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1. Introduction  
 

The finite element method has been used as a powerful 

numerical tool to analyze shell structures. In the last two 

decades, a great deal of effort has been expended on 

improving the solution accuracy for shell finite elements 

(Choi et al. 1999, Yoo and Choi 2000, Han et al. 2011). 

Compared with the quadrilateral element (Choi and Park 

1994), the triangular element is particularly attractive due to 

its geometric simplicity. It also allows for local mesh 

refinement and automatic mesh generation, both of which 

facilitate the effective discretization of arbitrary geometries 

with large curvature. In addition, for the 3-node triangular 

element, the membrane locking associated with the curved 

shell can be obviated due to the flat geometric 

characteristic. However, the optimal solution accuracy 

obtained by the triangular finite elements was generally not 

achieved mainly due to two factors; the transverse shear 

locking and the overly stiff behavior related to the in-plane 

shear locking (Bathe 2016, Hughes 2012). 

The locking phenomenon caused by parasitic internal 

energy, leading to artificial stiffness, has been thoroughly 

studied. Especially, the transverse shear-locking occurs 

usually in displacement-based plate and shell finite 

elements when the thickness of the element becomes 

relatively small. Historically, there have been numerous 

attempts to alleviate the locking of plate and shell finite 

elements. A major advancement was realized by the MITC 

(Mixed Interpolation of Tensorial Components) technique  
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for quadrilateral and triangular plate and shell elements 

(Lee and Bathe 2004, Lee et al. 2014, Jeon et al. 2014, Jun 

et al. 2018, Bathe and Dvorkin 1986, Bathe et al. 2003, da 

Veiga et al. 2007, Lee et al. 2008, Kim and Bathe 2009, Lee 

et al. 2012, Jeon et al. 2015, Lee et al. 2015, Ko et al. 2016, 

2017a). Based on the MITC approach, firstly, the MITC3 

and MITC6 shell elements (Lee and Bathe 2004) for 3-node 

and 6-node triangular elements, respectively, were 

suggested, which are spatially isotropic without a spurious 

zero energy mode or artificial factor, and pass plate bending 

and membrane patch tests. However, despite the advantage 

of this simple formulation and its computational efficiency, 

the convergence behavior of the MITC3 shell element is 

significantly diminished in the analysis of bending-

dominant problems due to and incomplete transverse 

locking treatment and its overly stiff membrane behavior. 

To remedy this difficulty, great research efforts have 

been undertaken (Choi et al. 1999, Da Veiga et al. 2007, 

Kim and Bathe 2009, Lee et al. 2012, 2014, Jeon et al. 

2015). A successful strategy was achieved by introducing a 

cubic bubble function for the rotations of the MITC3 shell 

element, which was called MITC3+ (Lee et al. 2014, Jeon 

et al. 2015, Lee et al. 2015). A newly developed assumed 

transverse shear strain field for the higher-order 

interpolation was also suggested to alleviate shear locking. 

The cubic bubble function provides a higher-order 

interpolation inside the element to enrich the element 

behavior while maintaining the linear interpolation along 

the element edges. It shows excellent performance and 

convergence behavior in both the linear and the non-linear 

general shell analyses (Lee et al. 2014, Jeon et al. 2015, Lee 

et al. 2015, Ko et al. 2017b). 

Another strategy to yield much more accurate solutions, 

Jeon et al. (2014) developed the enriched MITC3 shell  
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element (hereafter denoted MITC3E) by integrating the PU 

(partition of unity) approximation with the standard 3-node 

shell element, MITC3. Within the framework of the PU 

approximation, construction of high-order interpolations 

can be achieved in a straightforward manner by directly 

adopting high-order polynomials as local approximations 

without utilizing additional nodes along the element sides 

and inside element. It was reported that the MITC3E shell 

element performed significantly better than the quadrilateral 

(4-node) and higher-order triangular (6-node) shell elements 

in some problems even when using distorted meshes (Jeon 

et al. 2014). A distinguishing feature is that the local use of 

the partition of unity approximation results in excellent 

overall accuracy with a significantly reduced number of 

degrees of freedom (Jeon et al. 2014). 

Recently, Jun et al. (2018) proposed the new 3-node 

triangular shell finite element (hereafter denoted MITC3E+) 

based on the MITC3+ shell element by introducing the 

partition of unity approximation using piecewise 

polynomials in its membrane displacements. Since the 

MITC3+ shell element shows excellent performance in the 

analysis of bending-dominated problems, enriching its 

membrane behaviors should make the element more 

generally applicable. As a result, significantly improved 

membrane performance was achieved by additional four 

DOFs (degrees of freedom) at each of three corner nodes. 

Superior performance was observed in both linear and 

geometric nonlinear analyses (Jun et al. 2018). 

The aim of this study is to compare the solution 

accuracy and computational efficiency of the MITC 

triangular shell elements, through several widely used 

benchmark problems. The solutions of the recently 

proposed MITC triangular shell elements based on the 

partition of unity approximation, the bubble node, or both, 

are compared to each other and with those of the standard 

3-node and 6-node shell elements. The popular benchmark 

problems including four plane-stress, two plate, and six 

shell tests are selected from the references (Ko et al. 2017b, 

MacNeal and Harder 1985). Since the solution of the 

triangular finite elements are highly sensitive to the 

triangulated pattern and distortion of the element mesh, we 

not only use various element mesh patterns (constant and 

mixed directional element meshes) but also properly 

selected distorted meshes in benchmark problems. 

 

 

2. The formulation of the MITC triangular shell 
elements 

 

 

In this section, we briefly review the formulations of the 

MITC triangular shell elements, named as MITC3, MITC6, 

MITC3+, MITC3E, and MITC3E+ shell elements listed in 

Table 1. All shell elements considered here pass the basic 

tests; the isotropy, patch, and zero energy mode tests. 

