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1. Introduction  
 

Dynamic time integration methods are extensively used 

for structural dynamic analysis. To find this solution at time 

t, the time interval between 0 and t is subdivided into n time 

intervals Δtj. Then, instead of satisfying the equation of 

motion at any time t, dynamic equilibrium is usually 

satisfied only at discrete time points. Furthermore, the 

variation of acceleration, velocity, and displacement within 

each time step is assumed to follow a special pattern (Park 

1977, Felippa and Park 1979, Paz and Leigh 1985, 

Dokainish and Subbaraj 1989, Chopra 2007, Chang 2014). 

In some algorithms of the nonlinear analysis, the tangent 

stiffness matrix is computed at the beginning of each time 

step and the solution at the end of the step is determined 

based on this matrix (Paz and Leigh 1985, Mansur et al. 

2000, Bathe 2006, Chopra 2007). 

Time integration methods are categorized into two 

groups of explicit and implicit. In the explicit methods, the 

unknown solution at the end of a time step is explicitly 

determined based on the preceding responses (Hahn 1991, 

Chung and Lee 1994, Hulbert and Chung 1996, Zhai 1996, 

Pezeshk and Camp 1999, Chang and Liao 2005, Chang 

2009, 2010, Rezaiee-Pajand and Hashemian 2016, Rezaiee-

Pajand et al. 2017). 

Two of the most popular explicit algorithms are the 

central difference and second-order Runge-Kutta (RK2) 

methods. In the implicit time integration schemes, the 

solution at the end of time step is determined by solving a 

system of algebraic equations involving both the current 

and following states of the structure (Alamatian 2013). 

Among the implicit techniques, the Newmark scheme is 

probably the most widely used implicit algorithm (Paz and  
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Leigh 1985, Dokainish and Subbaraj 1989, Chopra 2007). 

Predictor-corrector methods which combine explicit and 

implicit schemes are also interesting approaches in 

structural dynamics. In these techniques, the responses are 

approximated by an explicit algorithm. Then, an implicit 

method is deployed to modify the obtained approximate 

responses (Kuo and Yau 2011, Rezaiee-Pajand and 

Hashemian 2016). Verma et al. (2015) assessed the 

performance of four numerical methods, namely, Central 

difference method, Operator splitting algorithm (Wu et al. 

2006), Rosenbrock based technique (Bursi et al. 2008) and 

CR-integration method (Chen and Ricles 2008). These 

methods are widely used for real-time hybrid testing 

(RTHT). 

Stability and accuracy are two important issues in the 

dynamic analysis. In the stability view point, there are two 

groups in time integration schemes. The first one contains 

conditionally stable algorithms in which the time step 

should be selected smaller than a specific value in order to 

instability does not occur. The second group contains 

unconditionally stable tactics in which instability never 

happens regardless of the time step size (Chen et al. 2009, 

Chang 2016, Tang and Lou 2017, Nguyen et al. 2017, 

Chang et al. 2017, Zheng et al. 2017). Among conditionally 

stable techniques, the linear acceleration and central 

difference methods have an acceptable region of stability 

(Subbaraj and Dokainish 1989, Chopra 2007, Kuo and Yau 

2011, Yin 2013). The orders of accuracy, numerical 

dissipation and numerical dispersion are three significant 

factors for evaluating the accuracy of a scheme (Kuo et al. 

2012, Chang 2015, Rezaiee-Pajand and Hashemian 2015, 

2016). Based on the generalized-α scheme, Kolay and 

Ricles (2014) formulated an unconditionally stable 

algorithm for linear elastic and stiffness softening-type 

nonlinear systems. The amount of numerical damping was 

controlled by a single parameter. Chang (2014) presented a 

new family of unconditionally stable integration methods 

for structural dynamics. His method has the favorable 
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numerical dissipation properties that can be continuously 

controlled. In addition, Chang et al. (2015) developed a new 

family of structure-dependent integration methods, which 

can eliminate unimportant high-frequency responses. 

Wang and Au (2008) introduced two new types of 

integration methods based on Chebyshev polynomial of the 

first kind for dynamic response analysis of structures, 

namely the integral formula method (IFM) and the 

homogenized initial system method (HISM). Time 

integration algorithms can be constructed by using several 

frameworks such as finite difference methods, Hamilton’s 

principle, Hamilton’s law and weighted residual 

approaches. Fung (1999) developed a high-order accurate 

weighted residual scheme for dynamic analysis. 

