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1. Introduction 
 

Concrete is currently the most widely used construction 

material in the world. In fact, an average of about one (1) 

cubic meter of concrete per capita is produced annually. The 

design of concrete structures requires a thorough 

understanding of their material properties under various 

loading condition. Several experimental investigations have 

been carried out to examine the behavior of concrete 

(Shuraim 2016, Haeri et al. 2016, Shaowei et al. 2016). The 

correlation between the strength of concrete and their 

geometrical dimensions is known as the size effect. The size 

effects introduce a challenge to the transference of small-

scale measured strength data to the large-scale structures. to 

investigate the size effect on strength and fracture energy of 

concrete, with the experimental results well documented in 

several published papers such as in Van Vliet (2000) and 

further analyzed by other researchers such as Vorechovsky 

(2007). Van Vliet (2000) conducted a series of uniaxial 

tension experiments using dog bone shaped specimens. Zi 

et al. (2014) studied the size effect on equi-biaxial flexure 

strength of concrete by the ASTM C1550 flexure test and 

the ring-on-ring flexure of circular plates. The four-point 

flexure test of prismatic beams was also carried out to 

obtain uniaxial flexural strength for comparison. These  
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researches exhibit scale dependency in terms of tensile 

strength, due to the differences in micro-defects and 

macroscopic cracks. This important may be occurs in 

distinct element simulation. The distinct element method 

(DEM) allows fracturing and differential displacements 

between individual elements. PFC2D, a special DEM code, 

is based on circular elements and the fundamental laws of 

contact physics (Cundall 1971, Cundall and Strack 1979, 

Itasca 1999). Thus, it is ideal to simulate the behaviour of 

granular materials such as rock. PFC2D elements can also 

be bonded to describe consolidated rock and, in turn, bond 

breakage can be used to study fracture mechanics. The PFC 

codes have been applied for solving many rock mechanics 

problems at laboratory scales, such as tri-axial testing of 

rocks with complete stress–strain curves (Aoki 2004), 

failure around a circular opening under bi-axial 

compression (Fakhimi 2002), direct shear test of a rock 

fracture (Cundall 2001, Sarfarazi 2016, Haeri 2016), 

acoustic emissions (AE) (Hazzard 2000, 2004) and hydro-

fracturing tests of granite (Al-Busaidi) for laboratory scale 

simulations. Also PFC has been used to simulate large field 

scale rock engineering problems such as tunnel/ cavern 

excavation and evaluation of EDZ (Aoki 2004), tunnel face 

stability (Okabe 2004), design of tunnel lining (Tannant 

2004), rock cutting and slope stability analysis (Wang 

2003), mining (e.g., Sainsbury et al. 2003, Diederichs et al. 

2004), rock mechanics (e.g., Holt et al. 2003) and slope 

stability (e.g., Wang et al. 2003), sliding friction and the 

formation of fault gouges (e.g. Mora and Place 1998, 

Morgan and Boettcher 1999), seismic events and the short-

time response of adjacent rocks (Mora and Place 1993, 

Scott 1996, Dalguer et al. 2003), large-scale kinematics of 
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geodynamic processes (Erickson et al. 2001, Burbidge and 

Braun 2002, Strayer and Suppe 2002, Vietor 2003, Zhou et 

al. 2016, Zhou et al. 2018, Zhou et al. 2016, Wang et al. 

2018, Wang et al. 2018, Wang et al. 2018), rock mass with 

non-persistent joints (Bahaaddini et al. 2013b, Fan et al. 

2015, Ghazvinian et al. 2012, Park et al. 2004, Scholtès and 

Donzé 2012), especially with the development of smooth 

joint contact model (Hadjigeorgiou et al. 2009, Esmaieli et 

al. 2010, Mas Ivars et al. 2011, Chiu et al. 2013, 

Bahaaddini et al. 2013a, 2013b, 2014, Lambert and Coll 

2014). Many researchers have been accomplished to study 

the cracks initiation, propagation and coalescence in the 

cracked specimens containing a few open flaws under 

uniaxial, biaxial and shear loading (Zhou and Yang 2007, 

Zhou 2010, Lancaster et al. 2013, Zhou and Yang 2012, 

Mobasher et al. 2014, Noel and Soudki 2014, Oliveira and 

Leonel 2014, Kim and Taha 2014, Tiang et al. 2015, Wan 

Ibrahim et al. 2015, Silva et al. 2015, Liu et al. 2015, Haeri  

2015, Haeri et al. 2015a, b, Haeri et al. 2016, Fan et al. 

