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1. Introduction  
 

The buckling problem of the rectangular plates 

subjected to external loads, resting on an elastic foundation, 

is widely used in a variety of engineering structures, such as 

civil engineering, aerospace, biomechanics, petrochemical, 

and marine industries, as well as mechanical, nuclear, and 

electrical applications. Rectangular plates resting on an 

elastic foundation are frequently used as structural elements 

in modeling of the engineering problems, such as concrete 

roads, mat foundations of buildings, and reinforced concrete 

pavements of the airport runways. 

There have been a considerable number of studies on the 

buckling load optimization of laminated composite 

structures. Topal (2017) investigated buckling load 

optimization of symmetric angle-ply laminated stepped flat 

columns under axial compression load. The modified 

feasible direction method was used for the optimization 

algorithm. Topal and Ozturk (2014) used artificial bee 

colony algorithm to optimize the stacking sequences of the 

simply supported antisymmetric laminated composite plates 

with the critical buckling load. Nicholas et al. (2014) 

investigated buckling load optimization of the composite 

plate with cutout using a genetic algorithm based  
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optimization technique. Ehsani and Rezaeepazhand (2016) 

optimized the stacking sequence and pattern composition of 

the laminated grid plates subjected to uniaxial or shear 

buckling load using genetic algorithm. Henrichsen et al. 

(2015) conducted robust buckling optimal design of 

laminated composite structures. Huu et al. (2016) proposed 

a novel numerical optimization procedure with mixed 

integer and continuous design variables for optimal design 

of laminated composite plates subjected to buckling loads. 

Vosoughi et al. (2017) studied buckling load optimization 

of stiffened laminated composite plate using finite element, 

genetic algorithm and particle swarm optimization methods. 

Jing et al. (2015) maximized the buckling load of composite 

laminates using permutation search algorithm. Karakaya 

and Soykasap (2009) used genetic algorithm and 

generalized pattern search algorithm for optimal stacking 

sequence of a composite panel subject to biaxial in-plane 

compressive loads. Deveci et al. (2016) proposed an 

optimization procedure to find the optimum stacking 

sequence designs of laminated composite plates in different 

fiber angle domains for maximum buckling resistance. 

Adali et al. (2003) presented optimal designs of 

symmetrically laminated composite plates subjected to a 

biaxial uncertain buckling load using anti-optimization. 

Narita and Turvey (2004) maximized the buckling loads of 

symmetrically laminated composite rectangular plates using 

a layerwise optimization approach. Hajmohammad et al. 

(2013) investigated buckling load optimization of 

composite laminates using neural network and genetic 

algorithm. Aymerich and Serra (2008) optimized buckling 
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load of laminates using ant colony optimization algorithm. 

Sebaey et al. (2011) maximized the buckling load of 

laminated composite panels using ant colony algorithm. 

Soremekun et al. (2001) explored the several generalized 

elitist procedures for the design of composite laminates. 

Kaveh et al. (2018) presented the application of the 

biogeography-based optimization and some of its variants 

in the optimization of stacking sequence of laminated 

composites. Erdal and Sonmez (2005) presented a method 

to find globally optimum designs for two-dimensional 

composite structures subject to given in-plane static loads 

for which the critical failure mode is buckling. Almeida 

(2016) investigated the application of the harmony search 

algorithm and some of its variants in the optimization of the 

stacking sequence of laminated composites. Vosoughi et al. 

(2017) obtained optimum stacking sequences of thick 

laminated composite plate to maximize its buckling load via 

employing the finite element, genetic algorithms and 

particle swarm optimization methods. 

On the other hand, buckling load optimization of 

laminated composite plates resting on the elastic foundation 

has not yet been thoroughly investigated. Therefore, this 

paper focuses on the maximization of the critical buckling 

load of simply supported antisymmetric angle-ply plates 

resting on Pasternak foundation subjected to compressive 

loads using teaching learning based optimization method 

(TLBO). The first order shear deformation theory is used to 

obtain governing equations of the laminated plate. In the 

present optimization problem, the objective function is to 

maximize the buckling load factor and the design variables 

are the fibre orientation angles in the layers. Computer 

programming is developed in the MATLAB environment to 

estimate optimum stacking sequences of laminated plates. A 

comparison also has been performed between the TLBO, 

genetic algorithm (GA) and differential evolution algorithm 

(DE). Some examples are solved to show applicability and 

usefulness of the TLBO for maximizing the buckling load 

of the plate via finding optimum stacking sequences of the 

plate. Additionally, the influences of different number of 

layers, plate aspect ratios, foundation parameters and load 

ratios on the optimal solutions are investigated. 

 

 

2. Basic equations 
 

Consider a rectangular laminated composite plate with 

constant thickness of h and in-plane dimensions of a and b 

resting on Pasternak foundation as shown in Fig. 1.  

For a flat moderately thick laminated plate, based on the 

first order shear deformation theory, the displacement field 

is defined as 

𝐮(x, y, z) = uo(x, y) + ψx(x, y) 

𝐯(x, y, z) = vo(x, y) + ψy(x, y) 

𝐰(x, y, z) = wo(x, y) 

(1) 

w h e r e  uo ,  vo  a n d  wo  d e n o t e  t h e  t r a n s l a t i o n 

displacements along x, y and z directions of a point at the 

mid-plane, respectively; ψx and ψy  represent rotations of 

a transverse normal about y and x axes, respectively. The  

 

Fig. 1 Geometry and load conditions of a laminated 

composite plate resting on Pasternak foundation 
 

 

displacement-strain relations, taking Eq. (1) account are 

ε= {
εp
γs
}+{

zεb
0
} (2) 

where the following definitions apply 

𝛆𝐩= {

uo,x
vo,y

uo,y + vo,x
}, 𝛆𝐛={

ψx,x
ψy,y

ψx,y + ψy,x

}, 

𝛄𝐬= {
wo,x + ψx
wo,y + ψy

} 

(3) 

Following the linear stress-strain displacement relations, 

the constitutive law of the plate may be expressed as 

𝛔 = Dm(εp + zεb), 𝛕 = Dsγs (4) 

where the following definitions apply 

𝛔 = {

σx
σy
σxy

}, 𝛕 = {
τxz
τyz
} , 𝐃𝐦 = [

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

],  

𝐃𝐒 = [
Q44 Q45

Q45 Q55
] 

(5) 

where as known from the transformation rule is fiber 

reinforced composite materials, ijQ  is the transformed 

reduced stiffness matrix and can be written as 

[
 
 
 