Ghassemieh et al. (2016) proposed a weighted residual time 

integration technique, in which a second-order polynomial 

in time is deployed for approximating the acceleration 

vector. Furthermore, some researchers have proposed 

several methods for linear and nonlinear systems with the 

second order of accuracy (Bathe 2007, Liu et al. 2013, 

Rezaiee-Pajand and Karimi-Rad 2016, 2017, 2017; 

Mohammadzadeh et al. 2017, 2017, Chang 2018). Rezaiee-

Pajand and Karimi-Rad (2016) suggested their technique 

based on Taylor series expansion. The stability of the 

scheme is controlled by two parameters. Based on a 

predictor-corrector approach, another technique was 

proposed, which can remove the spurious high-frequency 

components of the numerical responses (Rezaiee-Pajand 

and Karimi-Rad 2017). Bathe (2007) achieved a stable 

second-order accuracy procedure by conserving energy and 

momentum in nonlinear dynamics. In another event, Wen et 

al. (2014) introduced a novel method for linear systems, 

which has a limited order of accuracy. This was an explicit 

numerical integration scheme with three parameters 

utilizing periodic septuple B-spline interpolation 

polynomial functions. This technique was formulated for a 

single degree of freedom system, and then it was 

generalized for a multi degree of freedom one. Wen et al. 

(2017) proposed a multi sub-steps scheme for linear system. 

Their technique has a low order of accuracy. It was 

composed of three-time sub-steps. The trapezoidal rule and 

Houbolt method were employed in the first and third sub-

steps, respectively. Moreover, in the second sub-step, the 

three-point Euler backward was applied. Bathe and Baig 

(2005) suggested a composite single step direct time 

integration technique. Klarmann and Wagner (2015) 

investigated the behavior of such methods in linear and 

nonlinear problems. Numerical instability is one of the most 

crucial difficulties in the nonlinear dynamic analysis. In this 

case, a very small time step should be utilized for the 

analysis. Several studies have been developed to overcome 

this kind of difficulty (Chang 2004, Rio et al. 2005, Chang 

2007, Rezaiee-Pajand and Alamatian 2008).  
In this paper, a new time integration method is proposed 

in which a mth order polynomial is used to approximate the 
acceleration vector. Author’s formulations are presented for 
both linear and nonlinear dynamic analysis. The 
amplification matrix and region of stability for the 
suggested approach are determined. In addition, the orders 
of accuracy, numerical dissipation and numerical dispersion 
of the new technique are measured and compared to the 

other schemes. Several linear and nonlinear problems are 
solved by using the presented algorithm, and the results are 
compared with those of the Newmark, central difference 
and Runge-Kutta schemes.  
 

 

2. Proposed formulations  
 

To establish an accurate family of the time integration 

scheme, it is assumed that the acceleration vector is a 

complete mth order polynomial in time. Therefore, the 

displacement function is a polynomial of degree m+2. This 

polynomial has m+3 unknown coefficients, which are 

determined based on the following conditions: 

• The initial displacement and velocity are deployed 

from the end of the previous time step.  

• The equation of motion is exactly satisfied at both ends 

of the time step. 

• To determine the remaining m-1 coefficients, the 

square of the residual vector in the motion equation is 

integrated. Then, this integral is minimized.  

In the nonlinear dynamic problems, the equation of 

motion has the coming form 

      ( ) sM u C u N P t     + + =  (1) 

where [M] and [C] are the mass and damping matrices 

respectively. Moreover, the internal and external load 

vectors are denoted by {Ns} and {P(t)}, respectively. In 

addition, { u }, { u } and { u } are one-to-one the 

displacement, velocity and acceleration vectors. The 

acceleration vector for the ith time step, [ti, ti+1], is written 

as follows 

     
m

k
k

k=1

 u(τ) = a τ + c  
(2) 

The time step is 𝛥𝑡 =  𝑡𝑖+1 −  𝑡𝑖  and 𝜏 = 𝑡 − 𝑡𝑖 is the 

time parameter ranging from 0 to Δt. The velocity and 

acceleration vectors are obtained by differentiating Eq. (2) 

with respect to time. These vectors have the coming shapes 

       
1

1

( )  
1

km

k
k

u a c d
k

+

=

= + +
+




   
(3) 
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The vectors {e} and {d} are determined using the 

known initial vectors at the beginning of the time step; as 

follows 

 (5) 

 
(6) 

By satisfying the equation of motion at the beginning of 

the time step, one can calculate the vector {c}, as below 
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To determine the remaining unknown coefficients, m 

equations are required. One of them is obtained by 

satisfying the equation of motion at the end of time step; as 

follows 

 (8) 

The internal force vector at the end of the time step is 

predicted by 

     
i+1 is s i

N = N + K Δu 
 

 
(9) 
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(10) 

In Eq. (9), [K] is the tangential stiffness matrix which is 

computed at the beginning of each time step. Substituting 

Eqs. (2)-(4), (9) and (10) into Eq. (8) gives the subsequent 

result 

 

(11) 

Eq. (11) is simplified to the next form 

 

 

 

   (( 1) )
isN P i t= +   

(12) 

The matrix shape of Eq. (12) has the following 

appearance 

 
(13) 

The residual of the equation of motion can be expressed 

as 

 (14) 

The approximation of the vector {Ns (τ+iΔt)} is given 

by 

 (15) 

(16) 

Obviously, for the linear analysis, it is sufficient to use

   
1 1is  iN K u
+ +  =  rather than Eq. (15). Substituting 

Eqs. (15)-(16) and (2)-(4) into Eq. (14) results in the error 

vector, as follows 

 

 
(17) 

This equality can be simplified as 

 

 

 

(18) 

To determine the remaining unknown coefficients, the 

integral of square error from 0 to Δt is required. This 

integral can be written in the below shape 

 
(19) 

Where, N is the structural number of degrees of 

freedom. It should be added that 𝑒𝑛(𝜏)  is the nth 

component of vector {𝑒(𝜏)}. 