2016, Li et al. 2016, Sardemir 2016, Sarfarazi et al. 2016, 

Shuraim 2016, Wang et al. 2016, 2017, Zhou and Wang 

2016, Shemirani et al. 2016, Sarfarazi et al. 2017a, b, c, 

Wang et al. 2017, Shemirani et al. 2018, Zhou and Bi 

2018a, b, Haeri et al. 2013, Haeri et al. 2014, Haeri 2015, 

Haeri and Sarfarazi 2016a, b; Haeri et al. 2016). 

In previous research, the effects of model scale and 

particle size on engineering problem were ambiguous. 

Investigations of the effects of model scale and particle size 

on tensile strength, point load index and failure processes of 

numerical models is important to justify the applicability of 

the numerical modeling results. PFC2D numerical model 

has advantages in simulation failure mechanism under 

uniaxial compressive test over than other numerical 

methods such as crack initiation stress, crack propagation 

and crack coalescence. In this paper, various models with 

different scales and different particle sizes were simulate 

using PFC2D and tested under both of the compression test 

and shear test. The effects of model scale and particle size 

were cleared on the failure pattern of models, compressive 

strength and shear strength.  

 
 

2. General features of PFC2D 
 

A two dimensional distinct element method is used in 

form of computer code known as particle flow code 

(PFC2D) to numerically simulate the laboratory specimens 

(Itasca 1999 version 3.1; Potyondy and Cundall 2004). This 

distinct element code represents the material specimen as an 

assembly of rigid particles so that each particle can move 

independently and may interact with other particles at 

contact points. A central finite difference scheme is adopted 

in the discrete element method (DEM) to calculate the 

movements and interaction forces of these particles. In this 

approach two contact models are usually in use i.e., the 

linear and non-linear contact models.  In this study the 

linear contact model is preferred which provides a linear 

elastic relation in between the displacements and contact 

forces of the particles within the particle assembly. Fig. 6 

shows the basic linear contact model adopted in in the PFC 

code which is known as the contact force–displacement 

relationship. In this model, the linear point contact in 

between each two particles of the assembly is shown which 

relating the contact normal force component, Fn, contact 

overlap, Un, increment of shear force, ∆Fs, and shear 

displacements, ∆Us as given in the following equations. 

 

(1) 

where Kn and ks are the normal and shear stiffness of the 

contact, respectively. The frictional strength of the contact 

can be expressed as 

 
(2) 

where µ is the coefficient of friction in between the 

particles. The relative movements in between the individual 

particles within the particle assembly can only be 

represented by Eq. (1).  As a whole, when a group of 

bounded particles are to be considered in form of an 

assembly, the cemented contacts including both contact 

forces and torques are needed as shown in Figs. 6(a) and 

6(c). Therefore, the relationships between these incremental 

quantities can be formulated as 

 

(3) 

which are the incremental force-displacement relations and 

the incremental contact moments are expressed as 

 

(4) 

where Fn, Fs; Mn and Ms are the force components and 

torques (moments) about the center of the cemented-contact 

zone, respectively. kn and ks represent the normal and shear 

bond stiffness per unit area, θn and θs are the components of 

rotation angle, and A, I, and J are the area, moment of 

inertia, and polar moment of inertia of the bond cross-

section, respectively. Then, the strength of the cemented 

contact can be written as 

 

(5) 

where R is the radius of the cemented zone as depicted in 

Fig. 6(c), the stresses σc and τc are the tensile and shear 

strength of the cemented contact, respectively. However, the 

contact and bond stiffness can be used to relate the Young’s 

modulus for particle contacts Ec and particle bondage �̅�c as 

 

(6) 

where R(A) and R(B) are the radii of two circular particles in 

contact (Figs. 6(b), (c)). The cemented contacts expressed 

in Eqs. (3) to (8) are termed as parallel bonds in the PFC  
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Fig. 6 The force-displacement relationships for the bonding 

particle system (Potyondy and Cundall 2004) 

 

 

code. The mechanical properties of rock like materials can 

be simulated by using the parallel bond model (e.g., 

Peshkin and Sanderson 1989). 

