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1. Introduction  
 

Previous earthquakes have revealed that translational-

torsional coupling may be a significant cause for severe 

damage in building structures. In the majority of seismic 

codes, in the cases in which the equivalent lateral load 

(static) analysis is recommended, the induced torsion is 

introduced by the following pair of design eccentricities 

bee sd  +=1  (1a) 

bee sd  −=2  (1b) 

where es is the static (or inherent) eccentricity, which is 

defined as the distance between the centre of rigidity (CR) 

and the centre of mass (CM) and the term b  represents 

the accidental eccentricity, where b is the building plan 

dimension perpendicular to the direction of the ground 

motion. The coefficients α and γ are dynamic amplification 

factors, which are specified by individual country codes. In 

general, these factors vary from code to code (for example, 

the Greek seismic code EAK-2000 requires α=1.5 and 

γ=0.5, Eurocode 8 (EC-8/2004) requires α=γ=1.0, but in 

ASCE/SEI-7, α=1.0 and γ may take values less than unity 

when the static eccentricity exceeds the accidental one),  
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while the term of the accidental eccentricity is usually taken 

as a percentage (5% to 10%) of the horizontal dimension b. 

The accidental eccentricity originates from many 

uncertainties:  

(i) the variability of mass distribution, in plan and in 

elevation, which shifts the CM away from the geometrical 

center of the floor plan,  

(ii)  unforeseen variations in the dimensions and 

material properties of structural elements which, in 

combination with the contribution of non-structural 

elements (i.e., infill walls), may lead to stiffness variations  

(iii) by possible rotational effects of the ground 

motion.  

All these issues, along with the possible effect of 

strength unbalance, when the structure is expected to enter 

the inelastic phase of deformation, have been investigated 

during the last two decades with the objective of 

establishing code provisions that may adequately predict the 

torsional behavior of building structures. In the mid ’90s 

De-La-Llera and Chopra (e.g., 1994a, 1994b, 1995) 

conducted extensive research on the effects of the 

accidental eccentricity on the static and dynamic response 

of single and multistory elastic structures, subjected to a 

purely translational ground motion. The main structural 

response parameter under investigation was the ratio of the 

uncoupled torsional to translational frequencies and it was 

demonstrated in De-La-Llera and Chopra (1994a) that 

stiffness uncertainties increased the structural deformations, 

to 10 and 5 per cent, for reinforced concrete and steel 

buildings respectively. In another study conducted by De-

La-Llera and Chopra (1994b), the effect of mass 
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eccentricity on the torsional response of structures was 

examined and the results suggest, that the dynamic edge 

displacements and member forces were significantly higher 

that the equivalent static ones. It was demonstrated that the 

results of single-story systems may be also applicable to a 

specific class of multistory buildings in which the stiffness 

matrices of the lateral load resisting bents are proportional 

to each other (proportionate building). A new methodology 

for including the effects of all sources of accidental torsion 

was presented in De-La-Llera and Chopra (1995), which 

demonstrates significant advantages over the current code 

guidelines, by avoiding additional dynamic and static 

analyses to be performed to account for the effects of 

accidental torsion.  

Experimental studies to assess the torsional component 

of ground motions have been conducted by De-La-Colina et 

al. (2013) and Wolf et al. (2014), while Sheikhabadi (2014) 

proposed a new equation to account for the effects of 

torsional earthquake components. An alternative approach 

for using accidental eccentricity concepts to account for 

torsional ground effects was proposed by Basu et al. (2014) 

and verified in simple linear and no-linear systems.  

Questions about the benefits of using accidental 

eccentricities have been raised in the past, since their 

numerous spatial combinations in the structural design of 

multistory buildings, may substantially increase the 

computational analyses and the overall costs for practicing 

engineers. Detailed studies conducted by Stathopoulos and 

Anagnostopoulos (2010), Anagnostopoulos et al. (2015a, 

2015b) and Bosco et al. (2015, 2017) on inelastic systems, 

based on the most recent design codes, indicated that the 

benefits of the inelastic analyses may be small, compared to 

designs where the accidental eccentricity was not taken into 

account. It was therefore suggested that accidental design 

eccentricities may not be taken into account or perhaps 

replaced by simpler design guidelines. 