 

2.1 Displacement interpolations 

 

The geometries of continuum mechanics based on 

triangular shell elements are shown in Fig. 1(a)-(c). The 

displacement interpolations for the shell elements are 

obtained from (Lee and Bathe 2004, Lee et al. 2014, Jeon et 

al. 2014, Jun et al. 2018) 
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where m and n represent the number of element nodes that 

correspond to the translations and rotations, respectively, 
m

ih  and n

ih  are the two-dimensional shape functions of 

the isoparametric procedure corresponding to node i. ia  

denotes the shell thickness at node i, and 
1

i
V  and 

2

i
V  are 

the unit vectors orthogonal to the director vector i

nV  and 

to each other. iu  is the nodal displacement vector, and iα  

and 
iβ  are the rotations of the director at node i. Each 

shell finite element has the following parameters m and n, 

nodal displacement vector and rotations: 

• MITC3: m=3, n=3, i iα α= , 
i iβ β= , i i=u u , 

• MITC6: m=6, n=6, i iα α= , 
i iβ β= , i i=u u , 

• MITC3+: m=3, n=4, i iα α= , 
i iβ β= , i i=u u , 

• MITC3E: m=3, n=3, ξ η

i i i i i iα α ξ α ηα= + + ,  

 ξ η

i i i i i iβ β ξ β η β= + + , ξ η

i i i i i iξ η= + +u u u u , 

• MITC3E+: m=3, n=3, i iα α= , 
i iβ β= , 

 
1 2( ) ( )ξ η i ξ η i

i i i i i i i i i iξ u ηu ξ v η v= + + + +u u V V . 

In the above, 
T

i i i iu v w=   u  is the standard nodal 

displacement vector in the global Cartesian coordinate 

system, 
i  and 

i  are the standard rotations of the 

director vector i

nV  about 1

i
V  and 2

i
V , respectively, at  

 
Fig. 1 Geometry of (a) the 3-node, (b) 3-node (with a bubble node), and (c) 6-node shell elements. (d) Definition of 

rotational degrees of freedom, 
kα  and 

kβ  

18



 

Benchmark tests of MITC triangular shell elements 

 

 

 

node i. In the MITC3E and MITC3E+ shell elements, 
T

i i i iu v w    =  u  and 
T

i i i iu v w    =  u  are the 

enriched nodal displacement vectors and 
i

 , 
i

 , 
i

 , 

and 
i

  are the enriched rotations. The i  and i  are 

defined by 

( ) 1 /i

i i iξ h= − x x V , ( ) 2 /i

i i iη h= − x x V , (2) 

in which 
ih  is a characteristic element length scale of the 

elements used in the mesh (Jeon et al. 2014, Jun et al. 2018, 

Duarte et al. 2000, Kim and Bathe 2013). The shape 

functions, m

ih  and n

ih  are used as follows 

3

1 1h r s= − − , 3

2h r= , 3

3h s= , (3a) 
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( )6

4 4 1h r r s= − − , 6

5 4h rs= , and ( )6

6 4 1h s r s= − − . 

(3c) 

Note that the displacement interpolations for the 

MITC3E and MITC3E+ shell elements can be divided into 

two parts: the linear term u  and the additional quadratic 

term û , as 

ˆ( , , ) ( , , ) ( , , )r s t r s t r s t= +u u u . (4) 

The linear term u  for the MITC3E and MITC3E+ 

shell elements can be replaced with the displacement 

interpolations of the MITC3 and MITC3+ shell elements, 

respectively, resulting in the quadratic terms û : (Eq. (5a)) 

for the MITC3E element and Eq. (5b) for the MITC3E+ 

element) 
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Further details of the derivation of the displacement 

interpolation for these shell elements can be found in 

references (Lee and Bathe 2004, Lee et al. 2014, Jeon et al. 

2014, Jun et al. 2018). 

With the partition of unity approximation by introducing 

piecewise polynomials for the nodal displacements, the 

solution of the MITC3E and MITC3E+ shell elements can 

be increased without any traditional local mesh refinement. 

The effectiveness of the method was also reported by 

evaluating the use of the enrichment scheme applied only 

locally through the solution of problems (Jeon et al. 2014). 

However, due to the use of the polynomials as a local 

approximation, the linear dependence problem arises and 

the global matrix becomes singular. That is a common 

occurrence which widely exists in various partition-of-unity 

based methods (Babuska and Melenk 1996, Melenk and 

Babuska 1996, Duarte and Oden 1996, Oden et al. 1998, 

Strouboulis et al. 2000a, b, Duarte et al. 2001, Kim and Lee 

2018). For the MITC3E and MITC3E+ finite elements, the 

simplest remedy was adopted by suppressing the higher-

order degrees of freedom at the Dirichlet boundary (Jeon et 

al. 2014, Jun et al. 2018, Kim and Bathe 2013, Tian et al. 

2006). 

The advantage of the MITC3+ and MITC3E+ shell 

elements is that the degrees of freedom corresponding to the 

bubble function can be condensed out at the element level 

to reduce the computational expense for solving linear 

equations. 

 

2.2 Assumed covariant transverse shear strain fields 

 

To alleviate the shear locking phenomenon, the unique 

MITC methods for MITC3, MITC6 and MITC3+ shell  

Table 1 A list of MITC triangular shell finite elements used for comparison 

Element type Descriptions 
# of DOFs / 

node 

# of DOFs / 

bubble node 

# of tying points for 

assumed strain 

MITC3 
Standard 3-node MITC shell element 

(Lee and Bathe 2004) 
5 - 3 

MITC6 
Standard 6-node MITC shell element 

(Lee and Bathe 2004) 
5 - 16 

MITC3+ 
3-node MITC shell element with a bubble node 

(Lee et al. 2014) 
5 2 6 

MITC3E 
PU based 3-node MITC shell element 

(Jeon et al. 2014) 
15 - 9 

MITC3E+ 

MITC3+ shell element enriched in membrane 

displacement by the PU approximation 

(Jun et al. 2018) 

9 2 6 
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elements are suggested in references (Lee and Bathe 2004, 

Lee et al. 2014, Jeon et al. 2014, Jun et al. 2018). The 

important thing to note here is that the covariant membrane 

strains of the MITC6 shell element are assumed to reduce 

membrane locking. However, this treatment is not necessary 

for all 3-node shell elements due to its flat geometry. In this 

section, we briefly review the MITC schemes for all the 

triangular shell elements we considered. 

We first consider the linear part of the Green-Lagrange 

strain tensor and its covariant strain components are 

obtained by 

( ), ,

1

2
ij i j j ie =  + g u g u , (6a) 

i

ir


=


x
g  and 

,i

ir


=


u
u     

with 1r r= , 2r s=  and 3r t= . 

(6b) 

 
2.2.1 Assumed strain fields for the MITC3 shell 

element 
The displacement and rotations are interpolated as usual, 

but for the transverse shear strains, we assume the covariant 

components are measured in their natural coordinate 

system. The assumed covariant transverse shear strain field 

for the MITC3 shell element was introduced in the 

reference (Lee and Bathe 2004) and can be written by 

AS (A3)

rt rte e cs= +  and 

AS (B3)

st ste e cr= − , 
(7) 

where (B3) (A3) (C3) (C3)

st rt st rtc e e e e= − − +  and, at the tying points, 
( )n

rte  and ( )n

ste  are calculated from Eq. (6a). The tying 

points (A3), (B3), and (C3) are presented in Fig. 2(a) and  

 

 

Table 2. 