To develop a scheme with high accuracy, the integral of 

square error is minimized over each time step. To do this, 

the first-order derivatives of Eq. (19) with respect to the 

remaining unknown coefficients are equated to zero, i.e., 

 
(20) 

Using the chain rule, one can determine the derivative of 

square error, as follows (Graham 1982) 
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 is calculated by considering 

Eq. (18). Using the vector differential rules, which is 

mentioned in (Graham 1982), one can obtain the following 

result 
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Utilizing relation (22) and employing the equalities 
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equation is derived 
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Consequently, Eq. (20) can be expressed as below 
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(25) 

Substituting Eq. (20) into Eq. (25) gives the subsequent 

result 
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This equality can be written in the matrix form as 

 
(27) 

As a result, the following m+1 equations are now 

available to find the unknown coefficients 

 

(28) 

Since the number of equations is greater than the 

number of unknowns, one equation should be removed. 

Based on the computer evaluation, it can be shown that 

eliminating the last part of Eq. (28) yields more accurate 

results.  By solving the remaining equations of (28), the 

unknown coefficients are determined. Finally, the solution 

vectors at the end of the ith time step can be determined, as 

follows 

 

(29) 

 
 

3. Amplification matrix 
 

To assess the accuracy and stability of the new time 

integration technique, it is necessary to derive the 

amplification matrix. To reach this goal, the subsequent 

single degree-of-freedom system is considered 

2x+2ξωx+ ω x=0  (30) 

where x is a scalar variable, ω is the circular frequency of 

free vibration and ξ is the damping ratio. If the suggested 

method is used to find the solution for the mentioned linear  

 

 

 

 

 

 

 

  

  

Fig. 1 Spectral radii versus Δt/T for several methods (ξ=0) 

 

 

 

 

 

 

 

 

  

  

Fig. 2 Spectral radius of the proposed method for m=2 and 

ksi=0 

 

 

system, the following recursive relationship is obtained 
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where [A] is the amplification matrix of the new tactic. All 

the entries of this matrix are provided in Appendix A.  

 

 

4. Stability 
 

The stability of a time integration method depends on 

the spectral radius of the amplification matrix. The spectral 

radius of [A], ρ(A), is defined in the below form 

 (32) 

where λi is the ith eigenvalue of [A]. If the condition ρ(A) ≤ 

1 is satisfied, then the proposed technique is stable (Bathe 

2006). In Figs. 1-4, the spectral radii are plotted versus Δt/T 

for different values of damping ratio. 

From Fig. 1, it can be concluded that the stability 

domain increases when the order of approximating 

polynomial, m, increases. For m=2, the present method is 

stable when Δt/T 1.29. As it is demonstrated in Fig. 1, the 

critical time step for m=3 and m=4 are 2.409 and 4.238, 

respectively. It should be reminded that the critical time step 

for the central difference and linear acceleration methods 

are1/ 0.33   and 3 / 0.55  correspondingly. Based 

on these values, the stability limit for authors’ technique is  
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Fig. 3 Spectral radius versus 𝛥𝑡/𝑇  for several methods 

(ξ=0.02) 

 

 

 

 

 

 

 

 
 

 

 Fig. 4 Spectral radius versus Δt/T for several methods 

(ξ=0.05) 

 

Table 1 Stability limit of the scheme for different values of 

damping ratio 

ξ = 0.1 ξ = 0.05 ξ = 0.02 ξ = 0  

 1.3579 1.3238 1. 3040 1.2904 m=2 

2.6360 2.5202 2.4529 2.4090 m=3 

4.8318 4.5260 4.3511 4.2382 m=4 

 

 

considerably greater than that of the central difference and 

linear acceleration tactics.  

According to Fig. 2, the suggested approach for m=2 

and ξ=0 suffers from a local instability which occurs in the 

range of Δt/T between 0.505 and 0.55. A similar 

phenomenon is observed in the previous developed schemes 

(Golley 1996, Razavi et al. 2007). It is interesting to note 

that this local instability does not exist for m=3 and m=4. In 

addition, the local instability for m=2 does not occur when 

the damping ratio is greater than 2%, as shown in Figs. 3-4. 

Table 1, shows the stability limit of the present technique 

for different values of damping ratio. Based on this table, it 

can be concluded that the domain of stability for the new 

technique increases when the damping ratio is greater than 

zero. 