The main feature of Eqs. (1a), (1b) is that a reduced, or 

even negligible static eccentricity, implies lower values of 

design eccentricities and minor torsional effects, and it is 

well known that practicing engineers prefer rather 

symmetrical structural configurations, where the CM and 

the CR lie as close as possible. It is worth noting that when 

es=0, the design eccentricities of Eqs (1a), (1b) appear as 

static eccentricities, since the dynamic factors α and γ only 

act as amplifiers of the static eccentricity. In such cases 

(es=0), when the code provisions are based on Eqs. (1a), 

(1b), as for example in EAK-2000 and EC-8/2004, the 

dynamic effects are not taken into account. For this reason, 

it may be more reasonable to apply the dynamic 

amplification factor, α, to the accidental eccentricity only, as 

for example in ASCE/SEI-7, where this factor, denoted as 

Ax, may take values between 1 and 3. It should be noted 

that in all the aforementioned codes, β=0.05. Nevertheless, 

the reason for defining the design eccentricities in relation 

to the CR, is that in single-story systems with a rigid floor 

diaphragm, any lateral load passing through the CR causes 

only a translation of the slab and any torque applied on the 

slab causes a rotation about CR. This attribute of the CR 

enables the assessment of the severity of the torsional 

effects and for this reason, the CR is usually taken as the 

reference point to quantify these effects. Defining the CR in 

one-story systems may be a relatively straight forward 

procedure, as it represents the center of lateral stiffness, but 

its definition, in the various floors of a multistory building 

is not an equally straightforward task. Cheung and Tso 

(1986) defined the centers of rigidity (CRs) as a set of 

points located at the floor levels, such that when a given 

distribution of lateral loading passes through them only 

translational movement of the floors will occur. The centers 

of rigidity, are generally not located on the same vertical 

line and they are significantly scattered over the height of 

the building, even in the case of uniform systems with 

minor stiffness variations of the lateral load resisting 

elements. The centers of rigidity (CRs) are also load 

dependent and may therefore not be used as reference 

points to assess the torsional response of structures.  

Acknowledging the deficiencies of using the CRs as a 

basis for assessing the torsional response of building 

structures, a number of researches (i.e., Makarios and 

Anastassiadis (1998a, 1998b), Marino and Rossi (2004), 

Basu and Jain (2007)) proposed alternative methods to 

define the reference points for implementing the torsional 

code provisions. The main objective of these studies was to 

determine the location of a vertical axis such that any in-

plane lateral loading passing through this axis would 

minimize the torsional distortion on the structure. This, 

optimum torsion axis (OTA) may be defined as the axis 

passing through the stiffness centre of an equivalent single 

story system (Georgoussis 2016). This point is defined as 

the modal centre of rigidity (m-CR) and its derivation is 

based on the approximate method of the continuous 

medium, which assumes uniform over the height building 

systems. It was demonstrated that in systems where the 

centers of mass of the various floors lie on the same vertical 

line (mass axis), their dynamic response is essentially 

translational when the mass axis passes through the m-CR 

point (Georgoussis 2010, 2014, 2015). In a recent paper 

(Georgoussis 2017) it was also shown that the same 

equation for predicting the location of OTA can be derived 

by means of the discrete element approach (stiffness 

method), which is familiar to practicing engineers. The 

methodology, for defining the OTA, is applicable to, either 

regular (as specified for example by the current Eurocode-8 

(EC-8/2004)) or irregular structures, provided that they 

have a single mass axis.  

The objective of this study was to investigate the effect 

of mass eccentricities on the torsional response of medium 

height multistory buildings with in plan and in elevation 

irregularities, as defined in clauses 4.2.3.3 and 4.2.3.3 of 

EC-8/2004. Georgoussis (2017) showed that when the mass 

axis coincides with the OTA, this results in an essentially 

translational response, and such a structural configuration 

may be easily attained by a suitable arrangement of the 

lateral load resisting bents. This paper examines how such 

an arrangement can also be achieved when the centers of 

floor masses are shifted, in a random spatial way, from their 

nominal positions, but within the limits of the code ( b ). 

The effect of mass eccentricities on the torsional response 

of a building structure is studied using an analytical 

(mathematical) approach, based on the stiffness matrix 
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methodology and, the derived analytical solution is 

compared with the results from parametric structural 

analyses on 9-story buildings with heightwise variations of 

the accidental eccentricities.  
 

 

2. Systems considered and mathematical analysis  
 

As discussed in the previous section, the effect of 

induced seismic torsion on the response of structures and 

the objective of mitigating the torsional effects during a 

strong ground motion have been researched extensively 

during the last decades. When designing structural 

configurations to sustain minimum torsional effects in the 

linear phase of deformation, the concept of the optimum 

torsion axis (OTA) may be a useful tool, but this concept 

applies only to multistory systems where all floor masses lie 

on the same vertical line (mass axis). The principle of the 

OTA design concept is that when the locations of the lateral 

load resisting bents define an OTA which coincides with the 

mass axis, the torsional response during a translational 

ground excitation is mitigated. In the case of multistory 

buildings, where the centers of masses are not aligned on a 

vertical axis, the concept of the OTA is not valid anymore. 

In this case in order to design a structural configuration with 

minimum torsional response a different approach needs to 

be applied, and the same requirement applies when the 

accidental mass eccentricity, as defined in the current 

design codes (e.g., EC-8/2004), is taken into account.  

Assuming a N-story building with orthogonal framing 

along the global x and y directions and rigid floor slabs, 

which is subjected to the lateral load vector 

T

fffF yx=  (2a) 

where the load sub-vectors fx, fy and fθ are of N order. The 

equilibrium equation between forces and displacements is 

expressed by the following matrix equation 
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which displays a set of 3N equations for the displacement 

vectors ux and uy, and the rotation vector uθ (all of order N) 

in an arbitrary coordination system Oxyz. For buildings 

with the lateral load resisting elements in two orthogonal 

directions, the sub-matrices of the above stiffness matrix are 

given as 

Kxx=ΣKi 

Kyy=ΣKj 

Kxz=Κzx
T=-ΣyiKi 

Kyz=Κzy
T=ΣxjKj 

iijjzz yx KKK
22 +=  

(3) 

where the element sub-matrices Ki and Kj (of order NxN) 

represent the stiffness matrices of the i-bent (oriented along 

the x-direction at a distance yi from the x-reference axis) 

and j-bent (oriented along the y-direction at a distance xj 

from y-reference axis) respectively. If the assumed 

structural building is subjected to a translational ground 

excitation along the y-direction, the requirement of a 

practically translational response implies that the applied 

lateral loads should be proportional to the first mode vector 

of the uncoupled structure, which is the dominant mode of 

vibration of a medium height building. That is 

12
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1
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==  (4a) 
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M is the diagonal mass matrix, m1, m2...mN are the floor 

masses, numbered from the base upwards, and Φy1 and ωy1 

are the first modal shape and frequency of the uncoupled 

structure. In such a case, the floor components of the lateral 

load vector fy are applied at the centers of mass of the 

various floors, which are located at a distance emx1, emx2,... 

