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1. Introduction 
 

Normally Carbon nanotube CNTs are cylindrical 

macromolecules composed of carbon atoms in a periodic 

hexagonal arrangement discovered by Iijima (1991), which 

have received tremendous attention from various branches 

of science. Varieties of experimental, theoretical, and 

computer simulation approaches indicate that carbon 

nanotubes (CNTs) possess superior electronic and 

mechanical properties (Dresselhaus and Avouris 2001, 

Bachtold et al. 2001), others studies have showed that they 

have good properties so they can be used for 

nanocomposites (Dai et al. 1996, Thostenson et al. 2001, 

Feldman and Aboudi 1997). In addition, CNTs are well 

known for their excellent rigidity, higher than that of steel 

and any other metal. 

In recent years, carbon nanotubes and nanobeams hold a 

wide variety of potential applications, Sakhaee-Pour (2009) 

using beam element model for vibration analysis of single-

walled carbon nanotubes. Bouazza et al. (2014) Employing 

the different gradient elasticity theories on buckling of 

multiwalled carbon nanotubes. In the same context, variety 

theoretical studies are used carbon nanotubes (CNTs) and 

graphene sheet (Hamidi et al. 2018, Bensattalah et al. 2016, 

Mokhtar et al. 2018, Karami et al. 2018e, Yazid et al. 2018, 

Bouazza et al. 2015). 

Due to difficulties encountered in experimental methods 

to predict the responses of nanostructures under different 

loading conditions, the molecular dynamics (MD)  
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simulations and the continuum mechanics methods are 

used. But the computational problem when using the (MD) 

is that the time steps involved in the (MD) simulations are 

limited by the vibration modes of the atoms to be of the 

order of femto-seconds (10-15 s) (Ranjbartoreh et al. 2007).  

The continuum mechanics methods have been 

effectively used to study mechanical behaviors of not only 

single-walled carbon nanotubes (SWCNTs) (Ghorban et al. 

2008, Mustapha and Zhong 2012, Boumia et al. 2014, 

Naceri et al. 2011) but also MWCNTs (Ghorban et al. 2011, 

Hajnayeb and Khadem 2015, Chemi et al. 2015, Rakrak et 

al. 2016, Chemi et al. 2018). Recently, the continuum 

mechanics approach has been widely and successfully used 

to study the responses of nanostructures, such as the static 

(Reddy and Pang 2008, Ahouel et al. 2016, Zemri et al. 

2015, Karami et al. 2017a), the buckling (Xiaohu and 

Qiang 2007, Tounsi et al. 2016, Bellifa et al. 2017a, Larbi 

Chaht et al. 2015, Khetir et al. 2017), free vibration (Zidour 

et al. 2012, Saira et al. 2016, Bounouara et al. 2016, 

Mouffoki et al. 2017), wave propagation and forced 

vibration (Karami et al. 2017b, Wang and Yang 2005,  

Behrouz 2016, Moradi-Dastjerdi 2016, Ait Yahia et al. 

2015, Behrouz 2018, Besseghier et al. 2017, Bouafia et al. 

2017, Belkorissat et al. 2015).  

Variety theoretical methods has been used based on the 

continuum mechanics sash as, (FSDT) (Bouderba et al. 

2016, Bellifa et al. 2016, Al-Basyouni et al. 2015, Youcef et 

al. 2018), (HSDT) (Bousahla et al. 2016, El-Haina et al. 

2017, Bellifa et al. 2017b, Menasria et al. 2017, Zidi et al. 

2014, Beldjelili et al. 2016, Bouderba et al. 2013, Boukhari 

et al. 2016, Belabed et al. 2014, Chikh et al. 2017, Fourn et 

al. 2018, Mahi et al. 2015, Houari et al. 2016, Zidi et al. 

2017, Tounsi et al. 2013, Tounsi et al. 2013, Zine et al. 
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2018). On the other hand, recent research takes into account 

the effect of normal stress (stretching effect). This novelty 

is studies by many recent work, (Bourada et al. 2015, 

Hebali et al. 2014, Bennoun et al. 2016, Bousahla et al. 

2014, Draiche et al. 2016, Belabed et al. 2018, Bouhadra et 

al. 2018, Hamidi et al. 2018, Abualnour et al. 2018, Younsi 

et al. 2018, Benchohra et al. 2018). 

