd
2 − ω2  in the derived equations. 

There are other sources of errors which can cause problems 

in such methods like mass modeling errors which means the 

error associated with the mass of modeled intact structures 

and the errors of measuring natural frequencies. Therefore, 

the proposed methods in this field should be robust to these 

errors and noises. 
 

 

3. Numerical simulation 

 

A 2-D truss is modeled using the finite element model of 

the structure consisting of 35 elements and 16 DOFs which 

is shown in Fig. 1. The elements are made of steel with 

Young’s modulus of 200 Gpa. Cross sectional area of 

elements are given in Table 1. The kinematic DOFs of the 

truss model are shown in Fig. 2. 

Measurement and excitation setup; Selection of the 

excitation and measurement locations is a challenging issue 

for successful structural model updating (Bruggi and 

Mariani 2013, Sanayei and Onipede 1991). At the selected 

excitation and measurement locations, all structural  
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Fig. 1 Geometry of the truss model 

 

 

Fig. 2 Active degrees of freedom of the truss model 

 

Table 1 Cross sectional area of the truss elements 

Element Number Area Cm2 

1-8 18 

9-16 15 

17-23 10 

24-35 12 

 

Table 2 Various groups of excitation and measurement 

DOFs 

1st group 
Measurement DOFs 2-5-11-20-22 

Excitation DOFs 1-3-8-15-21-26-29 

2nd group 
Measurement DOFs 9-13-15-17-19 

Excitation DOFs 7-9-11-14-17-18-27-28 

3rd group 
Measurement DOFs 1-3-12-19-25 

Excitation DOFs 4-7-10-23-26-29 

4th group 
Measurement DOFs 6-7-12-19-21 

Excitation DOFs 3-7-12-21-24-28 

 

 

elements must contribute to structural response and exhibit 

enough contribution to sensitivity matrix to guaranty their 

observability. In order to find the proper places for 

installing the sensors and measuring equipment, several 

groups of DOFs are considered as the measurement and 

excitation locations. The selected groups of excitation and 

measurement DOFs are shown in Table 2. 

All selected groups of DOFs are used to identify 

structural parameters of the intact structure (damage is 

considered to be zero) using noise polluted data. It is 

assumed that the structure is excited at the selected DOFs 

individually and structural responses are measured at the 

corresponding DOFs. After running the program, for each 

selected group of DOFs, the one which exhibit best 

performance in identifying the properties of the structure is 

considered to be the excitation and measuring DOFs. Here, 

among the selected groups, the 2nd group led to more 

accurate results. Therefore, the excitation loads are applied 

at the DOF numbers 9, 13, 15, 17 and 19 individually. 

Hence, the corresponding diagonal entity of the matrix 

Sff(ω) is set as 1 for each excitation load. The rest of the 

entities of Sff(ω) matrix remain zero. Also, DOF numbers 

 

Fig. 3 Calculated �̃�𝐱𝐱𝐝(𝛚)  using the intact structure 

properties and measured modal data Vs. Measured PSD 

 

 

Fig. 4 A template of the calculated Sxx(ω) for damped and 

undamped structure 

 

 

7, 9, 11, 14, 17, 18, 27 and 28 are chosen as measurement 

location. The excitation and measurement locations are 

same for all damage cases. 

The location, severity and number of the defected 

elements can affect the results of the parameter estimation 

process. Therefore, several damage scenarios are considered 

to investigate the abilities of the proposed parameter 

estimation method. Details of the damage cases are shown 

as bar charts in the related figures. In practical cases, the 

power spectral density data of the damaged structure should 

be available from an experimental setup. Here, the finite 

element method is adopted to simulate the PSD data 

damaged structure. It is assumed that the power spectral 

density of a limited number of DOFs and the first ten 

natural frequencies of the damaged structure are available 

for the FE model updating process. Some simulated 

measurement errors are considered in regard to probable 

experimental errors, i.e. mass modeling errors, natural 

frequency and PSD measurement errors. The application of 

these errors is explained later.   

Excitation frequencies; For a sensitivity based model 

updating method selection of the proper ranges of the 

excitation frequencies is a challenging issue. At the selected 

excitation frequencies, the residuals at the left hand side of 

the sensitivity equation must be large enough for a 

successful model updating against measurement errors. This 

method attempts to minimize the residual which is obtained 

by subtraction of the PSD of the damaged 

structure Sxxd(ω), and the estimated value of  S̃xxd(ω).  

A template of these functions is shown in Fig. 3.  

As this figure shows, differences between Sxxd(ω) and 

S̃xxd(ω)   are large at the higher frequencies generally. 