emxN from the vertical reference axis respectively. Therefore, 

since fx=0, the torsional moment vector about this axis will 

be equal to 

ymfEf =  (5) 

where 
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is the mass eccentricity matrix.  

The displacement vectors ux, uy and uθ, derived from 

Eqs. (2b), are equal to 

uKKu xzxxx
1−−=  (7a) 

uKKfKu yzyyyyyy
11 −− −=  (7b) 

)( 1
1

1
1

yyyzyym MΦKKMΦEKu
−− −=   (7c) 

where 

yzyyzyxzxxzxzz KKKKKKKK
11 −− −−=  (8) 

The displacement vectors ux, uy and uθ shown above are 

obtained by superpositioning two loading conditions. The 

first is the response of the uncoupled structure (i.e., the 

system in which the floors are restrained against rotations) 

when it is subjected to a lateral force vector equal to fy. This 

loading case provides the first term of the second part of Eq. 

(7b). The second loading case constitutes a purely torsional 

moment vector, equal to 
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1
1

1 yyyzyym MΦKKMΦET
−−=  (9) 

and its effect on the response of the uncoupled structure 

may be accounted for as a superposition of the effects of its 

modal components, Tθn (n=1,2,...). This modal expansion of 

Tθ is obtained as follows (Chopra 2008) 

ynnnθ Γ MΦTT ==  , (n=1,2,..) (10) 

where Φyn is the n-mode shape of the uncoupled structure 

and the corresponding modal participation factor Γn is equal 

to 

ynyn

θ
T
yn

nΓ
MΦΦ

TΦ


=  (11) 

If the first modal participation factor is set equal to zero 

(Γ1=0), this implies that the first modal component of Tθ, 

which represents its major contribution on the response of 

the assumed structure, is nullified and therefore the overall 

torsional effect is minimized. The condition of Γ1=0, in 

combination with Eqs. (4a) and (9), implies that  

112
1

1
1

111

1
yj

T
yj

y

yyyzy
T
yym

T
y x ΦKΦMΦKKΦMΦEΦ == −


 (12a) 

and any structural configuration (any arrangement of the 

lateral load resisting bents) that satisfies the above equation 

is expected to undergo minimum torsional response. 

Dividing all parts of Eq. (12a) by the first mode generalized 

mass 11 yy MΦΦ


, the following expression is obtained 
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An approximate expression of Eq. (12b) may be given 

by using the concept of the element frequency of the lateral 

load resisting elements (Georgoussis 2016). For example, 

for the j-element (bent), its element frequency, ωj1, is 

defined as 

1
T
1

1
T
12

1

jj

jjj

j
MΦΦ

ΦKΦ
=  (13) 

and represents the first mode frequency of the j-lateral load 

resisting element, when it is assumed to carry, as a plane 

frame, the mass per floor of the real structure (Φj1 is the 

first mode vector of the particular j-bent). It is worth noting 

that a lower bound of the first mode frequency of the 

uncouple structure, ωy1, may be evaluated by means of the 

element frequencies, according to Southwell’s formula 

(Newmark and Rosenblueth 1971). For example, if the 

lateral stiffness in the y-direction is composed by a number 

of k-elements, then  
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1   (14) 

The equation above is based on the potential of the 

Rayleigh’s quotients, according to which any approximate 

first mode shape vector may provide a reasonable estimate 

of the first mode frequency. This is particularly true in 

building structures, which belong to the same class of shear-

flexural cantilever systems and have similar mode shapes. 

Replacing each modal vector Φy1with Φj1, in the second 

part of Eq. (12b), this equation takes the form 

2
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 (15) 

where the fundamental frequency of the uncoupled system, 

ωy1, may also be assessed from Eq. (14).  

When all the floor masses are aligned on a vertical 

(mass) axis, i.e., 

emx1=emx2=...= emxN= emx (16a) 

which suggests that the eccentricity matrix of Eq. (6) is 

equal to  

IE mxm e=  (16b) 

where I is the unit matrix, Eq. (15) takes the form 

2
1
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1

y
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x
e




=  (17a) 

The last part of Eq. (17a) defines the OTA (Georgoussis 

2017) and, when the OTA coincides with the mass axis, the 

torsional response is minimized. By definition, the 

coordinates of the OTA depend on the structural element 

frequencies and different structural configurations may 

result in OTA axes that coincide with the mass axis. When 

the mass axis is taken as the reference vertical axis, the 

condition of minimum torsional response requires that the 

arrangement of the various bents should satisfy the 

following equation        

02
1 = jjx   (17b) 