 

2.2.2 Assumed strain fields for the MITC6 shell 
element 

We remark again, that the MITC method for the 6-node 

shell element was formulated by the use of both assumed 

membrane and transverse shear strains (Lee and Bathe 

2004). The complete in-plane strain field is usually given by 

two normal shear strains (
rre  and 

sse ) and one in-plane 

shear strain (
rse ). To construct the isotropic in-plane strain 

field, the normal strain, 
qqe  was introduced in the 

hypotenuse direction of the right-angled triangle in the 

natural coordinate system. The in-plane shear strain, err was 

obtained by the following equation. 

( )AS AS AS AS1

2
rs rr ss qqe e e e= + − . (8) 

The interpolations of the three in-plane strains (
rre , 

sse  

and 
qqe ) was obtained, as 

AS

1 1 1rre a b r c s= + + , (9a) 

AS

2 2 2sse a b r c s= + + , (9b) 

AS

3 3 3(1 )qqe a b r c r s= + + − − , (9c) 

where 

(C6) (C6)

3 = −qq qqa m l , (C6)

3 2= − qqb l , ( )3(C6)

3 3 3 13= − −qqc e a b r , (9f) 

( )1 2( ) ( )( ) 1

2
= +

i ii

jj jj jjm e e , ( )2 1( ) ( )( ) 3

2
= −

i ii

jj jj jjl e e     

with j = r, s, q for i = A6, B6, C6. 

(9g) 

Table 2 Tying positions for the assumed covariant strain of the MITC triangular shell elements. a= 1/2, b= 1/2, c= 1/

3 , and d = 1/10,000 are used (Lee and Bathe 2004, Lee et al. 2014, Jeon et al. 2014, Jun et al. 2018) 

Elements Tying points r s Elements Tying points r s 

MITC3 

- 

Fig. 2(a) 

(A3) a 0 

MITC6 

or 

MITC3E 

- 

Fig. 2(c) 

(D6)1 a-b 0 

(B3) 0 a (D6)2 a+b 0 

(C3) a a (E6)1 0 a-b 

MITC6 

- 

Fig. 2(b) 

(A6)1 a-b 0 (E6)2 0 a+b 

(A6)2 a+b 0 (F6)1 a+b a-b 

(A6)3 a-b c (F6)2 a-b a+b 

(B6)1 0 a-b (G6) 1/3 1/3 

(B6)2 0 a+b 

MITC3+ 

or 

MITC3E+ 

- 

Fig. 2(d) 

(A4) 1/6 2/3 

(B6)3 c a-b (B4) 2/3 1/6 

(C6)1 a+b a-b (C4) 1/6 1/6 

(C6)2 a-b a+b (D4) 1/3+d 1/3-2d 

(C6)3 a-b a-b 
(E4) 1/3-2d 1/3+d 

(F4) 1/3+d 1/3+d 
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The tying positions (A6)k, (B6)k, and (C6)k with k = 1, 2, 

3 are presented in Fig. 2(b) and Table 2. Thus, using the in-

plane strains 
rre , 

sse  and 
qqe  obtained above, the 

interpolation function for the in-plane shear strain AS

rse  can 

be obtained by given by Eq. (8). 

The assumed strain fields for the transverse shear of the 

MITC6 shell element were also introduced in the same 

reference (Lee and Bathe 2004) as 

AS 2 2

1 1 1 1 1 1= + + + + +rte a b r c s d rs e r f s  and (10a) 

AS 2 2

2 2 2 2 2 2= + + + + +ste a b r c s d rs e r f s  

with 
(10b) 

(D6) (D6)

1 = −rt rta m l , (D6)

1 2= rtb l , 
1 0e = , (10c) 

(E6) (E6)

2 = −st sta m l , (E6)

2 2= stc l , 
2 0f = , (10d) 

(G6) (G6) (F6) (F6)

1 1 1 26 3 2 2 4= − + − − − +rt st st rtc e e m m a b a , (10f) 

(G6) (G6) (F6) (F6)

2

(F6) (F6)

1 2 2

3 6 3

3 3 ,

rt st st st

rt rt

e e e m l

m l b a c

= − + −

− + + + +
 (10e) 

(G6) (G6) (F6) (F6)

1

(F6) (F6)

1 1 2

6 3 3

3 3

rt st st st

rt rt

f e e m l

m l a b c

= − + − −

+ + + + +
, (10g) 

1 2d e= − , 
2 1d f= − , (10h) 

where 

( )1 2( ) ( )( ) 1

2
= +

i ii

jt jt jtm e e , ( )2 1( ) ( )( ) 3

2
= −

i ii

jt jt jtl e e  

with j = r, s for i = D6, E6, F6. 

(10i) 

The tying positions (D6)1, (D6)2, (E6)1, (E6)2, (F6)1, 

(F6)2 and (G6) are also presented in Fig. 2(c) and Table 2. 

In certain shell problems, the solution using the MITC6 

shell element given here obverted the peculiar unstable 

behaviors, which is reported in references (Chapelle and 

Suarez 2008). To solve the unstable behaviors, Kim and 

Bathe (2009) improved the MITC6 shell element with the 

same membrane strain and transverse shear strain 

interpolations presented here, but interpolating covariant 

strain components referred to an element constant 

contravariant basis. 
 

2.2.3 Assumed strain fields for the MITC3+ shell 
element 

The assumed transverse shear strain fields of the 

MITC3+ shell element was developed and given by (Lee et 

al. 2014) 

( )

AS (B4) (B4) (C4) (C4)2 1 1 1

3 2 3 2

1
ˆ 3 1 ,

3

rt rt st rt ste e e e e

c s

   
= − + +   

   

+ −

 (11a) 

( )

AS (A4) (A4) (C4) (C4)2 1 1 1

3 2 3 2

1
ˆ 1 3 ,

3

st st rt rt ste e e e e

c r

   
= − + +   

   

+ −

 (11b) 

where (F4) (D4) (F4) (E4)ˆ = − − +rt rt st stc e e e e  and the tying positions 

(A4), (B4), (C4), (D4), (E4), and (F4) are presented in Fig. 

2(d) and Table 2. The in-plane covariant strain components 

for the MITC3+ shell element are directly obtained from 

Eq. (6a). 