At nanoscale, the classical continuum theories are 

deemed to fail, because the length dimensions at this scale 

are often sufficiently small such that call the applicability of 

classical continuum theories into the question. At 

macroscopic scale, the mechanical characteristics of 

structures are often significantly different from their 

behavior at nanoscale. Consequently, many non-local 

theories that consider the scale effect have been proposed 

such as micro-polar theory (Eringen 1967) and the nonlocal 

theory of elasticity (Eringen 1972), these theories take into 

account the influence of the screen introducing the intrinsic 

scale length in the constituent relations. Among the theories 

mentioned previously, non-local elasticity theory developed 

by Eringen (1983) when the stress state at a reference point 

is considered as a function of strain states of all points in 

the body. Then Peddieson et al. (2003) the first who applied 

the nonlocal theory in continuous nano technology, static 

deformations of the beam are obtained by using nonlocal 

simplified model of the beams based on the non-local 

elastic theory (Eringen 1983). Bending and shearing 

responses for dynamic analysis of single-layer graphene 

sheets under moving load (Shahsavari and Janghorban 

2017) porous functionally graded nanoplates and sandwich 

piezoelectric nanoplates with functionally graded core are 

studied based on the non-local elastic theory by (Karami et 

al. 2018a, Karami et al. 2018b).  Shahsavari et al. (2017) 

analyzed dynamic characteristics of viscoelastic nanoplates 

under moving load using the non-local elastic theory. 

Karami et al. (2018f) used nonlocal strain gradient for 

anisotropic spherical nanoparticles. 
In theoretical studies, boundary conditions are usually 

used to evaluate constants of integration when you are 
performing an indefinite integral. Abdelaziz et al. (2017) 
utilized various boundary conditions for bending, buckling 
and free vibration of FGM sandwich plates.  A simple 
refined theory for buckling and free vibration of 
exponentially graded sandwich plates under various 
boundary conditions is studied by (Ait Amar Meziane et al. 
2014). Post-buckling analysis of shear-deformable 
composite beams using a novel simple two-unknown beam 
theory has been studied by (Kaci et al. 2018). Wang et al. 
(2006) studied the buckling of micro- and nano-rods/tubes 
based on nonlocal Timoshenko beam theory under various 
boundary conditions. In recent years, mechanics, electronics 
and engineering study’s and applications shows the need to 
study the carbon nanotube under boundary conditions. It is 
in this scientific context that this work was realized for free 
vibration of nano beam under various boundary conditions. 
In the past fifty years, linear and nonlinear problems which 
appeared in physical, chemistry, mechanics, engineering 
applications and various of scientific areas are modelled 
and they are investigated by using so many approximating  
methods. Some of these numerical methods are Differential 
Transformation Method (DTM), Homotopy Perturbation 

Method (HPM) (He 2005), Adomian Decomposition 
Method (ADM) (Wazwaz 2002), Differential quadrature 
method. (Hasan Rahimi Pour et al. 2015), Variational 
Iteration Method (VIM) (Ganji et al. 2008), (GDQ) 
(Pradhan, and Phadikar 2009) and Homotopy Analysis 
Method (HAM) (Liao 2004). Many authors studied linear 
and nonlinear models to compute approximate solutions and 
their convergences with Differential Transformation 
Method (DTM) (Abdel-Halim Hassan 2002). To model the 
interaction of structure and the surrounding elastic medium 
A Winkler type elastic foundation is widely employed, 
(Karami et al. 2018c, Shahsavari et al. 2018a, Karami et al. 
2018d). (Shahsavari et al. 2018b) used 
Winkler/Pasternak/Kerr foundation for studied a free 
vibration of FG plates with porosities.  

In this study, the governing equations and boundary 

conditions for the free vibration of a nonlocal Euler-

Bernoulli beam have been extracted via the theory of 

nonlocal continuum elasticity. The mathematical derivations 

and numerical investigations are presented and performed 

while the emphasis is placed on investigating the impact of 

different parameters such as nonlocal small-scale effects, 

Winkler modulus parameter, and vibration mode. 

Comparisons of present approach with the results from the 

existing literature are provided and the good agreement 

between the results of the proposed method and those 

available in literature validated the presented approach. 
 

 

2. Nonlocal Euler-Bernoulli elastic beam models 
 

The theory of nonlocal continuum elasticity proposed by 

Eringen (1983) assumed that the stress at a reference point 

is considered to be a functional of the strain field at every 

point in the body. In the limit when the effects of strains at 

points other than x are neglected, one obtains local or 

classical theory of elasticity. For homogeneous and 

isotropic elastic solids, the constitutive equation of non-

local elasticity can be given by Eringen (1972). Non-local 

stress tensor (t) at point (x’) is defined by 
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Where (Cijkl) is the classical, macroscopic stress tensor 

at point 'x , σij and εij are stress and strain tensors 

respectively. ( )  ,'xxK −  is the kernel function and (

lae0= ) is a material constant that depends on internal 

and external characteristic length (such as the lattice 

spacing and wavelength), where (e0) is a constant 

appropriate to each material, a is an internal characteristic 

length, e.g., length of (C-C) bond, lattice parameter, 

granular distance, and (l) is an external characteristic 

length. 