In structural applications, however, where the 

arrangement of most of the lateral load resisting bents is 

determined by architectural or functional considerations, the 

structural engineer needs to relocate one or two of such 

bents in order to obtain a structural configuration, where the 

OTA coincides with the mass axis. In practice, it is 

convenient to construct such a system by locating a 

particular element (denoted as key element and assumed to 

be the k-element, when the lateral resistance is provided by 

a number of k bents), in a way that 
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In buildings where the centers of floor masses are not 

aligned on a vertical line, the vertical axis of the reference 

system can be conveniently taken as the axis passing 

through the center of the total mass of the building 

structure. That is, with respect to the initially assumed Oxyz 

coordination system, the x-coordinate, emx, of the vertical 

reference axis may be defined as  

nmxntotmx meMe = ,
 
n=1,2,...N (19) 
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where Mtot is the total mass of the building 

(=m1+m2+...+mN). The new vertical (reference) axis, defined 

by Eq. (19), has the advantage that when the gravity loads 

are uniformly distributed on all the floors and when their 

centroids are located on the same vertical line, the 

aforementioned axis is the mass axis of the system. In such 

a case, when the code accidental eccentricities are 

neglected, any structural configuration that satisfies Eq. 

(17b) defines a system of minimum torsional response. 

When however, the accidental eccentricities are taken into 

account, the optimum location of the k-element may be 

determined by evaluating the first term of Eq. (15). A 

convenient method to evaluate this part of Eq. (15) is to 

express the matrix product EmM as  
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where Mf is a matrix defined as 
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In this equation, all eccentricities have been defined in 

relation to the mass axis (emx=0 in Eq. (19)) and emxo is the 

largest of them (in absolute value), i.e., 

mxnmxo ee  , n=1,2,..N (20c) 

It may be seen that none of the elements of
 
Mf registers 

a negative value and therefore this matrix may be 

considered as a fictitious mass matrix. The sum of the 

fictitious floor masses of Mf is equal to the total mass Mtot of 

the assumed building, since the location of the vertical 

reference axis satisfies Eq. (19).  

Rearranging Eq. (15), in combination with Eqs. (20a) 

and (20b), the following is obtained 
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where, RGM represents a ratio of generalized masses and is 

equal to 
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3. Implications on the design procedure 

It may be of interest to examine the optimum location of 

the aforementioned k-element when all the accidental 

eccentricities of Eq. (6) change their algebraic sign. By 

definition the accidental mass eccentricity may occur on 

either side of the nominal location of the center of mass, but 

in systems with an asymmetric structural configuration the 

effects of such a reversed heightwise mass eccentricity is 

not obvious. Assuming that the nominal locations of all the 

centers of mass lie on the same vertical axis, this represents 

the vertical reference axis in all equations following Eq. 

(19). Based on this assumption the following conclusions 

may be drawn:  

When all the accidental eccentricities of Eq. (6) reverse 

their algebraic sign, the first term of Eq. (15) also changes 

its algebraic sign. Assuming that emxo in Eq. (21a), which is 

another expression of Eq. (15), registers a positive value, let 

the corresponding optimum location of the k-element be 

defined as +

kx . When emxo registers a negative value, which 

implies that all the accidental eccentricities are 

symmetrically aligned across the mass axis, let the 

corresponding optimum location of the k-element be 

defined as −

kx . Taking into account that the first term of 

Eq. (21a) is equal to zero when no accidental eccentricities 

are applied (all floor masses are aligned on the mass axis) 

let the corresponding optimum (nominal) location of the k-

element be defined as 0

kx . It follows that the new location 

of the k-element (when emxo<0) is symmetrical to its initial 

location (when emxo>0) with respect to its nominal location, 
0

kx . In other words, within the limits of the outlined 

procedure which is based on the dominant (first) modal 

shape, the distance 0

kx  is the mean distance of +

kx and 

−

kx . As a result, in the case of multistory buildings which 

have a mass axis, the effect of any spatial variation of mass 

eccentricities may be investigated without examining the 

reversed heightwise variation as it may be sufficiently 

accurate to investigate the variation of the location shift 

(length difference) of the key element 0

kk xx −+ , since this 

difference is equal to −− kk xx0 .  

The absolute value of the Δxk shift is equal to  

( ) mxo

k

y

kkk eRGMxxx −=−= + 1
2
1

2
10




 (22) 

It follows from Eq. (22) that the location shift reduces 

when the stiffest lateral load resisting bent is the key 

element (i.e., the selected k-element) which specifies a 

structural configuration of minimum torsional response. In 

this case the key element provides the largest element 

frequency (i.e.,: ωk1) and, as noted above, the square value 

of the fundamental frequency of the uncoupled structure, 

ωy1, may be reasonably assessed by the sum of the square 

values of the element frequencies according to Southwell’s 

formula (Eq. (14)). The location shift Δxk is further reduced 

when the RGM ratio approaches unity. In general, 

accidental eccentricities introduced in the lower floors are 

likely to have a minor effect on the geometric configuration 

which is designed to respond in a predominantly  
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Fig. 2 The effect of 5 different mass eccentricity variations 

on the required shift of the key element 

 

 

translational manner (i.e.,: when the k-element is located at 

the nominal coordinate 0

kx ). 