 
 
 
 
 𝐐𝟏𝟏

𝐐𝟏𝟐
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𝐐𝟏𝟔
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𝐐𝟔𝟔]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
c4

c2s2

s4

c3s
cs3

c2s2

2c2s2

c4 + s4

2c2s2

cs3 − c3s
c3s − cs3

−2c2s2

s4

c2s2

c4

−cs3

−c3s
c2s2

4c2s2

−4c2s2

4c2s2

−2c3s + 2cs3

2c3s − 2cs3

(c2 − s2)2 ]
 
 
 
 
 

[

Q11
Q12
Q22
Q26

] 

[

𝐐𝟒𝟒

𝐐𝟒𝟓

𝐐𝟓𝟓

] = [
c2

−cs
s2

s2

cs
c2
] [
Q44
Q55

] 

(6) 

where in the above equation, ijQ  is the elastic coefficients 

in the material coordinate, θcos=c  and θsin=s . Also 

θ  is the angle of the lamination against the plate x-axis. 

618

https://www.sciencedirect.com/topics/materials-science/laminated-composites


 

Buckling load optimization of laminated plates resting on Pasternak foundation using TLBO 

 

The membrane force vector N, bending moment vector M 

and transverse shear force vector Q can be obtained as 

follows 

𝐍 = Amεp + Bεb, 𝐌 = Bεp + Dεb, 𝐐 = As𝛾𝑠 (7) 

where the stiffness matrices of the laminated composite 

plate are obtained as 

(𝐀𝐦 , 𝐁, 𝐃, 𝐀𝐬) =∑∫ (Dm, zDm, z
2Dm, KDs)dz

hk

hk−1

NL

k=1

 (8) 

and K denotes the transverse shear correction coefficient, 

which is suggested as K=5/6. The governing differential 

equations of the plate can be given as below 
∂Nxx
∂x

+
∂Nxy

∂y
= 0 

∂Nxy

∂x
+
∂Nyy

∂y
= 0 

∂Qx
∂x

+
∂Qy

∂y
+ N̂xx

∂2w0

∂x2
+ N̂yy

∂2w0

∂y2

+ 2N̂xy
∂2w0

𝜕𝑥𝜕𝑦
− kwwo + ks(

∂2w0

∂x2

+
∂2w0

∂y2
) = 0 

∂Mxx

∂x
+
∂Mxy

∂y
− Qx = 0 

∂Mxy

∂x
+
∂Myy

∂y
− Qy = 0 

(9) 

where kw are ks are the Winkler foundation stiffness and 

the shear stiffness of the elastic foundation, respectively. 

Note that if ks=0 Pasternak model reduces to the Winkler 

foundation model. By putting Eq. (7) to Eq. (9), Eq. (9) can 

be written as 

∂

∂x
[A11

∂u0
∂x

+ A12
∂v0
∂y

+ A16 (
∂u0
∂y

+
∂v0
∂x
) + B11

∂ψx
∂x

+ B12
∂ψy

∂y
+ B16 (

∂ψx
∂y

+
∂ψy

∂x
)]

+
∂

∂y
[A16

∂u0
∂x

+ A26
∂v0
∂y

+ A66 (
∂u0
∂y

+
∂v0
∂x
) + B16

∂ψx
∂x

+ B26
∂ψy

∂y
+ B66 (

∂ψx
∂y

+
∂ψy

∂x
)]

= 0 

∂

∂x
[A16

∂u0
∂x

+ A26
∂v0
∂y

+ A66 (
∂u0
∂y

+
∂v0
∂x
) + B16

∂ψx
∂x

+ B26
∂ψy

∂y
+ B66 (

∂ψx
∂y

+
∂ψy

∂x
)]

+
∂

∂y
[A12

∂u0
∂x

+ A22
∂v0
∂y

+ A26 (
∂u0
∂y

+
∂v0
∂x
) + B12

∂ψx
∂x

+ B22
∂ψy

∂y
+ B26 (

∂ψx
∂y

+
∂ψy

∂x
)]

= 0 

(10) 

∂

∂x
[KA45 (

∂w0

∂y
+ ψy) + KA55 (

∂w0

∂x
+ ψx)]

+
∂

∂y
[KA44 (

∂w0

∂y
+ ψy)

+ KA45 (
∂w0

∂x
+ ψx)] + N̂xx

∂2w0

∂x2

+ N̂yy
∂2w0

∂y2

+ 2N̂xy
∂2w0

∂x ∂y
− kwwo + ks(

∂2w0

∂x2

+
∂2w0

∂y2
) = 0 

∂

∂x
[B11

∂u0
∂x

+ B12
∂v0
∂y

+ B16 (
∂u0
∂y

+
∂v0
∂x
) + D11

∂ψx
∂x

+ D12
∂ψy

∂y
+ D16 (

∂ψx
∂y

+
∂ψy

∂x
)]

+
∂

∂y
[B16

∂u0
∂x

+ B26
∂v0
∂y

+ B66 (
∂u0
∂y

+
∂v0
∂x
) + D16

∂ψx
∂x

+ D26
∂ψy

∂y
+ D66 (

∂ψx
∂y

+
∂ψy

∂x
)]

− [KA45 (
∂w0

∂y
+ ψy)

+ KA55 (
∂w0

∂x
+ ψx)] = 0 

∂

∂x
[B16

∂u0
∂x

+ B26
∂v0
∂y

+ B66 (
∂u0
∂y

+
∂v0
∂x
) + D16

∂ψx
∂x

+ D26
∂ψy

∂y
+ D66 (

∂ψx
∂y

+
∂ψy

∂x
)]

+
∂

∂y
[B12

∂u0
∂x

+ B22
∂v0
∂y

+ B26 (
∂u0
∂y

+
∂v0
∂x
) + D12

∂ψx
∂x

+ D22
∂ψy

∂y
+ D26 (

∂ψx
∂y

+
∂ψy

∂x
)]

− [KA44 (
∂w0

∂y
+ ψy)

+ KA45 (
∂w0

∂x
+ ψx)] = 0 

In this study, the buckling load of the simply supported 

antisymmetric angle-ply laminated composite plate is 

analyzed by using a Navier-type solution. The simply 

supported condition is given as (Reddy 2004) 

u0(0, y) = 0, u0(a, y) = 0,       v0(x, 0)
= 0,        u0(x, b) = 0,   

w0(x, 0) = 0,        w0(x, b) = 0,       w0(0, y) = 0,
w0(a, y) = 0, 

ψx(x, 0) = 0,        ψx(x, b) = 0,       ψy(0, y) = 0,

ψy(a, y) = 0, 

(11) 
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Nxy(x, 0) = 0,        Nxy(x, b) = 0,       Nxy(0, y) = 0,