Therefore, model updating must be conducted at these 

frequency ranges. The selected ranges are near resonance 

but they do not include the resonance frequencies.  

Damping modeling; By the proposed method the  
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Table 3 Selected frequency ranges for structural model 

updating 

Damage Scenario 1 2 3 4 5 6 

Frequency 

Range  

218-224 218-223 221-226 222-227 209-214 250-255 

228-234 227-232 230-235 231-236 218-223 259-264 

288-294 301-306 294-299 292-297 293-298 303-308 

298-305 310-315 303-308 302-304 302-307 312-317 

313-319 319-324 314-319 308-313 313-318 332-337 

323-330 328-333 323-328 329-334 322-327 341-346 

 

 

Fig. 5 The actual and predicted damage for the first damage 

scenarios using noisy data 

 

 

damped power spectral density could be used for FE model 

updating. However, measurement of the modal damping 

ratios is challenging issue and is not as accurate as natural 

frequencies measurement. Furthermore, damping models 

might not be able to represent the structural responses as 

accurate as needed in FE model updating. Any shortcoming 

of damping models affects the model updating results as a 

modeling error issue. A temple of PSD for different 

damping ratios is presented by Fig. 4.  

As this figure shows, damping phenomena influences 

the power spectral density in narrow frequency zones which 

are so close to resonance frequencies. Therefore, in this 

study model updating is conducted at the excitation 

frequencies away from these zones. At these frequency 

ranges, structural responses are not dominated by damping 

and element level updating of damping parameters is 

ignored. It is noted that damping parameter updating at the 

element level might not be meaningful. In most cases, 

damping is due to nonstructural elements, energy radiation 

from foundation, and structural connection details which are 

not included directly in most structural models. Despite of 

large amplitude of the PSD at these frequency ranges and 

accurate response measurement, numerical simulation for 

parameter estimation prove deviation of the results by 

considering damping modeling errors. The selected 

frequency ranges for structural model updating are 

summarized in Table 3. 

As mentioned before, in this study the natural 

frequencies and the PSD data are simulated numerically. In 

practical cases, there are some errors in the measurement  

 

Fig. 6 The actual and predicted damage for the second 

damage scenarios using noisy data 

 

 

Fig. 7 The actual and predicted damage for the third 

damage scenarios using noisy data 

 

 

Fig. 8 The actual and predicted damage for the fourth 

damage scenarios using noisy data 

 

 

and data processing that adversely affects the results. Here, 

10% of uniformly distributed random errors are included in 

the PSD data computed by the FE method to involve the 

measurement errors. 100 set of the noise polluted data are 

used for the parameter estimation process. The averages of 

the predicted parameters are presented as the model 

updating results in Figs. 5 to 10.  
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Fig. 9 The actual and predicted damage for the fifth damage 

scenarios using noisy data 

 

 

Fig. 10 The actual and predicted damage for the sixth 

damage scenarios using noisy data 

 

 

Fig. 11 COVs of estimated parameters of the first damage 

scenarios 
 

 

The results indicate that the performance of the 

proposed approach for structural damage identification is 

promising. In order to investigate the scattering of the 

estimated parameters around averages, coefficient of 

variations (COV) of the predicted unknown parameters  

 

Fig. 12 COVs of estimated parameters of the second 

damage scenarios 

 

 

Fig. 13 COVs of estimated parameters of the third damage 

scenarios 

 

 

Fig. 14 COVs of estimated parameters of the forth damage 

scenarios 

 

 

(standard deviation divided by the mean value) are also 

presented in Figs. 11 to 16. 

Small values of COVs indicate that the results are less 

scattered around averages and show the robustness of the 

method against measurement errors.  

Existing advanced sensors makes the measurement of 

natural frequencies very accurate, such that some 
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Fig. 15 COVs of estimated parameters of the fifth damage 

scenarios 

 

 

Fig. 16 COVs of estimated parameters of the sixth damage 

scenarios 

 

 

researchers assume it as a noise-free measurement of 

resonances. If the excitation frequency for model updating 

is not in the vicinity of the nearest measured resonances any 

unexpected errors in natural frequencies does not affect the 

results of parameter estimation. For a lightly damped 

structure, the denominators of Eq.(7), and consequently the 

sensitivity matrix are dominated by
22  −id . If the 

excitation frequency is selected close to the resonance 

frequency small errors in the measured resonances 

introduce a significant change in the value of 
22  −id , 

causing large deviation in the sensitivity equations. The 

adverse effects of this type of error can be reduced by 

moving away from the resonance frequency. In order to 

investigate the effects of noise polluted natural frequencies 

on model updating results, 0.5% of uniformly distributed 

random errors are introduced in the natural frequencies of 

the damaged structure. Two template of the model updating 

results and their COVs are shown in Figs. 17 and 18. As, 

these figures indicate, the proposed model updating 

algorithm is capable of the parameter estimation in the 

presence of errors in the measured natural frequencies. 