A practical example, of the effect of mass eccentricities 

on the normalized location shift 
mxokk exx =  is the 

case of uniform multistory buildings (i.e.,: m1=m2=...=mN in 

Eq. (4b)) by assuming a linear first mode shape, Φy1, of the 

uncoupled structure. Consider for example the five 

representative mass eccentricity variations of Fig. 1. Using 

the formulation of the distributed mass systems (Chopra 

2008) and defining m(x)=m as the mass per unit height of 

the system, the RGM ratio of Eq. (21c) may be expressed as 

follows 


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where H is the height of the building structure, Φ=x/H and 

mxmxmxmxm ff )()()()( ==  (23b) 

The quantity mf(x) is the (distributed) mass per unit 

height of the uncoupled system, (which, in the discrete 

formulation would be expressed by the mass matrix of Eq. 

(20b)) and, for the five mass eccentricity variations of Fig. 1 

(shown as subscripts in the following equation), the ratio 

)(xm is respectively equal to 
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where Hxx /= . The corresponding values of the 

normalized location shift 
mxokk exx = are shown in 

Fig. 2, for the case in which the k-element contributes 50% 

of the fundamental frequency of the uncoupled structure 

(i.e.,: ωk1=0.5ωy1). The values represent the required shift of 

the k-element, from its nominal position 0

kx , for the 

system to sustain minimum torsional response. The results 

of Fig. 2, are qualitative and of no practical value for the 

structural design of real buildings, since an, approximate, 

linear distribution has been assumed for the first mode of 

vibration and the building structure has been analyzed with 

the assumption of the continuous medium, which is 

applicable to uniform buildings. In reality, structural 

buildings may have significant in plan and in elevation 

irregularities, and due to this fact an alternative, but 

practical, method for determining the location of the k-

element, and of the required shift for optimum torsional 

response in Eq. (22), is presented below. 
 

 

4. Locating the key element for optimum torsional 
response - a practical procedure 
 

Generally, the RGM ratio of Eq. (21b) may be estimated 

by the following equation 

1111

1111

yf
T
yyyy

T
y

y
T
yyyy

T
y

RGM
ΦMΦΦKΦ

MΦΦΦKΦ
=  (24) 

 

Fig. 1 Five different mass eccentricity variations of a uniform building system 
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In this equation, the numerator defines the square value 

of the first mode frequency, ωy1, of the uncoupled structure, 

while the denominator, defined as  

11
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yf
T
y

yyy
T
y

RQ
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is a Rayleigh’s quotient of the fundamental frequency, ωfy1, 

of the uncoupled system which has the floor masses shown 

in the main diagonal of the matrix of Eq. (20b). Therefore, 

since it is easy to evaluate ωfy1 by any structural analysis 

software, an approximate equation which provides the 

required location of the k-element, xk, is as follows 
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It should be noted that when the maximum mass 

eccentricity appears in two floors with opposite algebraic 

sign, the emxo eccentricity in Eqs. (20a) and (21a) should be 

taken as that of the lower floor. A typical example is the 

eccentricity variations of case A in Fig. 1. To explain this 

suggestion, it may be worth recalling that the sum of the 

fictitious floor masses of Eq. (20b) is equal to the total mass 

Mtot. Therefore, when emxo is taken as that of the floors in 

the upper half of its height, this means that the fictitious 

uncoupled system, which specifies ωfy1, has masses (of 

double value) only in lower half of its height. The value of 

ωfy1, thus produced, is equal to 

11

112
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ΦKΦ
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where Φfy1 is the first mode vector of the aforesaid fictitious 

uncoupled system. There is a clear difference between the 

shape functions Φy1 (in Eq. (25)) and Φfy1 (in Eq. (27). Both 

of them satisfy the displacement boundary conditions at the 

base of the structure, but Φy1 satisfies the force boundary 

conditions at the top of the system, while Φfy1 satisfies the 

corresponding conditions at the mid height of the system, 

since there are no masses above this point. Therefore, the 

procedure of approximating the quotient RQ of Eq. (25), by 

the frequency of Eq. (27) may not be reasonable. On the 

other hand, when emxo is taken as that of the lower floors 

(case A of Fig. 1), the corresponding fictitious uncoupled 

system, which has (double) masses only in its top part, 

provides the first mode frequency ωyf1 by an expression 

similar to Eq. (27), but the corresponding mode vector Φfy1 

satisfies now the force boundary conditions at the top of the 

system, as the vector Φy1. Therefore, it is reasonable to 

approximate the quotient RQ of Eq. (25), by the square 

value of the first mode frequency of this uncoupled 

fictitious system. 

 
 

5. Case study 
 

Three different models of the building structure shown in 

Fig. 3 are analyzed under an unidirectional excitation along the 

y-direction. The same models, but without accidental mass 

eccentricities, have been discussed in an earlier paper  

 

Fig. 3 Plan configuration of example model structures (all 

dimensions in meters) 

 

 

(Georgoussis 2017) and comprise 9-storey mono-symmetrical 

building systems with in plan and in elevation irregularities. 