Nxy(a, y) = 0, 

Myy(x, 0) = 0,        Myy(x, b) = 0,       Mxx(0, y) = 0,

Mxx(a, y) = 0 

The displacement formula which satisfies these 

boundary conditions is assumed to be 

𝐮𝟎(x, y) = ∑∑ Umnsinαx  cosβy

∞

m=1

∞

n=1

 

𝐯𝟎(x, y) = ∑∑ Vmncosαx  sinβy

∞

m=1

∞

n=1

 

𝐰𝟎(x, y) = ∑∑Wmnsinαx  sinβy

∞

m=1

∞

n=1

 

𝛙𝐱(x, y) = ∑∑ Xmncosαx  sinβy

∞

m=1

∞

n=1

 

𝛙𝐲(x, y) = ∑∑ Ymnsinαx  cosβy

∞

m=1

∞

n=1

 

(12) 

where Umn , Vmn , Wmn , Xmn , Ymn  are the arbitrary 

coefficients, α = mπ/a and α = nπ/b. For the buckling 

analysis, the formulation of a laminated composite plate can 

be obtained as follows 

(𝐊𝐋 + 𝛌𝐜𝐫𝐊𝐠)δ = 0 (13) 

where in the above equation, KL  and Kg  are the linear 

stiffness matrix and geometric stiffness matrix, respectively, 

λcr is the critical buckling load and δ is the displacement 

vector. Eq. (13) is an eigenvalue problem. For a nontrivial 

solution, the determinant of the coefficient matrix should be 

zero. The roots of the determinants are the buckling loads. 

The lowest one is called critical buckling load. 

 

 

3. Optimization algorithms 
 

Optimal design of the structures is one of the most 

active fields of structural engineering. Different 

optimization approaches can be employed to optimize the 

structural performance of the laminated composites against 

buckling load due to design variables such as the fiber 

orientations and stacking sequence. Metaheuristics are the 

suitable tools for the global search of large and complex 

problems with affordable computational time and accuracy 

that are usually inspired by the nature (Kaveh 2017, Kaveh 

and Khayatazad 2012, Kaveh and Farhoudi 2013, Kaveh 

and Mahdavi 2014, Kaveh and Ghazaan 2017, Moez et al. 

2016). In this study, TLBO, GA and DE algorithms are used 

for buckling load optimization of antisymmetric angle-ply 

laminated composite plates.  

 

3.1 Teaching-learning based optimization (TLBO) 
 

Teaching-learning is an important process where every 

individual tries to learn something from other individuals to 

improve themselves. Rao et al. (2011) proposed an 

algorithm, known as Teaching-Learning-Based 

Optimization (TLBO), which simulates the traditional 

teaching-learning phenomenon of a classroom. In the 

literature, there are some optimization researches using 

TLBO algorithm (Daloglu 2018, Artar et al. 2017, Artar 

2016). The algorithm simulates two fundamental modes of 

learning: (i) teacher phase and (ii) learner phase. TLBO is a 

population based algorithm, where a group of students (i.e., 

learner) is considered the population and the different 

subjects offered to the learners are analogous with the 

different design variables of the optimization problem. The 

results of the learner are analogous to the fitness value of 

the optimization problem. The best solution in the entire 

population is considered as the teacher. The operation of the 

TLBO algorithm is explained below with teacher phase and 

learner phase. 

 

3.1.1 Teaching phase 
This phase of the algorithm simulates the learning of the 

students (i.e., learners) through the teacher. During this 

phase, a teacher conveys knowledge among the learners and 

makes an effort to increase the mean result of the class. A 

student within the population consists of a number of design 

variables (Xi) of the problem. In this study, the design 

variables are the fibre orientations (θi) of the layers.  

Xstudenti = [Xi,1  Xi,2  …  Xi,Dn  ], 

i= 1, 2,..., Pn 
(14) 

where, Dn  is number of design variables,  Pn  is size of 

population. Teacher phase is formulated as follows 

)mean*TF-teacher(*r+student=student ii_new  (15) 

where X i_newstudent  and X istudent  are the new and old 

positions of the ith learner, X teacher is the position of the 

current teacher, r is the random number within the range 

[0,1]. All learners should be re-evaluated after each iteration 

of the teacher phase. If X i_newstudent  is better than X

istudent , X i_newstudent will be accepted and flowed to 

Learner phase, otherwise X istudent  is not changed. TF is 

the teaching factor, and its value is heuristically set to either 

1 or 2. It is determined using Eq. (16). 

TF = round[1 + rand(0,1){2  1}] (16) 

The mean parameter Xmean  of each subject of the 

learners in the class at generation is given as 

Xmean

= [Xmean(X1), Xmean(X2), … . . , Xmean(XDn)] 
(17) 

 

3.1.2 Learning phase 
This phase of the algorithm simulates the learning of the 

students (i.e., learners) through interaction among 

themselves. The students can also gain knowledge by 

discussing and interacting with other students. A learner 

will learn new information if the other learners have more 

knowledge than him or her. The learning phenomenon of 

this phase is expressed below:  
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for i=1: 𝑃𝑛 

     Select any student randomly (Xj, i ≠j) 

            if Xi is better than Xj 

                  Xnew=Xold + rand*(Xi-Xj) 

            else  

       Xnew=Xold + rand*(Xj-Xi) 

            end 

   if Xnew is better than Xold 

Xi=Xnew 

   end if 

end for 

The step-wise procedure for the implementation of 

TLBO is given as below: 

Step 1 generate initial population randomly 

Step 2 calculate the mean of each design variable, i.e., 

mean( iX )=(∑ 𝑋𝑖,𝑗
𝑃𝑛
𝑗=1 )/𝑃𝑛 

Step 3 define a student as a teacher whose objective 

function (f) is maximum 

Step 4 update all student by using Eq. (13) 

Step 5 compared students with each other (see computer 

code given in the section 3.1.2) 

Step 6 is the termination criteria satisfied, if no, go to 

step 2. 