 

 

5. Numerical accuracy 
 

The accuracy of a numerical integration method is 

investigated by the order of accuracy, numerical dissipation  

 

Fig. 5 Algorithmic damping ratio of the proposed method, 

compared with the other schemes 

 

 

Fig. 6 Relative period error of the proposed method, 

compared with the other schemes 

 

 

and numerical dispersion of the scheme. Later in section 6, 

the order of accuracy for the presented approach is 

discussed. Numerical dissipation and numerical dispersion 

of the method are measured using the eigenvalues of the 

amplification matrix, as follows (Hilber et al. 1977) 

 (33) 

 (34) 

 

(35) 

 
(36) 

Where, λ  and λ  are the eigenvalues of the 

amplification matrix. Numerical dissipation is measured by 

the algorithmic damping ratio . In addition, the measure 

of numerical dispersion is provided by the relative period 

error , where T=2π/ω is the period of vibration 

and  is the algorithmic counterpart of T. In 

Figs. 5-6, algorithmic damping ratio and relative period 

error of authors’ scheme are compared with the other well-

known techniques. 

Fig. 5, demonstrates the proposed method has numerical  
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dissipation which is an essential property to damp out the 

spurious high-frequency responses (Fung 2003). In the 

contrary, the average acceleration, linear acceleration and 

central difference methods have no numerical dissipation. 

As it is shown in Fig. 5, by increasing the order of 

approximating polynomial, the amount of the numerical 

dissipation is decreased.  

Fig. 6, clearly demonstrates that the suggested technique 

has considerably smaller period error than the other 

schemes. Moreover, this figure shows that by increasing the 

order of the method, the period error rapidly decreases. For 

instance, period error of the central difference, average 

acceleration and linear acceleration methods at Δt/T=0.2 are 

-0.075, 0.12 and 0.059, respectively. This error for the 

proposed method is 0.001 when m=2, and it is zero when 

m=3 and m=4. 
 

 

6. Order of accuracy 
 

To assess the order of accuracy of the scheme, the 

numerical amplification matrix should be compared with 

the analytical one. The coefficients of the amplification 

matrix for m=2 to 4 are provided in Appendix A. In order to 

derive the analytical amplification matrix, the equation of 

motion for the SDOF model with zero external loading is 

considered, as follows 

2x 0x+2 x+  =  (37) 

This equation can be changed into the subsequent 

equivalent first-order differential equation 

 

 

 

Y AY=  (38) 

where 

x
Y

x

 
 
 

=  and 
2

0 1
A

2

 
 
 

=
− − 

 (39) 

The exact solution for Eq. (38) with given initial vector 

Y0 can be expressed as (Levine 1996, Turyn 2013) 

At
0Y e Y=  (40) 

Therefore, the following recursive relationship is 

obtained 

 (41) 

The matrix  can be calculated using the Taylor 

series expansion, as below 

 
(42) 

By employing Eq. (42), the coefficients of the analytical 

amplification matrix are determined and given in Appendix 

A. Comparing the coefficients of the amplification matrix 

for the proposed method with the analytical ones proves 

that the suggested approach has the third-order accuracy for 

m=2. It is interesting to note that the fourth and fifth orders 

of accuracy are provided for m=3 and m=4, respectively. 

Generally, the proposed method has m+1 order of accuracy. 

It should be reminded that the central difference, average 

acceleration and linear acceleration methods have only  

tΔAe

2 3 2 3
At 2 3 A t 2 3t t t t

e I tA A A ... e I tA A A ...
2! 3! 2! 3!

  
= + + + + → = +  + + +

Table 2 Numerical results and corresponding errors of Eq. (43) 

Time 

(sec) 

Proposed 

(m=2) 

Proposed 

(m=3) 

Proposed 

(m=4) 
Average Acc. Linear Acc. Central Diff. Runge-Kutta 2 Runge-Kutta 4 

u |err| u |err| u |err| u |err| u |err| u |err| u |err| u |err| 

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

1 0.5403 4.80E-07 0.5403 4.51E-09 0.5403 5.70E-12 0.5410 0.0007 0.5407 0.0004 0.5400 0.0004 0.5390 0.0013 0.5403 6.61E-07 

2 -0.4161 2.55E-06 -0.4161 9.03E-09 -0.4161 3.03E-11 -0.4146 0.0015 -0.4154 0.0008 -0.4169 0.0008 -0.4193 0.0031 -0.4161 1.57E-06 

3 -0.9900 4.35E-06 -0.9900 1.40E-09 -0.9900 5.17E-11 -0.9896 0.0004 -0.9898 0.0002 -0.9902 0.0002 -0.9911 0.0011 -0.9900 5.58E-07 

4 -0.6536 2.37E-06 -0.6536 1.58E-08 -0.6536 2.81E-11 -0.6562 0.0025 -0.6549 0.0013 -0.6524 0.0013 -0.6489 0.0047 -0.6536 2.33E-06 

5 0.2837 3.64E-06 0.2837 2.36E-08 0.2837 4.32E-11 0.2797 0.0040 0.2817 0.0020 0.2857 0.0020 0.2918 0.0081 0.2837 4.08E-06 