 

2.2.4 Assumed strain fields for the MITC and MITC3+ 
shell elements 

Since displacement interpolations for the MITC3E and 

MITC3E+ shell elements can be split into two parts, linear 

and quadratic terms, the covariant strain components are 

directly separated into two parts as well, 

ˆ
ij ij ije e e= +  (12a) 

with ( ), ,

1

2
ij i j j ie =  + g u g u  and 

( ), ,

1
ˆ ˆ ˆ

2
ij i j j ie =  + g u g u , 

(12b) 

in which 
ije  and ˆ

ije  correspond to the standard linear and 

additional quadratic displacement interpolations, 

respectively. The covariant strains components, 
ije  and ˆ

ije  

for the MITC3E shell element were replaced with the 

assumed covariant transverse shear strain fields developed 

for the MITC3 and MITC6b (Lee and Bathe 2004) shell 

elements, respectively, in order to alleviate share locking 

(Jeon et al. 2014). Thus, the assumed covariant transverse 

shear strain related to the quadratic displacement 

interpolation is 

AS

1 1 1
ˆ = + +rte a b r c s , (13a) 

AS

2 2 2
ˆ = + +ste a b r c s , (13b) 

and we have the coefficients, 

(H6) (H6)

1 = −rt rta m l , (H6)

1 2= rtb l , 

(I6) (I6)

2 = −st sta m l , (I6)

2 2= stc l , 
(13c) 

(J6) (J6) (J6) (J6)

1 2 2 1( ) ( )= + − − + − −st st rt rtc a c a m l m l , (13d) 

(J6) (J6) (J6) (J6)

2 1 1 2( ) ( )= + − + − − +st st rt rtb a b a m l m l  (13c) 

with ( )1 2( ) ( )( ) 1
ˆ ˆ

2
= +

i ii

jt jt jtm e e , ( )2 1( ) ( )( ) 3
ˆ ˆ

2
= −

i ii

jt jt jtl e e    

with j = r, s for i=H6, I6, J6, 

(13e) 

where the tying positions (D6)k, (E6)k, (F6)k, with k = 1, 2 

are presented in Fig. 2(c) and Table 2. 

Since the enriched displacement û  for the MITC3E+ 

shell element is not affecting the transverse shear strains,  
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the assumed transverse shear strain fields (Eq. (11a) and 

(11b)) used in the MITC3+ shell element were directly 

adopted (Jun et al. 2018). Again, the in-plane covariant 

strain components for the MITC3E and MITC3E+ shell 

elements are directly obtained from Eq. (12a). 

 

 

3. Computational efficiency 
 

In this section, we investigate some important aspects of 

the computational efficiency when using the MITC 

triangular shell elements. To precisely compare the 

computational cost, we first analyze the size (the number of 

total degrees of freedom) and sparseness of the global 

stiffness matrices. With the same triangular mesh pattern, 

the square domain discretized by 6 6 element meshes are 

considered in Fig. 3(a) for the 3-node elements and Fig. 

3(b) for the 6-node element. 

The stiffness matrices for the general shell problem, 

without imposing boundary conditions, are plotted in Fig. 

3(c)-(g), where the non-zero entries are presented with 

colored squares. In each panel, the size of the matrix (the 

number of total degrees of freedom) and the number of non-

zero entries and half-bandwidth corresponding to matrix are 

numbered. It is interesting that the number of non-zero 

entries in the global stiffness matrix for the MITC3E shell 

element is substantially larger than in the corresponding 

matrix for the MITC6 shell element. This is due to the fact 

that the support of the higher order interpolation functions 

in the MITC3E shell element is larger than for other 

elements. However, using the MITC3E shell element, all 

degrees of freedom are associated with vertex nodes which 

are shared by several elements. The assembled system of 

equations is in general smaller than when using the MITC6 

shell element where edge nodes are only shared by two 

elements. Therefore, the MITC3E shell element has fewer 

equations and a smaller bandwidth than the MITC6 shell 

element. This fact reflects the different computational 

efficiency depending on the matrix storage format used. 

When using the skyline solver, the MITC3E shell element is 

more efficient than the MITC6 shell element due to its 

smaller bandwidth (see Fig. 4(a)). However, when the 

Compressed Row Storage (CRS) which does not store any 

unnecessary elements is used, the MITC3E shell element is 

computationally more expensive than the MITC6 shell 

element (see Fig. 4(b)) 

 

 

It is valuable to compare solution times required for the 

five MITC triangular shell elements. Their formulation, of 

course, leads to symmetric stiffness matrices. The 

computations are performed by Intel Fortran XE 2017 on 

Intel Core i7-4770 CPU @ 3.40 GHz, 24GB RAM, 64-bit 

Windows 10 operating system. Additionally, all solutions 

using the MITC3 and MITC6 shell elements are validated 

with the commercial finite element software, ADINA 

version 9.0. We first focus our attention to the solution 

times using the MITC3 shell element with two different 

linear equation solvers; Skyline solver (COLSOL and 

SKYSOL (Bathe 2016) and sparse direct solver (MUMPS 

and PARDISO (Karypis and Kumar 1998, Schenk and 

Gartner 2006), see Fig. 4(c). The computational costs of 

five MITC shell elements are presented in Fig. 4(d) and 

listed in Table 3 using Skyline solver, SKYSOL and sparse 

direct solver, PARDISO. As expected, the solution time for 

the MITC3E shell element is much smaller than that for the 

MITC6 shell element when the skyline solver is used. On 

the contrary, when using the sparse solver, PARDISO, the 

solution time for the MITC6 shell element is much more 

efficient than one for the MITC3E shell element. 

 

 

4. Benchmark problems 
 

In this section, a summary of the results obtained in the 

assessments and comparisons of MITC triangular shell 

elements in the linear range are presented. Twelve popular 

benchmark problems are considered, including four plane 

stress and two plate problems to evaluate the performance 

of membrane and bending behaviors when applying either a 

partition of unity approximation or a bubble node, or both 

into 3-node shell element. The plane stress condition is 

achieved by imposing w=α=β=0 for all nodes of the shell 

finite element and the solutions of the MITC3+ and 

MITC3E+ elements are the exactly identical to those of the 

MITC3 and MITC3E elements, respectively. In plate 

problems by imposing u=v=0, the MITC3+ element has the 

same solution accuracy of the MITC3E+ element. In each 

example, the reference solutions are provided by either 

analytical solutions or literatures. 