Step 7 find the student whose objective function (f) is 

maximum and assign it as best solution 

In each phase, the objective function of the optimization 

problem is called by TLBO. So, the number of function 

evaluations are calculated two times more than the other 

algorithms such as GA and DE. The total number of 

function evaluation of the TLBO is calculated as 

2*Gn*Pn+Pn+, where “Gn” is the number of the iteration. 

However, the TLBO is an efficient algorithm to find global 

optimal solutions of the optimization problem.  

 

3.2 Genetic algorithm (GA) 
 

GA is a direct search algorithm based on the natural 

evolution concept coming from Darwin’s theory of 

evolution. GA is a probability-based optimization algorithm 

which starts with an initial population of design variables. 

In GA, natural selection increases the surviving capability 

of the populations over the foregoing generations. The 

characteristics of each design are used to generate a fitness 

value indicating its level of performance with respect to the 

other designs in the population. Design variables that have 

the highest fitness value are given the greatest probability of 

breeding with other good designs so that their 

characteristics can be passed to the future generations. In 

this paper, optimization is carried out using the GA 

functions available in MATLAB using the GA toolbox. The 

most important GA operations which were used are: 

selection, crossover, and mutation and migration. Selection 

from the parent population is performed by the stochastic 

uniform function to make duplicates of better designs and 

eliminate the less valuable solutions. Crossover is 

implemented to recombine parent strings into child strings. 

For scattered crossover, a random binary vector was 

created. The genes of the child string were selected from the 

first parent where the binary vector component is 1 and 

from the second parent if it is 0. Crossover is usually 

applied with a high probability between 0.7 and 1.0 which 

in this study is chosen to occur with probability of 0.8. 

Mutation operator changes the parent vector string 

occasionally and is applied with a small probability, in order 

to prevent the GA from searching local minima. Gaussian 

mutation function is chosen for this purpose which adds a 

number to each component of the parent vector. This 

number is randomly chosen from a Gaussian distribution 

with mean 0. Forward migration is selected to specify how 

individuals move between subpopulations. In this way, 

migration (movement of individuals) occurs in the last 

subpopulation. 
 

3.3 Differential evolution algorithm (DE) 
 

The differential evolution (DE) algorithm firstly 

proposed by Storn and Price (1997) was proven to be one of 

the most promising global search methods and widely used 

to solve optimization problems in many fields such as 

communication, pattern recognition and mechanical 

engineering. The DE includes four main phases as follows: 

 

3.3.1 Initialization 
Initially, an initial population, includes NP individuals, 

is generated by means of randomly sampling from the 

search space. Each individual is a vector containing Dn 

design variables ( )Dn,i2,i1,ii X,.....,X,X=X  and is created 

by  

Xi,j = Xj
l + rand[0,1] ∗ (Xj

u − Xj
1)  i = 1,2, … . . Pn; 

j = 1,2, … , Dn 
(18) 

where Xj
l and Xj

u are the lower and upper bound of Xi,j, 

respectively, rand[0,1] is a uniformly distributed random 

number in [0,1]. 
 

3.3.2 Mutation 

Secondly, each individual called the target vector iX  

in the population is used to generate a mutant vector iV  

via mutation operations. Some popular mutation operations 

are usually used in the DE as follows  

−rand/1  Vi = Xf1 + F ∗ (Xf2 − Xf3) (19) 

−rand/2  Vi = Xf1 + F ∗ (Xf2 − Xf3) + F

∗ (Xf4 − Xf5) 
(20) 

−best/1  Vi = Xbest + F ∗ (Xf1 − Xf2) (21) 

−best/2  Vi = Xbest + F ∗ (Xf1 − Xf2) + F

∗ (Xf3 − Xf4) 
(22) 

-current-to-best/1: 

 Vi = Xi + F ∗ (Xbest − Xi) + F ∗ (Xf1 − Xf2) 
(23) 

where integers 54321 r,r,r,r,r  are randomly selected 

from {1,2, … . , Pn} such that i≠r≠r≠r≠r≠r 54321 ; the 

scale factor F is randomly chosen within [0,1], and bestX   
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Fig. 2 A flow chart for implementation of differential 

evolution (DE) algorithm 

 

 

is the best individual in the current population. After this 

phase, the jth components j,iV  of mutant vector iV  are 

reflected back to allowable region if the boundary 

constraints are violated. This procedure is conducted as 

follows 

 Vi,j =

{
 
 

 
 
2Xj

1 − Vi,j          if Vi,j < Xj
1

2Xj
u − Vi,j          if Vi,j > Xj

u 

   Vi,j                  otherwise
                    

   

 (24) 

 

3.3.3 Crossover 

Thirdly, some elements of the target vector iX  are 

replaced by some elements of the mutant vector iV  to 

create a trial vector using binomial crossover operation 

 Ui,j = {
Vi,j     if rand[0,1] ≤ CR or j = jrand
Xi,j                otherwise                        

 (25) 

where, i ∈ {1,2, … . , Pn}, j ∈ {1,2, … . , Dn} , randj  is an 

integer selected from 1 to nD  and CR is the crossover 

control parameter.  

 

3.3.4 Selection 
Finally, based on the value of objective function, the 

trial vector iU  is compared to the target vector iX . The 

better one having lower objective function value will 

survive to the next generation. 

 Xi = {
Ui    if f(Ui) ≤ f(Xi)

Xi              otherwise
                               

 (26) 

The flowchart of DE algorithm is summarized briefly in 

Fig. 2. 

 

 

4. Optimization problem 
 

Table 1 Uniaxial buckling load factors of a (0/90/0) 

laminate resting on the elastic foundation (b/h=10) 

a/b ok  1k  
Akavci 

(2007) 

Setoodeh and 

Karami (2004) 

Xiang et al. 

(1996) 
Present study 

1 

0 0 22.115 22.234 22.315 22.315 

100 0 32.247 32.235 32.447 32.447 

100 10 50.813 49.226 50.751 50.751 

0 0 16.308 16.424 16.434 16.434 

2 
100 0 32.247 32.254 32.447 32.447 

100 10 49.058 49.039 49.266 49.267 

 

Table 2 Biaxial buckling load factors of a (0/90/0) laminate 

resting on the elastic foundation (b/h=10) 

a/b ok  1k  
Akavci 

(2007) 

Setoodeh and 

Karami (2004) 

Xiang et al. 