Model T0/B9 consists of nine identical orthogonal floors of 

23×16 m, as shown in Fig. 3 by the exterior perimeter. The 

mass per floor is equal to mb=338 t, corresponding to a total 

uniformly distributed gravity load of 9 kN/m2 and the radius of 

gyration rb about the CM is 8.088 m. The story height is 3.5 m 

and the modulus of elasticity (E) is assumed equal to 20×106 

kN/m2, typical for concrete structures. The nominal centers of 

mass (CM) of the floor slabs lie on the same vertical axis, 

when a uniformly distributed gravity load is assumed. The 

lateral load resisting system along the y-direction consists of a 

wall, W, of lateral dimensions 35×400 cm, a coupled wall bent, 

CWy, composed of two walls of 35×300 cm at a distance of 6 

m, connected by lintel beams 30×80 cm at the floor levels and, 

also, by two moment resisting frames, FR, composed by three 

columns of 70×70 cm, 6 meters apart, connected by beams of a 

cross section 40×70 cm. The lateral load resisting system along 

the x-direction consists of two CW bents, identical to CWy, 

located symmetrically to the axis of symmetry at distances 

m6 . Model T3/B6 is a setback building, which consists of 

a base structure with six floor plans identical to those of 

model T0/B9, and a top structure composed by three floors 

of a reduced size of 18×12 m, as shown in Fig. 3 by the 

interior perimeter. The mass of the latter floors is equal to 

154 t (corresponding to a total uniformly distributed gravity 

load of 7 kN/m2) and the radius of gyration is equal to rt=6.24 5 

m. 

Because of the reduced gravity load applied at the top three 

floors, the dimensions of the vertical members of all the bents 

at these levels are reduced accordingly: the size of W is taken 

as 35×350 cm, the cross-sections of the coupled wall bents 

(CWy and CW) are 35×270 cm and the columns of frames FR 

are 60×60 cm. Model T6/B3 is also a setback building, 

composed of a base structure with three floors identical to 

those of Model T0/B9, and a top structure composed of six 

floors similar to those of the top floors of Model T3/B6. The 

assumed three building models are symmetric along the x-

direction, but structurally asymmetric along the y-direction, as 

the location of the various bents oriented in this direction is 

illustrated in Fig. 3: the frames FR are located at distances 

equal to -9 m and +7 m respectively from the CM, while the 

flexural wall W is located at a distance of 5 m on the left of 

CM. CWy bent, is located, between -9 m to+9 m, along the x-

axis in order to assess the optimum coordinate, that minimizes  
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x
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5 x
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the system’s torsional response in relation to the following 

accidental mass eccentricities.  

For each model building, the response of six different 

systems, with varying mass eccentricities, are investigated 

against a ground excitation along the y-direction, defined by 

the acceleration spectrum of EC8-2004 (type 1, ground type B, 

soil factor 1, horizontal ground acceleration 0.40 g).). It is 

worth noting here that torsional distortions may arise from 

torsional ground motions (Basu et al. (2014)), stiffness 

uncertainties, bi-directional excitations etc., but these issues 

are beyond the objectives of this study. The first three mass 

eccentricities analyzed for the case of model T0/B9 are shown 

in Fig. 4(a). 

In system (+)A:T0/B9, the CM of the first four floors is 

shifted to the left of the reference axis, along the x-direction, to  

 
 

a distance equal to the code accidental eccentricity: 

0.05×23=1.15 m. On the top four floors, the CM is shifted to 

the opposite direction, at an equal distance, while the location 

of the CM on the fifth floor remains the same. In all cases the 

mass polar moment of inertia remained unchanged and equal 

to that of the system when no mass eccentricities are taken into 

account. This is equivalent to assuming that all storey masses 

are lumped, and equal to mb with a polar moment of inertia 

equal to 2
bb rm  (De la Llera and Chopra 1994). In system 

(+)B:T0/B9, the centers of mass of the 1st, 2nd, 6th and 7th 

floor are shifted to the left of the reference axis by the code 

eccentricity, while these centers of the 3rd, 4th, 8th and 9th 

floors are symmetrically located on the right side of the 

reference axis (the location of the CM on the fifth floor 

 

Fig. 4(a) The first three analyzed mass eccentric systems of model T0/B9: (i) (+)A:T0/B9; (ii) (+)B:T0/B9 and (iii) (+)C:T0/B9 

 

Fig. 4(b) The first three analyzed mass eccentric systems of model T3/B6: (i) (+)A:T3/B6; (ii) (+)B:T3/B6 and (iii) (+)C:T3/B6 

 

Fig. 4(c) The first three analyzed mass eccentric systems of model T6/B3: (i) (+)A:T6/B3; (ii) (+)B:T6/B3 and (iii) (+)C:T6/B3 
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remains unchanged). In system (+)C:T0/B9, the CM of the 

three floors at the bottom of the structure is shifted to the left of 

the reference axis by the code eccentricity, while in the top six 

floors their CM is located on the right of the reference axis at a 

distance equal to half of the code accidental eccentricity 

(0.5*1.15= 0.575 m). Since the model structures are 

structurally asymmetric along the y-direction, all the 

aforementioned eccentric systems are also examined when the 

various floor eccentricities are reversed (i.e.,: reversing their 

algebraic sign). The corresponding eccentric systems are 

defined as (-)A:T0/B9, (-)B:T0/B9 and (-)C:T0/B9. It should 

be noted that according to the analysis presented in the 

previous section, the optimum location of the CWy bent in the 

latter systems, is expected to be in a more or less symmetrical 

location of that in the former (+)A:T0/B9, (+)B:T0/B9 and 

(+)C:T0/B9 systems, with respect to the nominal location of 

CWy, which is defined when no mass eccentricities are taken 

into account (model T0/B9). 