6 0.9602 8.51E-06 0.9602 6.94E-09 0.9602 1.01E-10 0.9588 0.0014 0.9595 0.0007 0.9609 0.0007 0.9636 0.0035 0.9602 1.79E-06 

7 0.7539 6.10E-06 0.7539 2.43E-08 0.7539 7.24E-11 0.7577 0.0038 0.7558 0.0019 0.7520 0.0019 0.7469 0.0070 0.7539 3.45E-06 

8 -0.1455 3.54E-06 -0.1455 3.92E-08 -0.1455 4.21E-11 -0.1389 0.0066 -0.1422 0.0033 -0.1488 0.0033 -0.1588 0.0133 -0.1455 6.65E-06 

9 -0.9111 1.22E-05 -0.9111 1.64E-08 -0.9111 1.45E-10 -0.9080 0.0031 -0.9096 0.0016 -0.9127 0.0015 -0.9182 0.0071 -0.9111 3.65E-06 

10 -0.8391 1.05E-05 -0.8391 2.92E-08 -0.8391 1.25E-10 -0.8436 0.0045 -0.8413 0.0023 -0.8368 0.0023 -0.8310 0.0081 -0.8391 3.94E-06 

Table 3 Maximum absolute errors of u, 𝑢̇ and 𝑢̈ 

Max 

Absolute 

Error of 

m=2 m=3 m=4 Average Acc Linear Acc Central Diff Runge-Kutta 2 Runge-Kutta 4 

u 1.3103E-5 3.9241E-8 1.5577E-10 6.5890E-3 3.2950E-3 3.3008E-3 1.3297E-2 6.6602E-6 

 1.0867E-5 4.7265E-8 1.2919E-10 7.8847E-3 4.0067E-3 9.9833E-2 1.5913E-2 7.9655E-6 

 1.3103E-5 3.9241E-8 1.5577E-10 6.5890E-3 3.2950E-3 9.9313E-2 1.3297E-2 6602E-6 

A t

i 1 iY e Y

+ =
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Fig. 7 Five story shear frame 

 

 

second-order accuracy.  

 

 

7. Numerical examples 
 

In this section, the accuracy and stability of the 

suggested technique are investigated using several 

numerical examples. These problems are a single-degree-

of-freedom oscillator, a five-story shear frame structure 

with classical and non-classical damping, a two-DOF 

structure subjected to impact loads, a linear and non-linear 

plane truss, a two-DOF system with non-linear behavior 

and three-dimensional nonlinear trusses. 

 

7.1 Undamped single degree of freedom 
 

As a first example, the following second-order ordinary 

differential equation is considered. This equation has been 

extensively used to assess the accuracy characteristics of the 

several time integration algorithms (Bathe 2006).  

u u 0+ =  (43) 

With the initial conditions u0=1 and 0u 0= , the exact 

solution of Eq. (43) is uexact=cos(t) (Rezaiee-Pajand and 

Karimi-Rad 2015). This problem is solved using the 

members of the Newmark scheme, the second-order Runge-

Kutta method (RK2), the fourth order Runge-Kutta 

algorithm (RK4) and authors’ technique. The time step is 

selected to be Δt=0.1 s. The error is defined as the 

difference between the exact response and that obtained by 

the numerical integration methods. Table 2, demonstrates 

the numerical results for u along with the corresponding 

errors. Table 3 shows the maximum absolute errors of u, 𝑢̇ 

and 𝑢̈. 

Based on Tables 2-3, it can be concluded that the 

presented algorithm gives considerably more precise results 

than the other methods. The results of the RK4 approach are 

better in some points than those of the proposed method 

with m=2. However, for m=3 and m=4, the error of the 

suggested scheme is always smaller than that of the other 

methods.  

Table 4 The displacements and velocities at the top story of 

the five-story frame 

 Time(sec)  

Scheme Res. 0.2 0.4 0.6 0.8 1 
Max 

error(%) 

Exact 
 

0.0040357 0.0263841 0.0532948 0.0548026 0.0198097  

 

0.0590925 0.1490397 0.0933473 -0.0899645 -0.2385299  

m=2 
 

0.0040357 0.0263841 0.0532948 0.0548026 0.0198097 0.000 

 

0.0590926 0.1490397 0.0933473 -0.0899643 -0.2385299 0.000 

m=3 
 

0.0040357 0.0263841 0.0532948 0.0548026 0.0198097 0.000 

 

0.0590924 0.1490397 0.0933473 -0.0899645 -0.2385299 0.000 

m=4 
 

0.0040357 0.0263841 0.0532948 0.0548026 0.0198097 0.000 

 

0.0590924 0.1490397 0.0933473 -0.0899645 -0.2385299 0.000 

Average 

Acc 

 

0.0040387 0.0263717 0.0532790 0.0548077 0.0198357 0.131 

 

0.0590506 0.1490644 0.0934016 -0.0897864 -0.2385089 0.198 

Linear  

Acc 

 