(1996) 
Present study 

1 

0 0 9.953 9.942 10.202 10.202 

100 0 11.980 11.923 12.228 12.229 

100 10 21.980 21.866 22.228 22.229 

0 0 3.261 3.269 3.286 3.287 

2 
100 0 9.350 9.345 9.590 9.590 

100 10 19.350 19.140 19.590 19.590 

 

 

In this section, the optimal design problem for a 

laminated composite plate subjected to buckling load is 

formulated. The optimal design of laminated plates for 

maximum buckling load is more sophisticated than the 

other design parameters. The reason for the complexity is 

that buckling half-waves (n,m) that correspond to the 

critical buckling load are not known a priori and depend on 

the anisotropic properties such as lamination parameters 

and also design objectives. The design problem of a 

laminated plate with respect to the elastic instability can be 

stated as an optimization problem, where the objective is to 

find the optimum laminate lay-up that maximizes the 

critical buckling load. The mathematical formulation of the 

optimization problem is described as follows 

Maximize λcr(θi) 

Subject to −90o ≤ θi ≤ 90o,     k=1, ….., LN  
(27) 

where λcr(θi) is the critical buckling load, θi is the fibre 

orientation angle of the ith layer in which the fibre 

orientation angles are integer variables, LN  is the number 

of layers of the plate. The optimization procedure involves 

the stages of evaluating the critical buckling load for a 

given θi  and improving the fibre orientations to maximize 

the critical buckling load λcr . Thus, the computational 

solution consists of succesive stages of analysis and 

optimization until a convergence is obtained and the 

optimal angle θopt  is determined within a specified 

accuracy. 

 

 

5. Numerical results and discussion 
 

5.1 Comparison of the analytical solutions for the 
buckling analysis 
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Table 3 Statistical results of TLBO algorithm for 30 independent runs 

Run no. a/b 
 

θopt (o) 
Best Worst Mean Std 

1 
1.0 34.5112 34.5015 34.5103 0.0020 44 -45 -45 45 

2.0 33.1152 32.2067 33.0089 0.2565 56 -55 -66 81 

2 
1.0 34.5112 34.4761 34.5066 0.0091 45 -46 -46 45 

2.0 33.1247 31.7799 33.0390 0.2586 56 -55 -68 82 

3 
1.0 34.5112 34.5106 34.5110 0.0002 45 -45 -45 44 

2.0 33.1257 33.0242 33.1085 0.0264 56 -55 -68 81 

4 
1.0 34.5112 34.4909 34.5098 0.0041 45 -46 -45 44 

2.0 33.1252 32.9791 33.1001 0.0361 -57 54 67 -80 

5 
1.0 34.5112 34.5111 34.5111 0.0000 45 -46 -45 44 

2.0 33.1255 32.0927 33.0644 0.1570 -57 54 67 -81 

6 
1.0 34.5112 34.5024 34.5100 0.0022 44 -45 -45 44 

2.0 33.1084 32.9328 33.0900 0.0253 56 -58 -58 78 

7 
1.0 34.5112 34.5053 34.5101 0.0016 44 -45 -45 44 

2.0 33.0916 32.7771 33.0305 0.0464 -57 51 73 83 

8 
1.0 34.5111 34.5037 34.5094 0.0024 44 -45 -45 44 

2.0 33.1255 32.5835 33.0944 0.0942 56 -55 -68 79 

9 
1.0 34.5112 34.4915 34.5067 0.0073 -45 44 44 -46 

2.0 33.1199 33.0297 33.1019 0.0228 -57 53 68 -86 

10 
1.0 34.5112 34.4976 34.5093 0.0039 45 -46 -45 44 

2.0 33.1168 32.5367 33.0691 0.0991 56 -55 -68 -90 

11 
1.0 34.5112 34.5071 34.5105 0.0011 -46 45 44 -45 

2.0 33.1211 32.9580 33.0767 0.0478 55 -56 -67 78 

12 
1.0 34.5112 34.5027 34.5099 0.0021 45 -45 -46 44 

2.0 33.1221 32.7183 33.0837 0.0782 56 -55 -68 83 

13 
1.0 34.5112 34.5066 34.5109 0.0007 44 -45 -45 44 

2.0 33.1042 33.0063 33.0668 0.0298 -56 59 54 -76 

14 
1.0 34.5112 34.4949 34.5087 0.0037 45 -45 -45 44 

2.0 33.1155 32.6949 33.0638 0.1099 56 -54 -70 -90 

15 
1.0 34.5112 34.0043 34.4960 0.0790 -46 45 44 -45 

2.0 33.1257 32.5259 33.0749 0.1132 -57 54 67 -80 

16 
1.0 34.5112 34.4935 34.5094 0.0044 -45 45 44 -45 

2.0 33.1257 32.8413 33.0942 0.0741 56 -55 -67 80 

17 
1.0 34.5112 34.4623 34.5080 0.0102 -46 44 45 -46 

2.0 33.1051 32.5781 33.0728 0.0756 55 -62 -51 75 

18 
1.0 34.5112 34.3502 34.4982 0.0400 -46 44 45 -45 

2.0 33.1259 31.3908 33.0710 0.2575 -57 54 67 -81 

19 
1.0 34.5112 34.4904 34.5083 0.0055 -45 44 44 -45 

2.0 33.1094 32.7998 33.0571 0.0646 -57 53 71 90 

20 
1.0 34.5112 34.4993 34.5102 0.0025 45 -46 -46 44 

2.0 33.1139 32.5280 33.0527 0.1101 56 -55 -68 -90 

21 
1.0 34.5112 34.3786 34.4886 0.0486 -46 45 45 -45 

2.0 33.1172 32.8347 33.0748 0.0744 -57 54 68 90 

22 
1.0 34.5112 34.3897 34.4419 0.0595 -45 44 45 -45 

2.0 33.1259 32.8151 33.0965 0.0665 56 -55 -68 80 
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In this section, the accuracy of the present analytical 

solutions for buckling analysis of simply supported cross-

ply laminated composite plates (0/90/0) with or without 

elastic foundation under uniaxial and biaxial compression 

loads is examined (b/h=10). It is assumed that the thickness 

and the material properties for all lamina are the same. In 

the analysis, elastic lamina properties are assumed to be: 

40=E/E 21 , 6.0=E/G=E/G 213212 , 5.0=E/G 223 , 

25.0=ν12  

The following relations are used for presentation of non-

dimensional buckling load, non-dimensional linear Winkler 

foundation parameter and non-dimensional Pasternak 

foundation parameter, respectively 

3
2

2

cr
hE

b
λ=λ , 

3
2

4
w

o
hE

bk
=k , 

3
2

2
s

o
hE

bk
=k  (28) 

In Tables 1 and 2, the non-dimensional buckling load 

factors of simply supported cross-ply laminated composite 

plates (0/90/0) with or without elastic foundation are shown 

for uniaxial and biaxial loads, respectively.  