Non-local constitutive relations for present nano-beams 

can be approximated to a one-dimensional form as 
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Fig. 1 The illustration of carbon nanotube 

 

 

Where (E) is the Young’s modulus, and the scale 

coefficient (e0a) in the modelling will lead to small-scale 

effect on the response of structures at nano-size. Assume 

that the displacement of the beam along the z axis is w(x,t) 

in terms of spatial coordinate x and time variable t (Fig. 1).   

For transverse vibration of nanotube, the equilibrium 

conditions of the Euler-Bernoulli beam can be written as 

(Rakrak et al. 2016) 
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where V and M are resultant shear force and bending 

moment of the beam, ρ is the mass density, A is the area of 

the cross-section of the beam, w is the transverse 

displacement of the microtubules, P(x) is the inter action 

pressure per unit axial length between the nanotube and the 

surrounding elastic medium, and t is the time variable.  

In addition the pressure per unit axial length, acting on 

the outermost tube due to the surrounding elastic medium, 

can be described by a Winkler type model (Dihaj et al. 

2018). 

),()( txwKxP win−=
 

(4) 

The elasto-dynamics differential equation that governs 

the mechanical vibration of the nanotube SWCNT based on 

the nonlocal Euler-Bernoulli beam theory is 
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(5) 

Eq. (5) describes the normal modes shapes of 

geometrically nonlinear vibrations of o beam resting on 

elastic foundation. The natural frequencies functions are 

determined also. This two elements, and determine the 

normal mode shape. For the integration of Eq. (5), let us 

assume the solution is in the form of a sinusoidal variation 

of w with circular frequency  

( ) tiexWtxw )(, =
 

(6) 

Substituting Eq. (6) into Eq. (5), equations of motion is 

expressed as follows 
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3. Non-dimensionalization 
 

The following non-dimensional variables are introduced 

in the present analysis to simplify the equations and to 

make comparisons in the studies possible. The non-

dimensional parameters for the Euler-beam on the Winkler 

foundation are defined as  
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Using these parameters, the non-dimensional form of 

Eq. (7) can be written as 
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and it concludes that the free dynamic response is harmonic 

and dependent of the frequency . The first equality of Eq. 

(8) is written 
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4. The homogeneous solution of differential 
equation 
 

Eq. (9) is a linear equation, homogeneous, with constant 

coefficients, which has the particular solutions by the form 

of eλx . The characteristic equation is 

0. 4224 =−+   (11) 

The frequency parameter λ is given by the lower real 

root, i.e., 
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Thus, the general solution of Eq. (9) is 
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and the constants A1, A2, A3 and A4 will be determined from 

the boundary conditions of the problem. 

 

 

5. The non-dimensionalized boundary conditions 
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Table 1 The associated nondimensionalized boundary 

conditions 

Simply supported ends 0
2
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The associated non-dimensionalized boundary 

conditions handled in this paper are given in Table 1. 

By substituting Eq. (13) into the boundary conditions, 

the eigenvalue problem may be expressed as 

     0= AS  (14) 

where {A}={A1, A2, A3, A4} and the matrix [S] is given 

below for nanotubes with various end conditions 
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For Simply supported beam 
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For Clamped ends 
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For Cantilevered beam 
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For a nontrivial solution, the determinant of the matrix 

[S] must vanish. This yields the following characteristic 

equations 

sin(λ)=0 For Simply supported beam 

tan(λ)=tanh(λ) For Clamped-Simply supported 

cos(λ).cosh(λ)−1=0 For Clamped ends 

cos(λ).cosh(λ)+1=0 For Cantilevered beam 

From Eq. (sin(λ)=0) results the natural frequencies 

values 

,.....3,2,1, == jj
 (16) 

From Eq. (12), with the absolute value of |λ|, results 

22
244

2

2

4



 j=

++
=

 

(17) 

To obtain natural frequencies values ωj, also 
4
j , will 

proceed further 






























+

++
−=

4222

2222442
2

)1(

)(

AL

EI

j

jj
j






 

(18) 

 

 

6. Results and discussion 
 

In the present study the impact of all parameters such as 

nonlocal small-scale effects, Winkler modulus parameter, 

vibration mode for four types of boundary conditions e.g., 

simply supported, clamped-simply, clamped ends and 

Cantilever beam on first, second and third frequencies of 

the SWCNTs have been studied. As a validation example, 

the first three natural frequencies of nonlocal Euler-

Bernoulli beam with various boundary conditions are 

studied and compared with Wang et al. (2007).  