Similarly, the first three eccentric systems for the case of 

model T3/B6, denoted as (+)A:T3/B6, (+)B:T3/B6 and 

(+)C:T3/B6, are shown in Fig. 4(b). Their response is also 

examined when the mass eccentricities are reversed and the 

corresponding systems are defined as (-)A:T3/B6, (-)B:T3/B6 

and (-)C:T3/B6. Similar are the eccentric systems of Model 

T6/B3 (Fig. 4(c)). 

 

 

6. Discussion of results   
 

The structural configurations in Fig. 4(a) are analyzed 

against a ground excitation along the y-direction, defined by 

the acceleration spectrum of EC8-2004 (type 1, ground type B, 

soil factor 1, horizontal ground acceleration 0.40 g), and their 

torsional response, in terms of the sustained base torque and 

top floor rotation is presented by the red lines in Fig. 5(a). 

Normalized base torques, obVrTT = (where Vo is the 

base shear of the corresponding uncoupled building model) 

and top rotations, Θ, were calculated by the structural 

analysis program SAP2000-V16 for different locations 

(indicated by the normalized coordinate 
b

rxx = ) of the 

coupled wall bent CWy, are shown by red lines in Fig. 5(a). 

The aforementioned data have been calculated on the basis 

of the first 12 peak modal values combined according to the 

CQC rule (the damping ratio in each mode of vibration was 

taken as 5%). The blue lines show the torsional response of 

the systems with reversed mass eccentricities (systems (-

)A:T0/B9, (-)B:T0/B9 and (-)C:T0/B9), while the black lines 

show the response of these systems when no mass 

eccentricities are taken into account (as shown in Georgoussis, 

2017). Note here that the value of the base shear of the 

uncoupled structures Vo (i.e., the systems in which the 

floors are restrained against rotations), used to normalize 

the base torque, amounted to 12532, 12300 and 9772 kN for 

models T0/B9, T3/B6 and T6/B3 respectively.  

Similar observations apply to the data presented in Fig. 

5(b), which show (in red lines) the torsional response of the 

structural configurations in Fig. 4(b), along with the response 

of the corresponding systems with reversed eccentricities (in 

blue lines) and the system without mass eccentricities (black 

lines). The results in Fig. 5(c) show, in a similar manner, the  

 

Fig. 5(a) Top rotations (x10-2 rads) and normalized base 

torques of the eccentric systems (+)A:T0/B9, (+)B:T0/B9 

and (+)C:T0/B9 (red lines of )()( T,Θ ++ ) and the systems (-

)A:T0/B9, (-)B:T0/B9 and (-)C:T0/B9 (blue lines of 
(-)(-) T,Θ ), together with the corresponding quantities of the 

system with no mass eccentricities (model T0/B9, black lines 

T,Θ ) 

 

 

response of the structural configurations of Fig. 4(c), together 

with the response of the systems with reversed and no mass 

eccentricities respectively.  

The first observation is that the results illustrated in Figs. 

5(a)- 5(c), show that the variation of base torques is smoother 

than those of the top rotations, which suggests that the mostly 

affected response parameter is the top rotation and not the base 

torque. The variation of the base torque appears to be 

decreasing in the setback model with a rather low base 

structure (Fig. 5(c)). 

The second observation is that the inverted peaks in Figs. 

5(a)-5(c), mainly of the dotted lines which represent the top 

rotation and, to a lesser degree, of the solid lines which 

represent the base torques, clearly indicate an optimum 

location of the coupled wall bent CWy. In Figs. 5(a) and 5(b)  
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Fig. 5(b) Top rotations (x10-2 rads) and normalized base 

torques of the eccentric systems (+)A:T3/B6, (+)B:T3/B6 

and (+)C:T3/B6 (red lines of )()( T,Θ ++ ) and the systems (-

)A:T3/B6, (-)B:T3/B6 and (-)C:T3/B6 (blue lines of 
(-)(-) T,Θ ), together with the corresponding quantities of the 

system with no mass eccentricities (model T3/B6, black lines 

T,Θ ) 

 

 

the minimum values of the rotations and base torque (of the 

same color) point to almost the same value of x . This is less 

noticeable by the torques curves (solid lines) in Fig. 5(c). 

They show a rather extended range of locations of the 

coupled wall bent CWy where the base torque registers small 

values. The third observation is that the inverted peaks of 

the red and blue lines (either solid, which represent base 

torques, or dotted, which represent top rotations) are 

pointing to almost symmetrical locations with respect to 

those indicated by the black lines. It is interesting to note 

here that, a small shift of CWy from its optimum location 

results in large torsional distorsions, but the effects of this 

distorsion reduce as the CWy bent moves further away from 

its optimum location (all curves in Figs. 5(a) to (c) have a 

steep dip near the optimum location of CWy, but they  

 

Fig. 5(c) Top rotations (x10-2 rads) and normalized base 

torques of the eccentric systems (+)A:T6/B3, (+)B:T6/B3 

and (+)C:T6/B3 (red lines of )()( T,Θ ++ ) and the systems (-

)A:T6/B3, (-)B:T6/B3 and (-)C:T6/B3 (blue lines of 
(-)(-) T,Θ ), together with the corresponding quantities of the 

system with no mass eccentricities (model T6/B3, black lines 

T,Θ ) 

 
 

become smoother, or even flat, at larger shifts of this bent).  