 

4.1 Mesh distortion test using the cantilever beam 

 

The cantilever beam to test distortion sensitivity is  

Table 3 The number of non-zero entries of the stiffness matrix and solution times (in seconds) for Scordelis-Lo 

Roof problem shown in Fig. 25(a). The solution times are obtained using the 100×100 element mesh with the 

mesh pattern I given in Fig. 25(b) (DOFs: degrees of freedom) 

Element type Total DOFs Half-bandwidth 

Skyline storage 

(COMSOL) 

Compressed row storage 

(PARDISO) 

# of non-zero entries Time # of non-zero entries Time 

   MITC3 50,400 513 25,516,887 4.09 894,494 0.92 

   MITC6 200,800 2,021 302,564,176 178.25 5,821,203 4.81 

   MITC3+ 90,400 921 82,262,731 22.67 1,550,896 1.61 

   MITC3E 151,200 1,539 229,500,783 140.34 7,899,246 7.56 

   MITC3E+ 130,000 1,329 170,691,847 84.16 3,968,832 3.55 
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Fig. 3 Mesh used and stiffness matrix structures: 6 6 element meshes for the (a) 3- and (b) 6-node elements. Global 

stiffness matrix patterns for the (c) MITC3, (d) MITC6, (e) MITC3+, (f) MITC3E, and (g) MITC3E+ shell elements for 

the general shell problem without imposing the boundary conditions. Non-zero entries are colored in the stiffness matrix 

structure. All matrices are symmetric, thus only upper triangular portion of each matrix is stored 

 

 
Fig. 4 Comparisons of the computational efficiency for the MITC triangular shell elements when considering the 

Scordelis-Lo roof shell problem shown in Fig. 25(a). The total number of non-zero entries of the stiffness matrix when 

the (a) skyline and (b) compressed row storage are used. The solution times for solving linear equations (c) using 

different linear equation solvers, and for different shell elements with the (d) COLSOL and (e) PARDISO solvers. (* 

indicates the solver with the single-precision floating points) 
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discretized by two elements under plane stress condition, as 

shown in Fig. 5(a). The shape of the two elements varies 

with the distorted parameter e, which reflects the degree of 

element distortion. The cantilever beam has the geometry of 

length L=10, width B=2 and thickness h=1, its Young’s 

modulus E=1,500 and the Poisson ratio v=0.25. The 

moment M=2,000 is applied at the free end. The exact 

solution for the case is given by Timoskenko (1970) and Xu 

and Rajendran (2013) as below 

2 2

2 2

M M
v y x

EI EI


= − − , (14) 

where I is the second moment of area of the beam’ cross 

section. 

The results of the tip deflection at point A are presented 

in Fig. 5(b). Providing the exact solution when e varies 

from 0 to 5, the MITC3E element is more robust than other 

elements, showing that the partition of unity approximation 

can overcome the trapezoidal locking completely. 

 

4.2 Cantilever beam subjected to tip shear and 
moment 

 

 

We consider the cantilever beam (as shown in Fig. 6(a)) 

subjected to either tip shear or moment. The numerical 

values for this problem are as follows: L=48 and B=12, 

thickness h=1, M=24,000 for moment and P=1,000 for 

shear force, Young’s modulus E=3.0×107 and Poisson's 

ratio v=0.3. The problem is solved with the plane stress 

condition. Three mesh patterns I, II, and II as shown in Fig. 

6(b) are considered. 

The solutions are obtained using N×N element meshes 

(N=2, 4, 6, 8, 10, 12, and 16). The exact solution under 

moment is calculated by Eq. (14). For the cantilever beam 

subjected to shear force, the exact solution is obtained as 

below 

( ) ( ) ( )
2

2 23 4 5 3
6 4

P D x
v y L x L x x

EI
 

 
= − + + + − 

 

 

with 3 2/12(1 )D Eh v= − . 

(15) 

The convergence of normalized displacement (vC=vref) at 

point A is presented in Fig. 7(a) for the tip shear force load 

case and in Fig. 7(b) for the moment load case. For all 

cases, the MITC6 and MITC3E elements exhibit almost the  

 
Fig. 5 Cantilever beam divided by two elements with distorted parameter, e: (a) Problem description (L=10, B=2, 

thickness h=1, M=2,000, E=1,500 and v=0.25) and mesh patterns used (1×2), (b) Results of the tip deflection at point A 

of the beam 

 
Fig. 6 A cantilever beam subjected to tip shear force or moment; (a) Problem description (L=48, B=12, thickness h=1, 

M=24,000, P =1,000, E=3.0×107 and v=0.3). (b) Mesh patterns I, II and III used (N=2) 
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M P
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Fig. 7 Convergence of normalized displacement at point A for the cantilever beam subjected to (a) tip shear force and (b) 

moment 

 

Fig. 8 Cook’s skew beam problem. (a) Problem description (thickness h=1, p=1/16, E=1 and v=1/3) and mesh patterns I, 

II, and III used (N=2). (b) Convergence of normalized displacement at point A for the skew beam 
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same results as the exact solution regardless of the mesh 

density. 

 

4.3 Cook’s skew beam 

 

The skew beam problem proposed by Cook et al. (2007) 

is useful to assess the membrane performance of finite 

elements. The geometric dimensions and boundary 

conditions used are shown in Fig. 8(a). The material 

properties are Young’s modulus E=1 and Poisson’s ratio 

v=1/3. The beam is subjected to a distributed shear load 

p=1/16 per length at the right end. The problem is solved  

 

 

under the plane stress condition. 

The solutions are obtained using N×N element meshes 

(N=2, 4, 6, 8, 10, 12, and 16). The reference solution of the 

vertical displacement at the free-end mid-point A is 23.95 

given in reference (Cook et al. 2007). Three different mesh 

patterns I, II, and III shown in Fig. 8(a) are considered. 

The convergence of normalized displacement (vA=vref) at 

point A is presented in Fig. 8(b) The MITC6 and MITC3E 

elements exhibit the good results compared with the exact 

solution 

 

4.4 MacNeal beam 

 
Fig. 9 MacNeal problem subjected to two load cases; Unit tip shear force P and unit tip bending moment M. (a) Problem 

description (L=6, B=0.2, thickness h=0.1, P=1, M=0.2, E =107 and v=0.3). (b) Mesh patterns I and II used (1×6) 

 

 

Fig. 10 Morley’s 30° skew plate under uniform pressure. (a) Problem description (L=100, thickness h=1, E=105, and 

v=0.3) and mesh patterns I, II and III used (N=4), (b) Convergence of normalized displacement at point A for the skew 

plate 
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Table 4 Normalized tip displacements at point A, vA for the 

MacNeal’s cantilever beam subjected to either unit tip shear 

force P =1 or unit tip moment M = 0.2 

Element 

type 

Load P = 1 Load M = 0.2 

Mesh (i) Mesh (ii) Mesh (iii) Mesh (i) Mesh (ii) Mesh (iii) 