The material properties used in the present study are the 

mass density ρ=2300 kg/m3, the poisson ratio υ=0.19, the 

Young’s modulus E=5.5 TPa (Yao and Han 2006).  

In the Table 2 compares the first three non-dimensional 

frequency of nonlocal nanobeam for four kinds of boundary 

conditions and L/d=10 obtained by the present method with 

the results of Wang et al. (2007). It can be seen in Table 6 

the good agreement of the proposed method of solution 

with various small scale parameters. 

Winkler modulus parameter has been considered here. 

The detailed of  First three non-dimensional frequency 

  for four kinds of boundary conditions with and 

without elastic medium using nonlocal Euler-Bernoulli 

beam model are listed in Table 3. The ratio of the length to 

the diameter, (L/d), is 10 and the scale coefficients, (α=0, 

0.5, 1). 

The results show the dependence of the frequency on 

the mode number and the elastic medium. It is noted that 

the frequency increases when elastic medium is neglected, 

this increasing is attributed to the stiffness of the elastic 

medium. With higher values of mode number the rate of 

increase of frequency reduces, and becomes more 

significant with the higher of small-scale parameter. This is 

interpreted as the small-scale effect makes the CNTs more 

flexible as CNT being assumed as atoms linked by springs, 

the external elastic medium “grips” the SWCNTs and forces  

520



 

Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix 

 

Table 2 First three non-dimensional frequency   of 

nonlocal Euler-Bernoulli beam for Simply supported, 

Clamped–simply, Clamped ends and Cantilever beam  

with (kwin=0, L/d=10) 

 Mode 1 Mode 2 Mode 3 

A 
Wang et al. 

(2007) 
Present 

Wang et al. 

(2007) 
Present 

Wang et al. 

(2007) 
Present 

Simply supported beam 

0 3.1416 3.141593 6.2832 6.283185 9.4248 9.424777 

0,1 3.0685 3.068531 5.7817 5.781668 8.0400 8.039987 

0,3 2.6800 2.679996 4.3013 4.301343 5.4422 5.442246 

0,5 2.3022 2.302231 3.4604 3.460401 4.2941 4.294061 

0,7 2.0212 2.021245 2.9585 2.958479 3.6485 3.648549 

Clamped–simply supported beam 

0 3.9266 3.926602 7.0686 7.068583 10.2102 10.210174 

0,1 3.8209 3.820892 6.4649 6.464884 8.6517 8.651699 

0,3 3.2828 3.282839 4.7668 4.766755 5.8371 5.837546 

0,5 2.7899 2.789928 3.8325 3.832499 4.6105 4.611530 

0,7 2.4364 2.436436 3.2776 3.277570 3.9201 3.921486 

Clamped beam 

0 4,7300 4.730041 7,8532 7.853205 10,9956 10.995606 

0,1 4,5945 4.594457 7,1402 7.140250 9,2583 9.258343 

0,3 3,9184 3.918368 5,1963 5.196310 6,2317 6.236756 

0,5 3,3153 3.315323 4,1561 4.156066 4,9328 4.948517 

0,7 2,8893 2.889340 3,5462 3.546228 4,1996 4.223876 

Cantilever beam 

0 1.8751 1.875104 4.6941 4.694091 7.8548 7.854758 

0,1 1.8792 1.879171 4.5475 4.547483 7.1459 7.145895 

0,3 1.9154 1.915370 3.7665 3.766536 5.2988 5.298544 

0,5 2.0219 2.021921 2.9433 2.943266 - - 

0,7 - - - - - - 

 

 

it to be stiffer. In additional, it is clearly that the frequency 

increases when the vibrational mode number increases. 