As seen from Tables 1 and 2, the present results have 

suitable agreement with the literature results. 

 

5.2 Optimization scheme 
 

In the second section, the optimum stacking sequences 

of simply supported antisymmetric angle-ply laminates 

plates resting on Pasternak foundation subjected to 

compressive load are presented. Due to the absence of 

reference results in the literature related to the optimization 

problem, the optimum results obtained by the present 

method are compared with those solved by the Genetic 

Algorithm (GA) and Differential Evolution (DE) 

algorithms. In the optimization process, maximum number 

of iteration, number of population and total number of run 

are considered as 100, 50 and 30 for TLBO algorithm, 

respectively. In Table 3, the statistical results including best, 

worst, mean, standard deviation (Std) values of optimal  

 

Table 4 Optimum results for simply supported 

antisymmetric angle-ply square plates resting on Pasternak 

foundation subjected to uniaxial compressive load for 

different optimization algorithms ( 100=ko , 10=k1 ) 

N Methods θopt (o)  

4 

TLBO (14/-30)a,s 53.4198 

GA (-14/30)a,s 53.4198 

DE (-14/30)a,s 53.4198 

TLBO (24/-24/-14/-1)a,s 54.6917 

8 

GA (24/-24/-14/-1)a,s 54.6917 

DE (-24/24/14/1)a,s 54.6917 

TLBO (-26/24/20/-13/-2/0)a,s 54.7083 

12 
GA (-26/24/20/-13/-2/0)a,s 54.7083 

DE (26/-24/-20/13/2/0)a,s 54.7083 

 

Table 5 Optimum results for simply supported 

antisymmetric angle-ply square plates resting on Pasternak 

foundation subjected to biaxial compressive load for 

different optimization algorithms ( 100=ko , 10=k1 ) 

N Methods θopt (o)  

4 

TLBO (-45/45)a,s 32.4645 

GA (-45/45)a,s 32.4645 

DE (45/-45)a,s 32.4645 

TLBO (45/-45/-45/45)a,s 34.5112 

8 

GA (-45/45/45/-45)a,s 34.5112 

DE (-45/45/45/-45)a,s 34.5112 

TLBO (-45/45/-45/45/45/45)a,s 34.5112 

12 
GA (45/-45/-45/45/45/-45)a,s 34.5112 

DE (-45/45/-45/45/45/45)a,s 34.5112 

 

 

buckling load factors are shown for 30 independent runs for 

the simply supported 8-layered antisymmetric angle-ply  

23 
1.0 34.5112 34.3909 34.4908 0.0427 -46 44 45 -46 

2.0 33.1246 32.5176 33.0651 0.1621 56 -54 -68 79 

24 
1.0 34.5112 34.2940 34.4924 0.0522 -46 44 45 -45 

2.0 33.1234 32.4804 33.0508 0.1467 -57 54 67 -80 

25 
1.0 34.5112 34.3644 34.4985 0.0385 -45 45 45 -46 

2.0 33.1250 32.4738 33.0638 0.1171 56 -55 -68 78 

26 
1.0 34.5112 34.4893 34.5097 0.0036 -46 44 45 -45 

2.0 33.1230 32.9729 33.1013 0.0288 -57 53 67 -80 

27 
1.0 34.5112 34.4789 34.5088 0.0055 -46 45 44 -45 

2.0 33.1225 32.8577 33.0900 0.0465 -57 53 67 -85 

28 
1.0 34.5112 34.5108 34.5111 0.0001 44 -45 -45 45 

2.0 33.1227 32.9254 33.0827 0.0510 -57 54 66 -78 

29 
1.0 34.5112 34.4772 34.5079 0.0081 -46 45 45 -46 

2.0 33.1207 32.8392 33.0565 0.0685 -57 54 68 -86 

30 
1.0 34.5112 34.4709 34.5069 0.0103 45 -45 -45 44 

2.0 33.1255 32.6017 33.0810 0.1296 56 -55 -68 79 
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(a) 8 layers 

 
(b) 4 layers 

Fig. 3 Convergence curves of buckling load factors for three 

different optimization algorithms 
 

 

plates under biaxial load for different a/b ratios. (b/h=10, 

100=ko , 10=k1 ). 

In Tables 4 and 5, the optimum results are given for 

simply supported antisymmetric angle-ply square plates 

resting on Pasternak foundation subjected to uniaxial and 

biaxial loads using three different algorithms for different 

number of layers (b/h=10, 100=ko , 10=k1 ). 

As seen from the Table 4 and Table 5, the optimum 

solutions obtained by TLBO agree very well with those 

solved by the GA and DE algorithms in terms of both fibre 

orientations and the critical buckling loads. It can be 

observed that the critical buckling loads are higher in the 

case of uniaxial loading compared to the biaxial loading. On 

the other hand, it can be seen from the results that as the 

number of layer increases, the critical buckling loads 

become almost the same. These results can be referred to 

the design engineers of composite plate-like structures. In 

Fig. 3, the convergence curves of buckling load factors for 

three different optimization algorithms are illustrated for 

simply supported antisymmetric angle-ply square plates 

resting on Pasternak foundation subjected to uniaxial load. 

(b/h=10, 100=ko , 10=k1 ). 

In Tables 6 and 7, effect of the plate aspect ratio on the 

optimum results is investigated for simply supported 

antisymmetric angle-ply plates resting on Pasternak 

foundation subjected to biaxial compressive load for 

different number of layers using three different algorithms 

(b/h=10, 100=ko , 10=k1 ).  