Small COVs of the predicted stiffness parameters indicate 

robustness of the method against this type of measurement  

 

Fig. 17(a) The actual and predicted damage for the second 

damage scenarios considering 0.5% natural frequencies 

error 

 

Fig. 17(b) COVs of estimated parameters for second 

damage scenarios considering 0.5% natural frequencies 

error 
 

Table 4 CI indices of the model updating results 

considering 0.5% natural frequencies errors 

Damage Scenarios CI 

2 
0.5% natural frequencies errors 0.92 

Noise free frequency 0.97 

6 
0.5% natural frequencies errors 0.90 

Noise free frequency 0.94 

 

 

Fig. 18(a) The actual and predicted damage for the sixth 

damage scenarios considering 0.5% natural frequencies 

error 
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Fig. 18(b) COVs of estimated parameters for sixth damage 

scenarios considering 0.5% natural frequencies error 

 

Table 5 Comparison of indices for model updating results 

considering 5% mass modeling error 

Damage Scenarios CI 

1 

measurement errors and mass modeling error 0.9017 

measurement errors and 

without mass modeling error 
0.9635 

4 

measurement errors and mass modeling error 0.94 

measurement errors and 

without mass modeling error 
0.9686 

 

 

errors. 

In order to gain a better evaluation of the accuracy of 

results, the closeness index (CI) is defined as (Bakhtiari 

Nejad et al. 2005) 

CI = 1 −
|δPP − δPt|

|δPt|
 (27) 

Where, δPt is the vector of true damage ratios and δPP 

is the vector of the estimated damage parameters. For an 

accurate parameter estimation result, CI is close to one. The 

CI indices for model updating results considering natural 

frequencies error are given by Table 4. Comparison of the 

calculated CI indices by the corresponding indices using 

noise free natural frequencies prove that adverse effects of 

the natural frequency errors can be alleviated by appropriate 

selection of the excitation frequencies. In these cases, 10 

percent of measurement errors are added to the PSD data. 

Although in most real cases, the mass matrices of the 

structures are not changed by damage, there may also be 

some discrepancies between the real and assumed mass 

parameters used in the FE model of the structure. To 

consider this probable error, 5% of uniformly distributed 

random errors are added to the mass parameters of the 

elements. This modeling error can affect the eigenvectors of 

the intact structure which is used to construct the sensitivity 

equation of PSD. The results of the damage detecting 

process of two damage cases (1 and 4) considering 

inaccurate mass matrices are presented in Figs. 19 and 20. 

The damaged indices are given by Table 5. Low values of 

COVs of the estimated parameters proves that, by 

considering 5 percent random error in mass parameters, the 

parameter estimation process is still robust. 

 

Fig. 19(a) The actual and predicted damage for first damage 

scenarios considering 5% mass modeling error 

 

Fig. 19(b) COVs of the estimated parameters for first 

damage scenarios considering 5% mass modeling error 

 

Table 6 CI indices for model updating results considering 

15% measurement errors 

Damage Scenarios CI 

2 
15% measurement errors 0.95 

10% measurement errors 0.97 

6 
15% measurement errors 0.93 

10% measurement errors 0.94 

 

 

Fig. 20(a) The actual and predicted damage for fourth 

damage scenarios considering 5% mass modeling error 
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Fig. 20(b) COVs of the estimated parameters for fourth 

damage scenarios considering 5% mass modeling error 

 

 

Fig. 21(a) The actual and predicted damage of second 

damage scenarios considering 15% measurement errors 

 

Fig. 21(b) COVs of the estimated parameters for the second 

damage scenario considering 15% measurement errors 

 

 

For further investigation of the robustness of the 

proposed method against noise polluted data, noise level is 

increased to 15% for scenarios 2 and 6 and the 

corresponding parameter estimation results are shown in 

Figs. 21 and 22. The CI values are given by Table 6. 

Comparison of the results shows low effects of this level of 

the measurement errors on the model updating results. 