A parallel-bonded model can be generated for PFC2D 

by using the suitable routines provide by Itasca (1999); 

version 3.1. however, some of the main micro-properties 

that should be defined may include: the ball-to-ball contact 

modulus, the stiffness ratio kn over ks, the friction 

coefficient of the ball, the normal and shear strengths of the 

bond, the ratio of standard deviation to the mean of both 

normal and shear strengths of the bond, the minimum Ball 

radius, the parallel-bond radius multiplier, the parallel-bond 

modulus, and the parallel-bond stiffness ratio. A calibration 

procedure is conducted to provide the appropriate micro 

properties to be used for the particle assembly. It is not 

possible to directly determine the particle contact properties 

and bonding characteristics of the particle assembly from 

the laboratory tests performed on laboratory model samples. 

The continuum behavior of the experimentally tested 

samples can be depicted from the macro-mechanical 

properties measured by these tests but the appropriate 

micro-mechanical properties for the numerically simulated 

modelled specimens can also be gained by using these 

testing results. Therefore, an inverse modeling procedure 

based on the trial and error approach is adopted to 

determine the appropriate micro-mechanical properties of 

the numerical models from the macro-mechanical 

properties determined in the laboratory tests (Itasca 1999). 

In this approach it is assumed some micro-mechanical 

property values and then solves the problem based on these 

assumed values. In the second stage the numerically 

estimated strength and deformation characteristics of the 

particle assembly are compared with those of the laboratory 

samples. This procedure is repeated till the micro-

mechanical property values that give a simulated 

macroscopic response close to those measured from 

laboratory tests. These adjusted values of the micro-

mechanical properties are then adopted for the mechanical 

analyses of discontinuous jointed blocks (Seyferth 2006). 

 

 

3. Preparing and calibrating the numerical model  
 

The standard process of generation of a PFC2D 

assembly to represent a test model involves four steps: (a) 

particle generation and packing the particles, (b) isotropic 

stress installation, (c) floating particle elimination, and (d) 

bond installation.  

Table 1 Micro properties used to represent the model with 

tensile strength of 3.6 MPa 

Property Value Property Value 

Type Disc 
Parallel bond radius 

multiplier 
1.4 

Density (kg/m3) 3000 
Young’s modulus of 

parallel bond (GPa) 
1.7 

Minimum radius (mm) 0.27 
Parallel bond stiffness 

ratio (pb_kn/pb_ks) 
3 

Size ratio 1.56 
Particle friction 

coefficient 
0.5 

Porosity ratio 0.05 
Parallel normal strength, 

mean (MPa) 
50 

Local damping 

coefficient 
0.7 

Parallel normal strength, 

std. dev (MPa) 
5 

Contact young modulus 

(GPa) 
12 

Parallel shear strength, 

mean (MPa) 
50 

Stiffness ratio (kn/ks) 1.7 
Parallel shear strength, 

std. dev (MPa) 
5 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 1(a) failure pattern in (a) physical sample, (b) PFC2D 

model. (c) numerical tensile strength and a comparison of 

its experimental measurements 

 
 
3.1 Brazilian test 

  

Brazilian test was used to calibrate the tensile strength  
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of three different models in PFC2D. Adopting the micro-

properties listed in Table 1 with the standard calibration 

procedures (Potyondy and Cundall 2004), three calibrated  

 

 

PFC particle assembly was created. The diameter of the 

Brazilian disk considered in the numerical tests was 54 mm. 