As seen from Tables 6 and 7, the critical buckling loads 

and optimum fibre orientations for TLBO algorithm are 

almost the same for those of the other two optimization  

Table 6 Effect of the plate aspect ratio on the optimum 

results for simply supported 4-layered antisymmetric angle-

ply plates resting on Pasternak foundation subjected to 

biaxial compressive load for different optimization 

algorithms (b/h=10, 100=ko , 10=k1 ) 

 TLBO GA DE 

a/b θopt (o)  θopt (o)  θopt (o)  

1 (-45/45)a,s 32.4645 (45/-45)a,s 32.4645 (45/-45)a,s 32.4645 

1.5 (57/-54)a,s 31.5020 (57/-54)a,s 31.5019 (-57/54)a,s 31.5020 

2 (57/-54)a,s 31.3926 (-57/55)a,s 31.3919 (57/-54)a,s 31.3926 

2.5 (58/-54)a,s 31.3400 (58/-55)a,s 31.3391 (-58/54)a,s 31.3400 

3 (58/-55)a,s 31.3101 (-58/55)a,s 31.3101 (58/-55)a,s 31.3101 

 

Table 7 Effect of the plate aspect ratio on the optimum 

results for simply supported 8-layered antisymmetric angle-

ply plates resting on Pasternak foundation subjected to 

biaxial compressive load for different optimization 

algorithms (b/h=10, 100=ko , 10=k1 ) 

 TLBO GA DE 

a/b θopt (o)  θopt (o)  θopt (o)  

       

1 (45/-45/-45/45)a,s 34.511222 (-45/45/45/-45)a,s 34.5112 (-45/45/45/-45)a,s 34.5112 

1.5 (-56/57/59/-71)a,s 33.2770 (56/-57/-59/73)a,s 33.2768 (56/-57/-59/71)a,s 33.2770 

2 (-57/54/67/-79)a,s 33.1259 (-56/54/67/-81)a,s 33.1259 (56/-54/-67/81)a,s 33.1260 

2.5 (57/-52/-74/-90)a,s 33.0539 (57/-52/-74/90)a,s 33.0540 (-57/52/74/-90)a,s 33.0542 

3 (57/-51/-79/-82)a,s 33.0301 (57/-51/-80/-81)a,s 33.0299 (-57/51/79/82)a,s 33.0306 

 

Table 8 Effect of the nondimensional Winkler foundation 

stiffness ( ok ) on the optimum results for simply supported 

4-layered antisymmetric angle-ply square plates resting on 

Pasternak foundation subjected to biaxial compressive load 

for different optimization algorithms (b/h=10, 10=k1 ) 

 TLBO GA DE 

ko θopt (o) 

 
 θopt (o) 

 
 θopt (o) 

 
 

0 (45/-45)a,s 27.3985 (-45/45)a,s 27.3985 (45/-45)a,s 27.3985 

20 (-45/45)a,s 28.4117 (45/-45)a,s 28.4117 (45/-45)a,s 28.4117 

40 (-45/45)a,s 29.4249 (-45/45)a,s 29.4249 (-45/45)a,s 29.4249 

60 (-45/45)a,s 30.4381 (-45/45)a,s 30.4381 (45/-45)a,s 30.4381 

80 (-45/45)a,s 31.4513 (45/-45)a,s 31.4513 (-45/45)a,s 31.4513 

100 (45/-45)a,s 32.4645 (45/-45)a,s 32.4645 (45/-45)a,s 32.4645 

 

 

algorithms. The non-dimensional buckling load decreases 

with increase in the plate aspect ratio and the effect of the 

aspect ratio on the buckling load is negligible for long 

plates. In Tables 8 and 9, the effect of nondimensional 

Winkler foundation stiffness ( ok ) on the optimum results is 

investigated for simply supported antisymmetric angle-ply 

square plates resting on Pasternak foundation subjected to 

biaxial compressive load for different number of layers 

using three different algorithms (b/h=10, 10=k1 ). As 

seen, the critical buckling loads and optimum fibre  
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Table 9 Effect of the nondimensional Winkler foundation 

stiffness ( ok ) on the optimum results for simply supported 

8-layered antisymmetric angle-ply square plates resting on 

Pasternak foundation subjected to biaxial compressive load 

for different optimization algorithms (b/h=10, 10=k1 ) 

 
TLBO 

GA 
GA DE 

ko 
θopt (o) 

 
 

θopt (o) 

 
 

θopt (o) 

 
 

0 (-45/45/45/-45)a,s 29.4451 (45/-45/-45/45)a,s 29.4451 (45/-45/-45/45)a,s 29.4451 

20 (-45/45/45/-45)a,s 30.4583 (-45/45/45/-45)a,s 30.4583 (-45/45/45/-45)a,s 30.4583 

40 (-45/45/45/-45)a,s 31.4715 (-45/45/45/-45)a,s 31.4715 (45/-45/-45/45)a,s 31.4715 

60 (-45/45/45/-45)a,s 32.4847 (-45/45/45/-45)a,s 32.4847 (45/-45/-45/45)a,s 32.4847 

80 (-45/45/45/-45)a,s 33.4980 (45/-45/-45/45)a,s 33.4980 (45/-45/-45/45)a,s 33.4980 

100 (-45/45/45/-45)a,s 34.5112 (45/-45/-45/45)a,s 34.5112 (45/-45/-45/45)a,s 34.5112 

 

Table 10 Effect of the nondimensional shear stiffness 

(k1) on the optimum results for simply supported 4-layered 

antisymmetric angle-ply square plates resting on Pasternak 

foundation subjected to biaxial compressive load for three 

different optimization algorithms (b/h=10, 100=ko ) 

 TLBO GA DE 

k1 θopt (o) 

orientations 

(o) 

 

 θopt (o) 

orientations 

(o) 

 

 θopt (o) 

orientations 

(o) 

 

 

0 (-45/45)a,s 22.4645 (-45/45)a,s 22.4645 (45/-45)a,s 22.4645 

2 (-45/45)a,s 24.4645 (-45/45)a,s 24.4645 (45/-45)a,s 24.4645 

4 (45/-45)a,s 26.4645 (-45/45)a,s 26.4645 (-45/45)a,s 26.4645 

6 (45/-45)a,s 28.4645 (-45/45)a,s 28.4645 (-45/45)a,s 28.4645 

8 (-45/45)a,s 30.4645 (45/-45)a,s 30.4645 (-45/45)a,s 30.4645 

10 (45/-45)a,s 32.4645 (-45/45)a,s 32.4645 (-45/45)a,s 32.4645 

 

Table 11 Effect of the nondimensional shear stiffness 

(k1) on the optimum results for simply supported 8-layered 

antisymmetric angle-ply square plates resting on Pasternak 

foundation subjected to biaxial compressive load for three 

different optimization algorithms (b/h=10, 100=ko ) 

 TLBO GA DE 

k1 θopt (o)  
θopt (o) 

 
 θopt (o)  