MITC3, 
mesh I 

0.0316 0.0222 0.0149 0.0311 0.0203 0.0135 

MITC3, 

mesh II 
0.0316 0.0113 0.0191 0.0311 0.0093 0.0167 

MITC6, 

mesh I 
0.9541 0.8221 0.7648 0.9866 0.8775 0.8044 

MITC6, 
mesh II 

0.9541 0.7789 0.8034 0.9866 0.8157 0.8586 

MITC3E, 

mesh I 
0.9831 0.9704 0.9610 0.9927 0.9936 0.9924 

MITC3E, 

mesh II 
0.9831 0.9704 0.9610 0.9927 0.9936 0.9924 

Reference solution vref (MacNeal and Harder 

1985)=−0.1081 for load P and −0.054 for load M. Mesh 

patterns I and II are shown in Fig. 9(b) 
 

 

The thin cantilever beam suggested by MacNeal 

(MacNeal and Harder 1985) has frequently been used as a 

test problem. The cantilever beam has length L=6, width 

B=0.2, and thickness h=0.1. The material properties are 

given by Young’s modulus E=107 and Poisson’s ratio v=0.3. 

We consider two loading cases; shear force (P=1) 

and moment (M=0.2) at the free tip. Three different meshes  

(rectangular, parallelogram, and trapezoidal shapes) are 

applied as shown in Fig. 9(a). In addition, two triangular 

mesh patterns (shown in Fig. 9(b)) are used for the elements 

compared. The plane stress condition is also considered for 

this problem. 

The solutions are obtained using 1×6 element meshes 

and the reference value of vref =−0.1081 for the shear load 

case and vref =−0.0054 for the moment load case (MacNeal 

and Harder 1985) are used. 

Table 4 shows normalized tip displacements at point A 

(vA=vref). The results for the element with the partition of 

unity approximation show high accuracy for all three mesh-

types regardless of mesh distortion. 
 

4.5 Morley’s 30° skew plate 
 

The Fig. 10(a) shows the skew plate under uniform 

pressure in the z-direction. Morley (1963) originally 

proposed the skew plate to test the sensitivity of the plate 

elements to mesh distortions. The plate is modeled with 

edges of L and all edges are simple supported. The 

geometric data and material properties are L=100, thickness 

h=1, E=105 and v=0.3 which are based on the work of 

Andelfinger and Ramm (1993). Three mesh patterns I, II, 

and III shown in Fig. 10(a) are used for the elements being 

compared. This problem is also solved under the plate 

problem condition. 

The solutions are obtained using N×N element meshes 

(N=2, 4, 6, 8, 10, 12, and 16). The Kirchhoff reference 

solution of 4.455 suggested by Morley is replaced by the 

value 4.640, as even for the length to thickness ratio of 100 

shear deformation effects cannot be neglected. 

Fig. 10(b) presents convergences of the normalized 

Table 5 Normalized displacement at point A for the curved 

beam shown in Fig. 14(a) 

Element type 
In-plane 

loading P1 

Out-of-plane 

loading P2 

    MITC3, mesh I 0.0249 0.6214 

    MITC3, mesh II 0.0253 0.6278 

    MITC6, mesh I 0.9777 0.8877 

    MITC6, mesh II 0.9737 0.8877 

    MITC3+, mesh I 0.0249 0.7944 

    MITC3+, mesh II 0.0253 0.7828 

    MITC3E, mesh I 0.9966 0.9633 

    MITC3E, mesh II 0.9974 0.9621 

    MITC3E+, mesh I 0.9966 0.7944 

    MITC3E+, mesh II 0.9974 0.7828 

Reference vref (MacNeal and Harder 1985)=0.08734 for 

load P1 and −0.50220 for load P2. Mesh patterns I and II are 

shown in Fig. 14(b) 
 

 

vertical displacement at point A using the MITC3, MITC6, 

MITC3+, and MITC3E shell elements. The results show 

that the convergence of all elements is highly sensitive to 

the mesh patterns. 

 

4.6 Circular plate under uniform pressure 
 

A circular plate loaded with a downward uniform 

pressure, shown in Fig. 11(a), is analyzed. We consider the 

plate with either simply supported or fully clamped 

boundary conditions along its edges. This problem is often 

used to verify results of new elements since analytical 

solutions are readily available in this case. The circular 

plate has a radius R=1 and two kinds of thickness h=0.1 or 

h=0.01. The material has a Young’s modulus of E=1.7472 

×107 and Poisson’s ratio of v=0.3. Utilizing symmetry, only 

one-quarter of the plate corresponding to the shaded region 

in Fig. 11(a) is modeled. Three mesh patterns I, II, and III 

shown in Fig. 11(b) are considered. The solutions are 

obtained using the quadrant shell (shaded region) divided 

into three regions and each region is discretized using N×N 

element meshes (hereafter referred to as 3×(N×N) for three 

regions, each consisting of N×N and N=1, 2, 3, 4, 5, and 6). 

A simply supported and clamped circular plates are 

analyzed to demonstrate more features of the triangular 

elements. Based on the Kirchhoff thin plate theory, the 

reference displacements at the center of the circular plate 

(point A) are given as follows (Andelfinger and Ramm 

1993) 

4 5

64 1
ref

R v
w

D v

+
= − 

+
 

for the simply supported boundary, 

(16a) 
4

64
ref

R
w

D
= −  for the clamped boundary, 

with 3 2/12(1 )D Eh v= − . 
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Figs. 12 and 13 present the convergences of normalized 

displacement for the simply supported and fully clamped 

cases, respectively. The MITC6 and MITC3E shell finite 

elements produce much better solution results than other 

shell elements even coarse meshes. 

 

 

4.7 Curved beam 
 

The curved beam shown in Fig. 14(a) is clamped at one 

end and loaded by a unit force at the other. The geometry 

and material properties are R1=4.12, R2=4.32, thickness 

h=0.1, E=1×107 and v=0.25. Two loading conditions are  

 
Fig. 11 Circular plate under uniform pressure. (a) Problem description (R=1, thickness h=0.1 or 0.01, q=1, 

E=1.7472×107 and v=0.3), (b) Mesh patterns I, II, and III used (N=2) 

 

 

Fig. 12 Convergence of normalized displacement at point A for the simply supported plate with (a) h/R=0.1 and (b) 

h/R=0.01 
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considered along the in-plane axis P1=1 and the out-of-

plane axis P2=1. Two triangular mesh patterns I and II 

shown in Fig. 14(b) are considered. The solutions are 

obtained using the 1×6 element mesh. The displacements at 

the free end in the directions of the forces are computed and 

normalized by the reference solution of MacNeal and 

Harder (MacNeal and Harder 1985); vref =0.08734 under in- 

 

 

plane load case and wref =−0.5022 under out-of-plane load 

case. 