The specimens were made of 5,615 particles with different  

   
(a) (b) (c) 

   
(d) (e) (f) 

 
(g) 

Fig. 2 Rectangular models with same dimension of 54 mm×108 mm and mean particle diameter of (a) 0.27 mm, (b) 0.47 mm, 

(c) 0.67 mm, (d) 0.87 mm, (e) 1.07 mm, (f) 1.87 mm and (g) 2.27 
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Table 2 Brazilian tensile strength of physical and numerical 

samples 

Physical tensile strength (MPa) 3.2 

Numerical tensile strength (MPa) 3.6 

 

 

clump particle distributed in it to gain the best results. The 

disk was crushed by the lateral walls moved toward each 

other with a low speed of 0.016 m/s. Fig. 1(a), (b) illustrate 

the failure pattern of the numerical and experimental tested 

samples, respectively. The failure planes experienced in 

numerical and laboratory tests are well matching. The 

numerical tensile strength and a comparison of its 

experimental measurements are presented in Table 2. Also 

Fig. 1(c) shows numerical tensile strength and a comparison 

of its experimental measurements. Table 2 and Fig. 1(c) 

show a good accordance between numerical and 

experimental results.  
 

3.2 Numerical simulation  

 

 

3.2.1 Preparing the model  
After calibration of PFC2D, uniaxial compressive test 

was simulated by creating rectangular models (Fig. 2). 

Seven models with similar dimension of 54 mm×108 mm, 

and different particle size of 0.27 mm, 0.47 mm, 0.67 mm, 

0.87 mm, 1.07 mm, 1.87 mm and 2.27 mm were prepared 

(Fig 2). Also, five rectangular models with similar particle 

sizes, 0.27 mm, and dimension of 3 mm×6 mm, 6 mm×12 

mm, 12 mm×24 mm, 25 mm×50 mm and 54 mm×108 mm, 

were prepared (Fig. 3). Two loading wall were situated in 

the top and bottom of the models. Lower wall moves in Y 

direction and upper wall moves in opposite side of Y 

direction with a low speed of 0.016 m/s. concurrent with 

uniaxial test, direct shear test was performed on four 

numerical models. Dimension of the models were 75×100 

mm. Two narrow bands of particles with dimension of 37.5 

mm × 20 mm were removed from upper and lower of the 

model to supply the shear test condition (Fig. 4). The 

particle sizes change in four different values of 0.47 mm,  

   

(a) (b) (c) 

  

(d) (e) 

Fig. 3 Rectangular models with same mean particle diameter (0.27 mm) and dimension of (a) 3 mm×6 mm, (b) 6 mm×12 

mm, (c) 12 mm×24 mm, (d) 25 mm×50 mm and (e) 54 mm×108 mm 
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0.57 mm, 0.67 mm and 0.77 mm (Fig. 4(a), (b), (c) and (d). 

Lower wall moves in Y direction and upper wall moves in 

opposite side of Y direction with a low speed of 0.016 m/s. 

The models are under normal stress of 8 MPa. Left wall  

 

 

moves in X direction till desired normal stress was reached. 

 

3.2.2 Failure mechanism of numerical models  
a) Effect of mean particle diameter on the failure pattern  

  
(a) (b) 

  
(c) (d) 

Fig. 4 Rectangular models with same dimension of 75 mm×100 mm and mean particle diameter of (a) 0.47 mm, (b) 0.57 mm, 

(c) 0.67 mm and (d) 0.77 mm 
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in UCS test 

Fig. 5(a)-(g) shows progress of cracks in the rectangular 

models with mean particle size of 0.27 mm, 0.47 mm, 0.67 

mm, 0.87 mm, 1.07 mm, 1.87 mm and 2.27, respectively. 

Black line and red line represent tensile cracks and shear  

 

 

cracks, respectively. It’s clear that tensile cracks are 

dominant mode of failure occurs in all models. The cracks 

propagate in a diagonal path when mean particle sizes are 

small. The cracks were distributed at top and bottom of the 

model with increasing the particle size.  