In order to assess the performance of the proposed  

 

Fig. 22(a) The actual and predicted damage of sixth damage 

scenarios considering 15% measurement errors 

 

Fig. 22(b) COVs of the estimated parameters for the sixth 

damage scenario considering 15% measurement errors 

 

Table 5 Comparison of indices for model updating results 

considering 5% mass modeling error 

Damage Scenarios CI 

2 
measurement errors 0.97 

measurement errors, natural frequency errors  and mass modeling error 0.67 

6 
measurement errors 0.94 

measurement errors, natural frequency errors  and mass modeling error 0.69 

 

 

Fig. 23(a) The actual and predicted damage of second 

damage case considering mass modeling and natural 

frequencies errors 
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Fig. 23(b) COVs of the estimated parameters for the second 

damage case considering mass modeling and natural 

frequencies errors 

 

 

Fig. 24(a) The actual and predicted damage of sixth damage 

case considering mass modeling and natural frequencies 

errors 

 

Fig. 24(b) COVs of the estimated parameters for the sixth 

damage case considering mass modeling and natural 

frequencies errors 

 

 

model updating algorithm in more realistic cases, mass 

modelling errors and natural frequency errors are 

considered simultaneously. The parameter estimation results 

are plotted in Figs. 23 and 24. The CI values of the results 

are given by Table 7. The model updating results indicate 

that the proposed method is still robust in these cases. 

As it was stated earlier the PSD is more sensitive to 

change of structural parameters in compare with the FRF. 

Hence, it is expected to be capable of more accurate 

parameter estimation especially for cases of low severity 

damage or highly noise contaminated data. In such cases 

change of structural response is low and might be  

 

Fig. 25(a) The actual and predicted damage for first 

comparison scenarios by FRF Data 

 

Fig. 25(b) The actual and predicted damage for first 

comparison scenarios by PSD Data 

 

Table 7 Comparison of Closeness Index for the model 

updating results by FRF and PSD data 

Damage Scenarios 
CI 

FRF-Based Method PSD-Based Method 

1 0.267 0.403 

2 0.111 0.226 

3 0.501 0.592 

4 0.262 0.511 

 

 

overshadowed by measurement errors. Also, model 

updating using excitation frequency of low ranges is a 

challenging issue, since change of structural responses is 

not significant and might be covered by unexpected 

measurement errors. For comparison of the performance of 

the proposed method based on PSD with a method based on 

FRF, several case of low severity damage is considered. 

The FRF sensitivity with respect to unknowns is estimated 

using a decomposed form of transfer function (Esfandiari et 

al. 2010). In this comparison study, excitation frequency 

ranges are considered the first four lower natural 

frequencies. The results of both PSD and FRF based model 

updating are presented considering 15% errors in simulated 

response of damaged structure. Comparison of the results 

presented in Figs. 25 to 28 proves the efficiency and 

robustness of model updating results using PSD data over 

the obtained results using FRF data, when working in lower 

frequency ranges. 
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Fig. 26(a) The actual and predicted damage for second 

comparison scenarios by FRF Data 

 

Fig. 26(b) The actual and predicted damage for second 

comparison scenarios by PSD Data 

 

 

Fig. 27(a) The actual and predicted damage for third 

comparison scenarios by FRF Data 

 

Fig. 27(b) The actual and predicted damage for third 

comparison scenarios by PSD Data 

 

 

Fig. 28(a) The actual and predicted damage for fourth 

comparison scenarios by FRF Data 

 

Fig. 29(b) The actual and predicted damage for fourth 

comparison scenarios by PSD Data 

 

 

The quantitative comparison of the accuracy of the 

predicted structural parameters by both methods is 

conducted based on CI values of the results as given in 

Table 7. The results prove more accurate results by PSD 

based method.  

In summary, this study showed that the proposed 

formulation for correlation of the PSD and changes of 

structural parameters yields a robust model updating 

method even in presence of high levels of noise. The results 

of this study also show that by appropriate selecting of the 

excitation frequency adverse effects of the natural 

frequency errors are alleviated. Furthermore, the results 

prove that the PSD are more sensitive to the changes of the 

structural parameters rather than FRF data. 

 

 

4. Conclusions 
 

A structural damage detection method is presented using 

the power spectral density function and partially measured 

natural frequencies of the damaged structure. The damage is 

considered as the change of the stiffness parameters. The 

change of the power spectral density function is expressed 

in terms of the changes of the mode shapes. The sensitivity 

equations are established through correlating the change of 

the power spectral density function of the structure to 

damage in elements. Sensitivity equations are solved by the 

least square method to compute the changes of structural 

parameters. The obtained numerical results of a truss model 

show the ability of the proposed method to identify location 
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and severity of parameter changes at the elemental level in a 

structure. The results prove abilities of the method for 

model updating using highly noise contaminated data of 

low frequency ranges. 
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