0.0040347 0.0263760 0.0532878 0.0548081 0.0198241 0.073 

 

0.0590671 0.1490482 0.0933736 -0.0898688 -0.2385148 0.106 

Central 

Diff 

 

0.0040265 0.0263846 0.0533052 0.0548088 0.0198008 0.229 

 

0.0536919 0.1475472 0.0998641 -0.0799380 -0.2345211 11.145 

Runge 

Kutta 2 

 

0.0040282 0.0264025 0.0533141 0.0547809 0.0197529 0.287 

 

0.0591525 0.1489601 0.0932215 -0.0903063 -0.2385251 0.380 

Runge 

kutta 4 

 

0.0040357 0.0263841 0.0532948 0.0548026 0.0198097 0.000 

 

0.0590925 0.1490400 0.0933475 -0.0899642 -0.2385299 0.000 

 

 

7.2 A five-story shear frame 
 

Fig. 7, shows a five-story shear building which is 

analyzed by Wang and Au (2009). The lumped masses for 

all floors are the same and equal to . The 

stiffness coefficients are assumed to be 

 and  . 

The classical damping matrix is determined using 

. To consider the effect of the 

damper device installed at the first floor, the term 20C11 is 

also added to the first degree of freedom. This building is 

subjected to the subsequent lateral loads: 

The displacement and velocity at the top story of the 

shear building are computed using several time integration 

schemes with Δt=0.01 s. Table 4, shows the numerical 

results. For comparison purposes, the exact results along 

with the maximum errors are also listed in this table. The 

error is defined as the difference between the exact response 

and that obtained by the numerical algorithms. 

 (44) 

According to Table 4, it can be concluded that the errors 

of the RK4 and proposed methods are zero to four decimal 

places. Indeed, these schemes give considerably more 

precise responses in comparison with the RK2 and 

Newmark algorithms. It is interesting to note that the errors 

of authors’ technique are zero to seven decimal places 

except for the velocity at the end of the first time step. As a 

result, the suggested approach is more accurate than the  

(kg). 

)m/N(.k1
= )m/N(kkkk 

 ====

]K[.]M[.]C[ +=

 
T6P=2.616 10 1 1 1 1 1 sin( t) 
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Fig. 8 Time histories of displacement u2 

 

 

Fig. 9 The curves of errors in u2 

 

 

RK4 technique.  

 

7.3 A two DOF model  
 

Some researchers analyzed a two DOF structure 

subjected to a triangular impulse (Shishvan et al. 2009, 

Rezaiee-Pajand and Sarafrazi 2010). The equation of 

motion for this system and the function of applied force are 

given below 
 

(45) 

 

(46) 

The values of k and m are 1000 (N/m) and 0.5 (kg), 

respectively. The natural frequencies and the mode matrix 

of this two DOF system are computed as 
 

(47) 

 

(48) 

This problem is solved using several time integration 

methods with Δt=0.02 s. Fig. 8, demonstrates the numerical 

results along with the exact solution. In addition, the 

numerical errors which are defined as the absolute 

difference between the exact and numerical response are  

Table 5 Structural properties of plane truss 

2

2

N. Sec
m

m

 
 
 

 
2

N
E

m

 
 
 

 Length(mm) Area(mm2) Member 

689.48 2.06844×1011 1524 6451.6 1 

689.48 2.06844×1011 2155.3 6451.6 2 

689.48 2.06844×1011 1524 6451.6 3 

 

 

Fig. 10 Plane truss 

 

 

Fig. 11 The horizontal displacement at joint 1 for plane 

truss 

 

 

depicted in Fig. 9. The solution obtained by deploying the 

presented technique is considerably closer to the exact 

solution in comparison with the other approaches, as 

demonstrated in Fig. 8. Moreover, as the order of the 

method (m) increases, the error of the suggested algorithm 

decreases. It should be added that the solution of the RK2 

approach becomes infinity. Based on the obtained 

responses, the new scheme gives better results than the RK4 

algorithm. Fig. 9, shows that the error for m=3 is almost the 

same as m=4.   

 

7.4 Linear analysis of a plane truss   
 

Fig. 10, shows a plane truss with three degrees of 

freedom, which is analyzed using several time integration 

methods (Paz and Leigh 1985). Table 5, demonstrates the 

geometry and material properties of this problem. The 

horizontal displacement at joint 1 to the force F1=22241.108 

N is determined with Δt=0.001. The numerical results along 

with the exact solution are demonstrated in Fig. 11. 

The numerical errors are depicted in Fig. 12. This figure 

clearly shows that the best results obtained by using the 

proposed scheme. The second most accurate results are  
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Fig. 12 The curves of errors in horizontal displacement at 

joint 1 for plane truss 

 

Table 6 Modified cross-sectional areas for plane truss 

Area(mm2) Member 

64.516 1 

64.516 2 

64.516 3 

 

 

Fig. 13 The horizontal displacement at joint 1 for plane 

truss 

 

 

provided by the RK4 technique. As shown in Fig. 12, the 

linear acceleration and central difference methods give the 

worst answers.   
 