0 
(-45/45/45/-

45)a,s 
24.5112 

(-45/45/45/-

45)a,s 
24.5112 

(45/-45/-

45/45)a,s 
24.5112 

2 
(45/-45/-

45/45)a,s 
26.5112 

(-45/45/45/-

45)a,s 
26.5112 

(-45/45/45/-

45)a,s 
26.5112 

4 
(-45/45/45/-

45)a,s 
28.5112 

(45/-45/-

45/45)a,s 
28.5112 

(45/-45/-

45/45)a,s 
28.5112 

6 
(-45/45/45/-

45)a,s 
30.5112 

(-45/45/45/-

45)a,s 
30.5112 

(45/-45/-

45/45)a,s 
30.5112 

8 
(-45/45/45/-

45)a,s 
32.5112 

(-45/45/45/-

45)a,s 
32.5112 

(45/-45/-

45/45)a,s 
32.5112 

10 
(-45/45/45/-

45)a,s 
34.5112 

(45/-45/-

45/45)a,s 
34.5112 

(-45/45/45/-

45)a,s 
34.5112 

 

 

orientations for TLBO algorithm are the same for those of 

GA and DE algorithms. On the other hand, as the Winkler 

foundation stiffness increases, the critical buckling load 

increases. However, there is no any effect of the Winkler 

foundation stiffness on the optimum fibre orientations. 

In Tables 10 and 11, the effect of the nondimensional 

shear stiffness (k1)  on the optimum results is investigated 

for simply supported antisymmetric angle-ply square plates 

resting on Pasternak foundation subjected to biaxial 

compressive load for different number of layers using three  

Table 12 Effect of load ratio (Nyy/Nxx) on the optimum 

results for simply supported 4-layered antisymmetric angle-

ply square plates resting on Pasternak foundation subjected 

to biaxial compressive load for three different optimization 

algorithms (b/h=10, 100=ko , 10=k1 ) 

 
TLBO 

GA 
GA DE 

Nyy/Nxx 
θopt (o) 

(o) 

 

 
θopt (o) 

(o) 

 

 
θopt (o) 

(o) 

 

 

1/4 (27/-33)a,s 49.1358 (-27/-33)a,s 49.1357 (27/-33)a,s 49.1358 

1/2 (40/-40)a,s 43.0579 (-40/40)a,s 43.0576 (40/-40)a,s 43.0579 

1 (-45/45)a,s 32.4645 (45/-45)a,s 32.4645 (45/-45)a,s 32.4645 

2 (50/-50)a,s 21.5289 (50/-50)a,s 21.5289 (50/-50)a,s 21.5289 

4 (63/-57)a,s 12.2839 (63/-56)a,s 12.2839 (-63/57)a,s 12.2839 

 

Table 13 Effect of load ratio (Nyy/Nxx) on the optimum 

results for simply supported 8-layered antisymmetric angle-

ply square plates resting on Pasternak foundation subjected 

to biaxial compressive load for three different optimization 

algorithms (b/h=10, 100=ko , 10=k1 ) 

 TLBO GA DE 

Nyy
/Nxx 

θopt (o) 

(o) 
 

θopt (o) 

(o) 
 

θopt (o) 

(o) 
 

1/4 (28/-28/-18/2)a,s 51.2996 (-28/28/17/-1)a,s 51.2995 (-29/28/18/-1)a,s 51.2996 

1/2 (-40/39/38/-27)a,s 45.6514 (40/-39/-38/27)a,s 45.6513 (-40/39/38/-28)a,s 45.6515 

1 (-45/45/45/-45)a,s 34.5112 (-45/45/45/-45)a,s 34.5112 (-45/45/45/-45)a,s 34.5112 

2 (50/-51/-53/62)a,s 22.8256 (50/-51/-52/65)a,s 22.8253 (50/-51/-52/62)a,s 22.8257 

4 (-62/62/73/90)a,s 12.8247 (-62/61/74/-90)a,s 12.8247 (-62/62/72/-89)a,s 12.8249 

 

 

different optimization algorithms (b/h=10, 100=ko ). As 

seen, the critical buckling loads and optimum fibre 

orientations for TLBO algorithm are the same for those of 

GA and DE algorithms. On the other hand, as the shear 

stiffness increases, the critical buckling load increases. 

However, there is no any effect of the shear stiffness on the 

optimum fibre orientations. 

In Tables 12 and 13, the effect of load ratio ( xxyy N/N ) 

on the optimum results is investigated for simply supported 

antisymmetric angle-ply square plates resting on Pasternak 

foundation subjected to biaxial compressive load for 

different number of layers using three different optimization 

algorithms (b/h=10, 100=ko , 10=k1 ). As seen from 

Table 12 and Table 13, the critical buckling loads and 

optimum fibre orientations for TLBO algorithm are almost 

the same for those of the other two optimization algorithms. 

On the other hand, as the load ratio increases, the critical 

buckling load decreases. However, the load ratio has a 

substantial effect on the optimum fibre orientations. 

 
 

6. Conclusions 
 

This paper deals with the maximization of the critical 

buckling load of simply supported antisymmetric angle-ply 

plates resting on Pasternak foundation subjected to 

compressive loads using teaching learning based 

optimization method (TLBO). The first order shear 
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deformation theory is used to obtain governing equations of 

the laminated plate. In the present optimization problem, the 

objective function is to maximize the buckling load factor 

and the design variables are the fibre orientation angles in 

the layers. Computer programming is developed in the 

MATLAB environment to estimate optimum stacking 

sequences of laminated plates. Finally, the influences of 

different number of layers, plate aspect ratios, foundation 

parameters and load ratios on the optimal solutions are 

investigated. As seen from the results that, the optimum 

results for TLBO algorithm are almost the same for the 

results of GA and DE algorithms for all parameters. The 

critical buckling loads are higher in the case of uniaxial 

loading compared to the biaxial loading. As the number of 

layer increases, the critical buckling loads become almost 

the same. The non-dimensional buckling load decreases 

with increase in the plate aspect ratio and the effect of the 

aspect ratio on the buckling load is negligible for long 

plates. As the foundation parameters increase, the critical 

buckling loads increase. However, there is no any effect of 

the foundation parameters on the optimum fibre 

orientations. As the load ratio increases, the critical 

buckling load decreases. However, the load ratio has a 

substantial effect on the optimum fibre orientations. The 

obtained results of the optimization problems show that 

TLBO is suitable and effective algorithm for solving the 

critical buckling load optimization problems of laminated 

composite plates resting on Pasternak foundation.  
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