   
(a) (b) (c) 

   
(d) (e) (f) 

 
(g) 

Fig. 5 Failure pattern in semicircular models with mean particle diameter of (a) 0.27 mm, (b) 0.47mm, (c) 0.67 mm, (d) 0.87 

mm, (e) 1.07 mm and (f) 1.27 mm; diameter of all models is 54mm 
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b) Effect of model dimension on the failure pattern in 

UCS test 

Fig. 6(a)-(e) shows progress of cracks in rectangular 

models with dimension of 3 mm×6 mm, 6 mm×12 mm, 12 

mm×24 mm, 25 mm×50 mm and 54 mm×108 mm, 

respectively. Black line and red line represent tensile cracks 

and shear cracks, respectively. It’s clear that tensile cracks 

are dominant mode of failure occurs in all models. The 

failure pattern is nearly constant in all models. In other 

word, in constant particle size, model dimension has not 

any effect on the failure pattern. 

c) Effect of mean particle diameter on the failure pattern 

in direct shear test 

Fig. 7(a)-(d) shows progress of cracks in the rectangular 

models with mean particle size of 0.47 mm, 0.57 mm, 0.67 

mm and 0.77 mm, respectively. Black line and red line 

represent tensile cracks and shear cracks, respectively. It’s 

clear that tensile cracks are dominant mode of failure occurs 

in all models. The shear bands propagate in all models. The 

lengths of oriented cracks were increases with increasing  

 

 

the particle size.  

 

3.2.3 The effect of model scale and uniaxial 
compressive strength  

Fig. 8 shows the effect of model diameter on the UCS 

while the particle size is constant.  

In constant particle size, The UCS increases with 

increasing the diameter of the models. 

 

3.2.4 The effect of particle size on Brazilian tensile 
strength  

Fig. 9 shows the effect of particle size on the UCS while 

model scale is constant (54×108). In constant model scale, 

UCS increases with increasing the diameter of particles.  

 

3.2.5 The effect of particle size on the shear strength  
Fig. 10 shows the effect of particle size on the shear 

strength while model scale is constant (75×100). In constant 

model scale, shear strength increases with increasing the 

diameter of particles.  

   
(a) (b) (c) 

  
(d) (e) 

Fig. 6 Failure pattern in semicircular models with diameter of (a) 75 mm, (b) 54 mm, (c) 25 mm, (d) 12.5 mm; particle 

diameter in all models is 0.27 mm 
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4. Results 
 

This paper investigates the effects of model scale and 

particle size on the uniaxial compressive strength and  

 

 

failure processes of PFC2D numerical models. For this 

purpose, rectangular models with same particle size, 0.27 

mm, and different model dimension, 3 mm×6 mm, 6 

mm×12 mm, 12 mm×24 mm, 25 mm×50 mm and 54 

mm×108 mm, were prepared. Also rectangular model with  

  
(a) (b) 

  
(c) (d) 

Fig. 7 Failure pattern in models with mean particle diameter of (a) 0.47 mm, (b) 0.57 mm, (c) 0.67 mm, (d) 0.77 mm; 

diameter of all models is 54 mm 
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Fig. 8 the effect of model diameter on the compressive 

strength 

 

 

Fig. 9 the effect of particle size on the uniaxial compressive 

strength 

 

 

Fig. 10 the effect of particle size on the shear strength 

 

 

diameter of 54 mm and different particle sizes, i.e., 0.27 

mm, 0.47 mm, 0.67 mm, 0.87 mm, 1.07 mm, 1.87 and 2.27 

mm were simulated using PFC2D and tested under UCS 

test. The result shows that tensile cracks are dominant mode 

of failure occur in all models. The cracks propagate in a 

diagonal path when mean particle sizes are small. The 

cracks were distributed at top and bottom of the model with 

increasing the particle size.  

Also, failure pattern is constant by increasing the model 

scale. The compressive strength was increased by 

increasing the model diameter and particle size.  

In direct shear test, the shear bands propagate in all 

models. The lengths of oriented cracks were increases with 

increasing the particle size. Also the shear strength was 

increased by increasing the particle size.  
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