7.5 Nonlinear analysis of a plane truss  
 

According to the Table 6, the cross-sectional areas of the 

plane truss shown in Fig. 10 are considerably reduced. As a 

result, large displacements occur in this structure, so 

geometrically nonlinear behavior should be considered. The 

horizontal displacement at joint 1, which is subjected to a 

harmonic force , is 

computed using several time integration algorithms with 

Δt=0.01 s. The numerical results are depicted in Fig. 13. For 

comparison purposes, the approximate exact solution, 

which is determined using the RK4 technique with a very 

fine time step of Δt=0.0001 s, is added to Fig. 13. To 

demonstrate the performances of the mentioned methods, 

the numerical errors are shown in Fig. 14. 

According to Figs. 13-14, the most precise solutions are 

obtained by authors’ technique and the RK4 methods. The 

linear and average acceleration schemes give the worst 

results. It is interesting to note that the response computed 

with m=3 is in good agreement with the solution 

determined with m=4. In this example, the proposed 

process with m=3 provides accurate results with less  

 

Fig. 14 The curves of errors in horizontal displacement at 

joint 1 for plane truss 

 

 

Fig. 15 A 2-DOF spring-mass system 

 

 

Fig. 16 The load function for the 2-DOF spring-mass 

system 

 

 

computational effort than the scheme with m=4. 

 

7.6 A 2-DOF model with nonlinear spring 
 

Fig. 15, shows a 2-DOF spring-mass system which has 

two edge linear springs with constant k and a middle 

nonlinear spring (Kuo et al. 2012). The equation of motion 

for this system can be described as below 

 (49) 

where U(τ) is the load function, and it is given in Fig. 16.  

Following reference (Kuo et al. 2012), the initial 

conditions are assumed to be , 

 and . Selecting Δt=T/40 

and T=1.53229, this problem is solved using several time 

integration schemes. Fig. 17, demonstrates the time 

histories of the response u1. Moreover, the absolute 

differences between the exact and numerical solution are 

depicted in Fig. 18. 

From Fig. 18, it can be concluded that the numerical 

error for all members of the suggested approach is almost  

N)tsin(.F = 


( )2

1 1 2 1 1 2

2

2 2 2 1 2 1

u u 1 (u u ) u u 1.5U( )

u u 1 (u u ) (u u ) 0.5U( )

  + + − −  − = −   


 + + − −  − =   

==  uu

= .u −= .u
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Fig. 17 Time histories of displacement u1 

 

 

 

Fig. 18 The curves of errors in u1  

 

 

Fig. 19 3D pin-jointed truss dome 

 

 

zero. After that, the RK4 scheme is in the second rank. The 

worst results are obtained by the RK2 technique.  

 

7.7 A 3D pin-jointed truss dome 
 

In this section, a three-dimensional pin-jointed dome 

shown in Fig. 19 is analyzed by using several time 

integration methods (Saka 1990). The material mass 

density, modulus of elasticity and cross-sectional area of all 

members are 7860 kg/m3, 2.1×1011 N/m2 and 3000 mm2 

respectively. The initial displacement and velocity are 

assumed to be zero. Joints 1, 2, ..., 7 are subjected to the 

vertical constant loads that its magnitude is 60000 N.  

Fig. 20, shows the vertical displacement of the top truss 

joint versus the time. The numerical results are computed 

with Δt=0.0025 s. In addition, the near exact solution is 

determined by utilizing the RK4 scheme with a very fine 

time step of Δt=0.000025 s. The numerical errors for 

several algorithms are plotted in Fig. 21. Base on this 

figure, the best result is obtained using the RK4 technique. 

The suggested approach with m=4 is in the second rank. 

Both choices of m=2 and m=3 give acceptable and accurate 

solutions. It should be added that in this problem, the RK2 

method becomes unstable and the average acceleration and 

linear acceleration algorithms produce inaccurate responses. 

 

Fig. 20 Time histories of the vertical displacement for 3D 

truss dome 

 

 

Fig. 21 The curves of errors in vertical displacement for 3D 

truss dome 

 

 

  

Fig. 22 A 2D arch truss   

 
 

7.8 An arch truss 
 

Fig. 22, demonstrates a 2D truss that has 19 joints and 

35 members. Node numbers are shown by the circle in this 

figure. Tables 7-8 give the nodal coordinates and the cross-

section areas of the members, respectively. The initial 

displacement and velocity are assumed to be zero. The 

elasticity modulus and the material mass density are 

E=6496400 N/cm2 and ρ=7860×10-6 kg/cm3, respectively 

(Torkamani and Shieh 2011, Rezaiee-Pajand and Estiri 

2016). The load 𝑃(𝑡) = −15 × 106[𝑠𝑖𝑛(𝜋𝑡) +
10sin (200𝜋𝑡)] N is applied to horizontal direction of joint 

10.  