Table 5 lists two normalized displacements (vA/vref and 

wA/wref) at point A for the in-plane and out-of-plane load 

cases, respectively. The best performance is obtained with 

the MITC3E shell element under both loading cases. 

 
Fig. 13 Convergence of normalized displacement at point A for the fully clamped plate with (a) h/R=0.1 and (b) 

h/R=0.01 

 

Fig. 14 Curved beam with the in-plane or out-of-plane load cases. (a) Problem description (R1=4.12, R2=4.32, thickness 

h=0.1, P1=1, P2=1, E=1×107 and v=0.25). (b) Mesh patterns I and II used (1×6) 
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4.8 Twisted beam 

 

The twisted beam problem shown in Fig. 15(a) was 

introduced in references (MacNeal and Harder 1985, 

Belytschko et al. 1989) to test the effect of element 

warping. The initial geometry of the beam is twisted, but 

the initial strain is zero. The geometric and material  

 

 

properties are L=12, B=1.1, Young’s modulus E=29×106, 

and Poisson’s ration v=0.22. The initially twisted beam is 

fully clamped at one end and is loaded by a point load at the 

center of the free tip (point A). Two load cases are 

considered; an in-plane load P1=1 and an out-of-plane load 

P2=1. Three mesh patterns I, II, and III shown in Fig. 15(b) 

are considered. 

 
Fig. 15 Twisted beam with two different loading conditions; in-plane and out-of-plane load cases. (a) Problem 

description (L=12, B=1.1, thickness h=0.32 and 0.0032, P1=1, P2=1, E=29×106 and v=0.22). (b) Mesh patterns I, II and 

III used (2×8) 

 

Fig. 16 Convergence of normalized displacement at point A for the twisted beam with the thickness of (a) 0.32 and (b) 

0.032 under in-plane load 
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The solutions are obtained using 2×N element meshes 

(N=4, 6, 8, 10, 12, 14, and 16). The performance of shell 

elements of two kind of thickness (h=0.32 and h=0.0032)  

was studied under in-plane and out-of-plane loads. When 

h=0.32, the reference displacements at point A are wref 

=5.424×103 and vref =1.754×103 for the in-plane and out-of-

plane load cases, respectively. When h=0.0032, the 

reference displacements are wref =5.256×103 and vref =1.29 

×103 for the in-plane and out-of-plane load cases, 

respectively (MacNeal and Harder 1985, Belytschko et al. 

1989). 

 

 

Figs. 16 and 17 show the convergence of two 

normalized displacements (wA/wref and vA/vref) at the tip 

center for the in-plane and out-of-plane load cases, 

respectively. In case of the beam with thickness of 0.32, all 

considered elements perform well when uniform mesh is 

used. With distorted meshes, the solution of the MITC6 

shell element is significantly deteriorated. When the beam 

with the thickness of 0.0032 is modeled using uniform 

meshes, the MITC3 and MITC3+ shell elements do not  

show good convergence behavior even using the finer 

element meshes. Again, regardless of the mesh patterns, all  

 
Fig. 17 Convergence of normalized displacement at point A for the twisted beam with the thickness of (a) 0.32 and (b) 

0.032 under out-of-plane load 

 

 

Fig. 18 Pinched cylinder problem. Problem description (L=600, R=300, thickness h=3, P=1.0, E=3×106 and v=0.3). (b) 

Mesh patterns I, II and III used (N=4) 
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solutions of the MITC6 shell element with distorted meshes 

are severely distorted, even though others show excellent 

solutions. 

 

4.9 Pinched cylinder 
 

Fig. 18(a) illustrates a short cylinder subjected to two 

pinching forces. The shell is bounded by rigid diaphragms 

at each end. This pinched cylinder is one of the most severe 

benchmark problems which tests an element’s ability to 

model both inextensional bending and complex membrane 

states. Belytschko et al. (1985) pointed out the difficulty in 

passing this test. The length and radius of the full cylinder 

are L=600 and R=300, respectively. The thickness of the 

cylinder is h=3 and the material constants are E=3×107 and 

v=0.3. The load applied to the cylinder at point C is P=1.  

 

 

Due to symmetry, only one octant of the cylinder 

corresponding to the shaded region ABCD in Fig. 18(a) is 

analyzed. Three triangular mesh patterns I, II, and III shown 

Fig. 18(b) are considered. 

The solutions are obtained using N×N element meshes 

(N=4, 8, 12, 16, and 20). We consider not only meshes that 

are uniform but also distorted meshes, as shown in Fig. 19. 

When the N×N distorted mesh is used, each edge is divided 

by the ratio L1:L2:L3...LN = 1:2:3...N, leading to severely 

distorted meshes. The reference displacement at point C is 

wref =−1.8248×105 which is given in Reference (Belytschko 

et al. 1985). 

Fig. 20 presents the convergence of the normalized 

displacement (wC/wref) at the position of the pinching force, 

point C. The best performance is obtained with the MITC3E 

shell element with uniform meshes and the MITC6 shell 

 
Fig. 19 Three distorted mesh patterns for the numerical problems solved when N=4 

 

 

Fig. 20 Convergence of normalized displacement at point C for the pinched cylinder with (a) uniform and (b) distorted 

meshes shown in Fig. 19 
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element with distorted meshes, as illustrated in Fig. 20. 

 

4.10 Hemispherical shell with an 18° hole 

 

We consider a hemispherical shell with an 18° hole at 

the top shown in Fig. 21(a), which is well known as a useful 

problem for evaluating the ability of the element to 

represent rigid-body rotations and inextensible bending 

modes. The hemisphere has the radius R=10, thickness 

h=0.04, Young’s modulus E=6.825×107, and Poisson’s ratio 

v=0.3. Two pairs of opposite radial concentrated loads P=2  

 

 

are subjected along its equator. Due to symmetry, one 

quarter of the structure corresponding to the shaded region 

ABCD in Fig. 21(a) is modeled and three triangular mesh 

patterns (I, II, and II; shown in Fig. 21(b)) are considered. 

The uniform and distorted mesh patterns in Fig. 19 are 

considered. The solutions are obtained using N×N element 

meshes (N=4, 8, 12, 16, and 20 for uniform meshes and 

N=8, 16, 24, 32, and 40 for distorted meshes). The reference 

value for the radial displacement coincident at the load 

point (point A) is wref =0.094 (MacNeal and Harder 1985). 