The Figs. 2-4 show the dependence of the frequency on 

the small scale and vibrational mode number of (SWCNTs) 

embedded in an elastic medium. The frequency serves as an 

index to assess quantitatively the scale effect on CNT 

vibration solution. It is observed from Figs. 2-4 that the 

frequency ratios are peak for local Euler-Bernoulli beam 

model if the scale effect between the individual carbon 

atoms in CNTs is neglected. However for larger values of α, 

this dependence becomes very largest. However, the small 

scale effect makes the beam more flexible. In additional, the 

ranges of the frequency for kinds of boundary conditions 

are quite different. For Clamped-simply Fig. 4, the range is 

the smallest for Clamped ends Fig. 2, but the range is the 

largest for simply supported Fig. 3. The reason for this 

difference is attributed to the boundary conditions effects. 

Furthermore, it is clearly that as the vibrational mode 

number increases, the frequency decreases. This 

significance in higher modes is attributed to the influence of 

small wavelength for higher modes. For smaller  

Table 3 The effect of Winkler modulus parameter on First 

three non-dimensional frequency   of nonlocal Euler-

Bernoulli beam for four kinds of boundary conditions and 

(L/d=10) 

Without elastic medium With elastic medium 

α mode 1 mode 2 mode 3 mode 1 mode 2 mode 3 

Simply supported beam 

0 3.141593 6.283185 9.424778 3.102895 6.278431 9.423370 

0.5 2.302231 3.460401 4.294057 2.198958 3.431617 4.279104 

1 1.730201 2.491001 3.061400 1.435812 2.411026 3.019494 

Clamped-simply supported beam 

0 3.926602 7.068583 10.210176 3.907000 7.065245 10.209068 

0.5 2.789928 3.832503 4.609050 2.734029 3.811403 4.598745 

1 2.078038 2.760644 3.289952 1.932109 2.702868 3.257411 

Clamped beam 

0 4.730041 7.853205 10.995598 4.718871 7.850772 10.994718 

0.5 3.315323 4.156077 4.925093 3.282515 4.139579 4.929401 

1 2.461007 2.982564 3.528925 2.377862 2.937074 3.494937 

Cantilever beam 

0 1.875104 4.694091 7.854758 1.663131 4.682661 7.852326 

0.5 2.021921 2.943266 4.745964 1.861268 2.895940 - 

1 3.430133 5.158199 - 4.316503 5.259422 - 
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Fig. 2 small scale effect on different frequency modes for 

simply supported beam and (kwin=0.1, L/d=10) 
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Fig. 3 small scale effect on different frequency modes for 

Clamped beam and (kwin=0.1, L/d=10) 
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Fig. 4 small scale effect on different frequency modes for 

Clamped simply supported beam and (kwin=0.1, L/d=10) 
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Fig. 5 The effect of elastic medium on first non-dimensional 

frequency of a short-SWCNT for clamped ends with 

different parameter α and L/d=10 
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Fig. 6 The effect of elastic medium on third non-

dimensional frequency of a short-SWCNT for clamped ends 

with different parameter α and L/d=10 

 

 

wavelengths, interactions between atoms are increasing and 

this leads to an increasing in the small scale effect.  

The effect of elastic medium on first and third non-

dimensional frequency of a short-SWCNT for clamped ends 

with different parameter α is shown in Figs. 5-6 with the 

aspect ratio is (L/d=10). It can be seen that the difference 

between the frequency with and without elastic medium it is 

very weak for small values of α and for the higher values 

this difference become clearly. In additional, the range of 

the frequency ratios without elastic medium is the smallest 

for frequency with elastic medium because the elastic 

medium grips the CNT and forces it to be stiffer. 

 

 

7. Conclusions 
 

In this paper, we provide the analysis analytical of non-

dimensional frequency of (SWCNTs) embedded in an 

elastic medium, based on non-local Euler-Bernoulli beam 

theory. The model analytical we mainly applied in this 

study to predict the vibration of a short SWCNT. 

Theoretical formulations include the small scale effect, the 

mode number, the aspect ratio and the elastic medium for 

kinds of boundary conditions.  A very good agreement was 

observed when the comparisons are made with the studies 

in literature. 

According to the study, the results showed the 

dependence of the non-dimensional frequency on the small-

scale coefficients, Aspect Ratio, mode number and Winkler 

modulus parameter. However, it is observed that the small 

scale effect makes the beam more flexible and the ranges of 

the frequency ratios for kinds of boundary conditions are 

quite different. The reason for this difference is attributed to 

the boundary conditions effects. Furthermore it is clearly 

that as an increase on the vibrational mode number leads to 

the largest dependence. This dependence in higher modes is 

attributed to the influence of small wavelength. In this 

study, the non-dimensional frequency is more affected by 

elastic medium. The reason of this more affected is 

attributed to the rigidity of elastic medium when the elastic 

medium grips the CNT and forces it to be stiffer.  
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