Using Δt=0.0075 s, the horizontal displacement at the 

joint 10 is computed by several time integration schemes, 

and it is plotted in Fig. 23. The numerical errors for various 

algorithms are depicted in Fig. 24. It should be added that 

the near exact solution is determined by the RK4 technique 

with a fine time step of Δt=0.00001 s. According to Fig. 24, 

the most precise results are obtained by the new method 

with m=4, m=3 and m=2 respectively. The RK4 approach is 

in the fourth rank and the worst results are obtained by the 

RK2 method. Among the members of Newmark method, 

the linear acceleration tactic gives the more accurate 

response.  
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Table 7 Nodal coordinates of the arch truss 

Node 1 & 19 2 & 18 3 & 17 4 &16 5 & 15 6 & 14 7 & 13 8 & 12 9 & 11 10 

X(cm) 3429 3048 2667 2286 1905 1524 1143 762 381 0 

Y(cm) 0 50.65 34.75 83.82 65.3 110.85 87.99 128.5 100.65 134.6 

 

Table 8 The cross-section area of the members of the arch 

truss 

Member 1-10 & 35 11 & 12 13-16 17 & 18 19-22 23 & 24 25 & 26 27 & 28 29-32 33 & 34 

Cross-

section 

areas(cm2) 

51.61 64.52 83.87 96.77 103.23 161.29 193.55 258.06 290.32 309.68 

 

 
t(s) 

Fig. 23 Time histories of the horizontal displacement at 

joint 10 for 2D arch truss 
 

 
t(s) 

Fig. 24 The curves of errors in horizontal displacement at 

joint 10 for 2D arch truss 
 

 

8. Conclusions 
 

In this article, a new time integration method was 

proposed, in which the acceleration vector in each time step 

was assumed to be a complete mth order polynomial in 

time. The proposed formulation can be applied to both 

linear and non-linear dynamic analysis. One of the 

suggested technique’s merits is its high accuracy, which can 

be enhanced by increasing the order of the method. Indeed, 

the order of accuracy for the new algorithm is m+1. The 

proposed scheme has an acceptable region of stability, 

which is greater than that of the central difference and linear 

acceleration techniques. It is interesting to note that the 

domain of stability becomes larger by increasing the order 

of the new method. However, for m=2, the suggested 

approach suffers from a local instability, which does not 

exist when the damping ratio is greater than 2%. 

Furthermore, this local instability does not occur for m>2.  

The numerical dispersion error of the present approach 

is almost zero, and it is considerably smaller than that of the 

linear acceleration, average acceleration and central 

difference techniques. In fact, the proposed method has 

numerical dissipation, which decreases by increasing the 

order of approximating polynomial. The suggested tactic is 

self-starting, and no special starting procedure is required. 

Several problems were solved using the new developed 

algorithm to test the capability of the proposed scheme, 

including a five-story shear frame structure with classical 

and non-classical damping, a 2-DOF structure subjected to 

impact loads, a linear and a nonlinear plane truss, a 2-DOF 

system with nonlinear behavior and three-dimensional 

nonlinear trusses. The findings highlighted the noble 

performance of the suggested technique. Moreover, a 

comparison of the results indicated that the new scheme is 

considerably more accurate than the RK4, linear 

acceleration, average acceleration and central difference 

methods. 
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Appendix A 
 

The amplification matrix and its related coefficients for 

the proposed method with m=2 have the following forms 

(2)11 (2)12

(2)

(2)21 (2)22

2 2 3 3 2 4 4 5

(2)11

2 2 2 3 3 3 4 5
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= −  − −    −  −    +  −  +   + 

 

(A1) 

The amplification matrix for m=3 can be expressed as 

 

(A2) 

For m=4, the amplification matrix of the proposed 

method is 

 

(A3) 

The analytical amplification matrix and its related 

coefficients are given by 
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=

= −   +   + −    +  −   +

−  −  +   +  −  +    + 

=  − − −    −  −   +  − 2 4 5

5 3 5 6 6 4 2 6 7 8

a 2 3 2 2 4 3 3 5 4 4 2 6 5
21

5 3 7 6 6 4 2 8

2 1) t ...

1 1
(32 32 6 ) t (64 80 24 1) t O( t )

720 5040

1 1 1
A t t (1 4 ) t (2 ) t (16 12 1) t ...

6 6 120
1 1

(32 32 6 ) t (64 80 24 1)
720 5040

 +   +

−  −  +    +  −  +  −   + 

= −  +  + −    +  −   −  −  +   +

+  −  +    −  −  +  −   7 8

a 2 2 2 3 3 3 4 2 4 4 5 3 5 5
22

6 4 2 6 6 7 5 3 7 7 8

t O( t )

1 2 1 1
A 1 2 t (1 4 ) t (2 ) t (16 12 1) t (32 32 6 ) t ...

2 3 24 120
1 1

(64 80 24 1) t (128 192 80 8 ) t O( t )
720 5040

+ 

= −  − −    −  −   +  −  +   −  −  +    +

+  −  +  −   −  −  +  −    + 
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