The convergence of normalized displacement (wA/wref) at 

 
Fig. 21 Hemisphere shell with an 18° hole. (a) Problem description (R=10, thickness h=0.04, P=2, E=6.825×107 and 

v=0.3). (b) Mesh patterns I, II and III used (N=4) 

 

 

Fig. 22 Convergence of normalized displacement at point A for the hemisphere shell with the 18° hole with (a) uniform 

and (b) distorted meshes 
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point A is presented in Fig. 22(a) for uniform meshes and in 

Fig. 22(b) for distorted meshes. In the study with uniform 

meshes, it can be observed that the results of the MITC3+ 

and MITC3E+ shell elements agree well with the reference 

solution even though the coarse mesh is used. The solution 

of the MITC6 shell element is significantly deteriorated due 

to the mesh distortion. Interestingly, with the mesh pattern 

III, the solution accuracy of MITC triangular shell elements 

significantly deteriorates even when using the finer element 

meshes. 

 

4.11 Full-hemispherical problem 
 

The shell problem considering a full hemisphere is 

shown in Fig. 23(a). The hemisphere has the same geometry 

and material properties; R=10, thickness h=0.04, Young’s 

modulus E=6.825×107, and Poisson’s ratio v=0.3, which are 

the same properties considered in the previous problem. 

The hemisphere is subjected to two pairs of radial forces 

P=2. Using symmetry, one quarter of the structure 

corresponding to the shaded region is modeled and three 

triangular mesh patterns (I, II, and III; shown in Fig. 23(b)) 

are considered. 

The solutions are obtained using the quadrant shell 

(shaded region) divided into three regions, 3×(N×N) 

element meshes (N=4, 8, 12, 16, and 20). The uniform and 

distorted mesh patterns in Fig. 23(c) are considered. The 

reference displacement of wref =0.0924 at point E is used 

(Belytschko and Leviathan 1994). 

The convergence of normalized displacement (wE/wref) 

at point E is presented in Fig. 24(a) for uniform meshes and 

in Fig. 24(a) for distorted meshes. The MITC3E shell 

element converges well while the performance of the other  

 

 

shell elements severely deteriorates when the mesh pattern 

III is used. 

 

4.12 Scordelis-Lo roof 
 

The Scordelis-Lo roof is shown in Fig. 25(a). It is a 

classical benchmark problem to assess the performance of 

shell elements. An asymptotically mixed bending-

membrane behavior is observed. The roof structure is 

supported by rigid diaphragms at both ends. The radius of 

curvature is R=25 and the length and thickness of the roof is 

L=50 and h=0.25, respectively. The material has Young’s 

modulus E=4.32×108 and Poisson’s ratio v=0. The roof is 

subjected to its self-weight. Due to symmetry, only one 

quarter of the shell corresponding to the shaded region 

ABCD in Fig. 25(a) is modeled and the three mesh patterns 

I, II, and III shown in Fig. 25(b) are considered. 

The solutions are obtained using N×N element meshes 

(N=4, 8, 12, 16, and 20). The uniform and distorted mesh 

patterns in Fig. 19 are used. The widely adopted reference 

solution for the vertical deflection at the center of the free 

edge (point C) is wref =−0.3024 (Belytschko and Leviathan 

1994). 

The convergence of normalized displacement (wC/wref) 

at point C is presented in Fig. 26(a) for uniform meshes and 

in Fig. 26(b) for distorted meshes. The MITC6, MITC3E 

and MITC3E+ shell elements exhibit the better results even 

though the distorted meshes are used. 

 

 

5. Conclusions 
 

We have reviewed the formulations of the MITC  

 

Fig. 23 Full-hemisphere shell problem. (a) Problem description (R=10, thickness h=0.04, P=2, E=6.825×107 and v=0.3). 

(b) Mesh patterns I, II and III used and (c) corresponding distorted mesh patterns in Fig. 19 used here (N=2) 
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triangular shell elements and compared their performance 

through a set of widely used benchmark problems. The 

benchmark tests include the plane-stress and plate problems 

to evaluate the ability of the partit ion of unity 

approximation and a bubble node enriching rotations. Since 

the solution of the triangular finite elements is highly 

sensitive to the triangulated patterns and distortion of the  

element mesh, three mesh patterns (if possible) and highly 

distorted meshes are used. Through the comparison of 

computation efficiency, as well as the convergence studies 

giving the displacements at some points, we can conclude 

as follows: 

• MITC3 element: Though it is applicable to large-scale 

analyses requiring massive computational costs due to the 

numerical efficiency resulting from small non-zero entries 

and half-bandwidth of the stiffness matrix, the solution of 

the MITC3 shell element in some bending-dominated 

problems significantly deteriorates even when using finer 

uniform meshes. 

• MITC6 element: The overall solutions for the MITC6 

shell element are shown to be consistently better than other 

shell elements. However, it requires greater computational 

cost and additional nodes both inside and along the edge of 

the mesh. It is confirmed that the solutions from the MITC6 

shell element are significantly deteriorated in the distorted  

 

 

parameter and pre-twisted beam problems, which would be 

valuable to mathematically analyze the formulation to 

overcome the weakness. 

• MITC3+ and MITC3E+ elements: The good 

performance of the MITC3+ shell element is verified in in 

the bending-dominated shell problems. The significant 

improvement (MITC3E+ shell element) is also realized by 

enriching its membrane displacements. Excellent 

performance is observed in the bending-dominated, 

membrane-dominated and mixed problems. 

• MITC3E element: The excellent convergence 

properties are validated in both membrane and bending-

dominated problems even though the MITC3E shell 

element has a slightly large number of degrees of freedom. 

It is also shown that the shell element is the most robust 

when the distorted element meshes are used. Thus, it is 

promising to use the shell element locally in particular 

regions (such as multiple branched cracks, voids and cracks 

emanating from holes) with increasing few degrees of 

freedom. In addition, since it can increase the solution 

accuracy without any additional nodes or mesh refinements, 

it could be useful to use the shell element in place of the 

higher-order shell finite element. 
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Fig. 24 Convergence of normalized displacement at point E for the full-hemisphere shell with (a) uniform and (b) 

distorted meshes shown in Fig. 23 
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Fig. 25 Scordelis-Lo Roof problem. (a) Problem description (L=50, R=25, thickness h=0.25, density  =360, 

acceleration of gravity g with magnitude 1.0, E=4.32×108 and v=0). (b) Mesh patterns I, II and III used (N=4) 

 

 

Fig. 26 Convergence of normalized displacement at point C for the Scordelis-Lo roof with (a) uniform and (b) 

distorted meshes shown in Fig. 19 
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