The curves indicated by the black lines, show the 

response of the systems with no mass eccentricities and 

their inverted peaks indicate the optimum location of CWy 

where the torsional response is minimized (nominal 

location of the CWy bent). The observation that the inverted 

peaks of the colored lines are pointing to symmetrical 

locations with respect to the nominal location of the CWy, 

is in agreement with the analysis outlined in section 3. The 

results in Figs. 5(a)-5(c) demonstrate, that, for any spatial 

variation of mass eccentricities, the optimum location of the 

key element, which minimizes the torsional effect of the 

structure has an almost symmetrical location, with respect 

to its nominal location, when the mass eccentricities are 

reversed. 

The normalized locations of the CWy bent for minimum  
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Table 1 Predicted normalized locations of the key element 

(CWy bent) for optimum torsional response of the systems of 

Figs. 4(a)-4(c) and the models with no mass eccentricity 

Model with no 

mass ecc. 

Min torsional 
response for CWy 

at x0 

Mass eccentric 

systems 

Min torsional response 

for CWy at x+/ x- 

T0/B9 248.00 =x  

(+)A:T0/B9 

(-)A:T0/B9 

492.0=+x  

004.0=−x  

(+)B:T0/B9 

(-)B:T0/B9 

341.0=+x  

155.0=−x  

(+)C:T0/B9 

(-)C:T0/B9 

391.0=+x  

106.0=−x  

T3/B6 256.00 =x  

(+)A:T3/B6 

(-)A:T3/B6 

390.0=+x  

120.0=−x  

(+)B:T3/B6 

(-)B:T3/B6 

437.0=+x  

074.0=−x  

(+)C:T3/B6 

(-)C:T3/B6 

350.0=+x  

160.0=−x  

T6/B3 246.00 =x  

(+)A:T6/B3 

(-)A:T6/B3 

456.0=+x  

037.0=−x  

(+)B:T6/B3 

(-)B:T6/B3 

374.0=+x  

120.0=−x  

(+)C:T6/B3 

(-)C:T6/B3 

319.0=+x  

174.0=−x  

 

 

torsional distortion of the mass eccentric systems of Figs. 

4(a)-4(c), derived by means of Eq. (26), are shown in Table 

1. The corresponding locations of the models without mass 

eccentricities, as derived in Georgoussis (2017), are also 

shown in this Table. It may be of interest to compare the 

locations pointed by the inverted peaks in Figs. 5(a)-5(c) 

with the predicted data of Table 1. The predicted locations 

are somewhat lower than those shown in the 

aforementioned figures, an outcome that can be attributed to 

the effect of the higher modes of vibration, which are not 

accounted for in the analysis of section 3. However, the 

length difference of Eq. (22), as predicted from the data of 

Table 1 (i.e.,: 
−+ −= xxx ), appears to be very close to 

that shown by the inverted peaks in Figs. 5(a) to 5(c). On 

the grounds of the data obtained from the numerical 

analysis of the case studies, the accuracy of the predicted 

results may be considered within the acceptable engineering 

limits and the proposed Eq. (26) may be used with 

confidence in the preliminary stage of structural designs. 

 

 
7. Conclusions 
 

The effect of mass eccentricities on the seismic torsional 

response of medium height multistory buildings was 

investigated in comparison to the response of the 

counterpart systems in which all floor masses are assumed 

to lie on the same vertical line. The influence of mass 

eccentricities on the torsional response of buildings is first 

studied on a theoretical basis, using the stiffness matrix 

methodology, with the assumption that the first mode of 

vibration is the dominant mode of response. It is 

demonstrated that for any heightwise mass eccentricity 

variation a structural configuration of minimum torsional 

response may be obtained when the locations of the lateral 

load resisting bents satisfy Eq. (26). In any structural 

configuration, composed by a given set of lateral load 

resisting bents, the procedure requires (i) the evaluation of 

the element frequencies, which are determined from the 

corresponding individual bents when they are assumed to 

carry, as planar frames, the mass of the complete structure 

and, (ii) the evaluation of the fundamental frequency of an 

uncoupled structure with fictitious floor masses. Both data 

may be easily determined by any commercial structural 

software, and, in practice, the procedure to determine a 

structural configuration of minimum torsional response is 

similar to that which evaluates the location of the Optimum 

Torsion Axis (OTA). The definition of the Optimum Torsion 

Axis applies to building systems where all floor masses are 

located on the same line (mass axis) and the main attribute 

of the OTA is that when its location coincides with the mass 

axis the seismic response is essentially translational. In 

practice the coincidence of the aforementioned axes is 

implemented by the suitable location (nominal location) of 

a certain element (key element). It is shown that when a 

spatial distribution of the floor masses is taken into account, 

as required by most recent building codes, the 

aforementioned translational response may be reserved by 

readjusting (shifting) the location of the key element. It was 

also demonstrated that by reversing the spatial distribution 

of floor masses, the required relocation of the key element 

is shifted to a symmetrical position with respect to its 

nominal location. Small shifts of the key element from its 

optimum location result in rather large torsional distortions, 

but these effects gradually become less significant as the 

key element moves further away from its optimum location. 

The accuracy of the proposed procedure is demonstrated in 

common 9-storey regular and irregular in elevation building 

structures, with a lateral load resisting system composed of 

flexural walls, coupled wall bents and moment resisting 

frames, in relation to the results provided by the structural 

analysis program SAP2000-V16. The proposed equation for 

assessing the location of the key element presents 

reasonable accuracy and may be used with confidence in 

structural applications. 
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