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1. Introduction  
 

Damage in a structural system may be caused by various 

parameters, such as corrosion, excessive loading, crack 

opening, wear and tear of some parts of structure, 

unpredictable environmental conditions and impact by a 

foreign object. The researcher’s attention was on the 

structural damage detection in the recent decade. There are 

a lot of approaches in the field of damage identification, 

each of them has advantages and disadvantages, and WT is 

the most important approach among these approaches. The 

WT is a remedial method for precise signal analysis, which 

overcomes the problems exhibited by other techniques. 

Applying WT on response of damaged structures, produces 

acceptable results in the damage identification. Perturbation 

in the wavelet coefficients near a damage zone shows the 

presence of the damage. There are a lot of approaches that 

process the local changes in the structural parameters based 

on wavelets having emerged recently. Some of these are 

explained below.  

Bajaba and Alnefaie (2005) proposed a new technique 

that couples the modal analysis and WT for detection of 

multiple damages in a cantilevered beam with single and 

multiple damages. Mallikarjuna Reddy and Swarnamani 
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(2012) used mode shapes and strain energy data of the 

damaged plate to show the effectiveness of using spatial 

WT for detection and localization of small damages. 

Lotfollahi-Yaghin and Hesari (2008) used frequency 

analysis response of dam to identify crack in dam structure 

under wavelet analyzing. Magdalena (2011) used the first 

eight modes of a cantilever beam with damage in the form 

of a single notch of depth 20%, 10% and 5% of the beam 

height to present the results of experimental and numerical 

analyses of damage detection based on higher order modes. 

Bagheri and Kourehli (2013) proposed an effective method 

for the damage diagnosis of structures under seismic 

excitation via discrete WT based on changes in the seismic 

vibration responses. Balafas and Kiremidjian (2015) 

presented the development and validation of several novel 

data-driven damage sensitive features based on the 

continuous WT. Obrien et al. (2015) investigated a method 

for damage detection using a moving force identification 

algorithm. Yu et al. (2013) studied damage detection in a 

six-bay truss bridge model and used the fuzzy C-means 

clustering algorithm to categorize features for structural 

damage detection. Zhao (2012) identified the crack of the 

sprocket wheel by wavelet finite element method. Chen and 

Oyadiji (2017) identified damage property from the modal 

frequency curve via discrete WT. Hajizadeh et al. (2016) 

applied 2-D discrete wavelet to identify multi-cracks in 

plate structures by using static and dynamic responses. 

Hajizadeh et al. (2016) identified the damage type, damage 

existence and failure location in plate by wavelet and 

curvelet transform. 

There has been no considerable research on irregular 2D 

and 3D continuum structures with the help of WT. In this 
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study, the procedure of damage detection is performed 

based on using the distribution of coefficients of 2D and 3D 

discrete WT. The main aims of this study are: 

1- How, combination of an optimized FIS, with a WT, 

can detect the damage of irregular structures. 

2- Investigate the performance and accuracy of WT for 

damage detection of irregular plate and arch dams.  

The arch dams are one of the important 3D continuum 

structures which are exposed to local failures over their 

useful life. By identifying the exact location of the failure, it 

can be repaired. This will increase the useful life of the 

structure and save on additional costs resulting from major 

repairs or the construction of a replacement structure. 

 

 

2. An Overview of WT, FIS and PSO 
 

2.1 WT 
 

Wavelet analysis begins with the selection of a wavelet 

basic function among the available wavelets which are a 

function of location x (Kim and Melhem 2004, Chen et al. 

2014). This basic wavelet function is called mother wavelet, 

𝜓(𝑥). Then it would be delayed by m and transferred by n 

in space to form a set of basic functions 𝜓 𝑚‚𝑛(𝑥) shown 

by Eq. (1). 

𝜓𝑚‚𝑛(𝑥) = (
1

√𝑚
) 𝜓 (

𝑥 − 𝑛

𝑚
) (1) 

The function is centralized in n with the spreading ratio 

of m. Continuous or discrete WT correlates wavelet 

function 𝑓(𝑥) with 𝜓𝑚‚𝑛(𝑥). Eq. (2) is continuous WTs 

which decompose a signal in the space domain into a two-

dimensional function in the space-scale plane 𝑚‚ 𝑛. (Kim 

and Melhem 2004, Ovanesova and Suarez 2004). 

𝐶(𝑚‚𝑛) 

= (
1

√𝑚
) ∫ 𝑓(𝑥)𝜓(

𝑥 − 𝑛

𝑚
)

∞

−∞

𝑑𝑥 = ∫ 𝑓(𝑥)𝜓𝑚‚𝑛(𝑥)
∞

−∞

𝑑𝑥  
(2) 

Where, 𝐶 (𝑚‚𝑛) are wavelet coefficients and, m, n are 

real numbers and m≠0. 

A discrete type of the wavelet is often empowered by 

discretizing the dilation parameter m and the translation 

parameter n. The dilation and translation parameters are 

defined as 𝑚 = 2𝑟  and 𝑛 = 𝑘2𝑟  respectively, where r 

and k are set of integers. Discrete form of 𝜓𝑚‚𝑛(𝑥) is 

shown by Eq. (3). 

 𝜓𝑟‚𝑘(𝑥) = 𝜓(2−𝑟𝑥 − 𝑘) (3) 

Where 𝜓𝑟‚𝑘(𝑥) is discrete form of 𝜓𝑚‚𝑛(𝑥). This type 

of sampling from coordinates (m, n) is known as dyadic 

sampling, because the consecutive values of discrete scales 

are different by a factor of 2. (Kim and Melhem 2004). 

Application of discrete scales can describe discrete WT 

which is shown by Eq. (4). 

𝐶𝑟‚𝑘 = 2(
−𝑟
2

) ∫ 𝑓(𝑥)𝜓(2−𝑟𝑥 − 𝑘)𝑑𝑥
∞

−∞

 

= ∫ 𝑓(𝑥)𝜓𝑟‚𝑘(𝑥)𝑑𝑥
∞

−∞

 

(4) 

Where, 𝐶𝑟‚𝑘 are wavelet coefficients in discrete WT 

form. 

Resolution of signal is defined by the inverse 

scale (1 𝑚⁄ ) = 2−𝑟, where the integer r is related to the 

level. The smaller the level and scale, the higher the 

resolution would be available. 

Note that the continues WT 𝐶(𝑚‚𝑛) is possible for the 

small scales, 𝑚 < 𝑚0. In this case, complete information 

about 𝐶(𝑚‚𝑛)  for  𝑚 > 𝑚0 is required. To collect this 

information, it is necessary to produce another function 

∅ (𝑥) , which returns to the scale function. Substituting 

𝜓 (𝑥) by ∅ (𝑥) in Eq. (2), function 𝐷(𝑚0 ‚𝑛) shown by 

Eq. (5) is obtained.  

𝐷(𝑚0 ‚𝑛) = ∫ 𝑓(𝑥)
1

√𝑚0

∅ (
𝑥 − 𝑛

𝑚0

) 𝑑𝑥
∞

−∞

 

= ∫ 𝑓(𝑥)∅𝑚0‚𝑛(𝑥)𝑑𝑥
∞

−∞

 

(5) 

The existence of function ∅ (𝑥)  for the numerical 

calculations of fast WT is very important. It must be noted 

that the dyadic scales are used for m, n and the reference 

level, R, must also be taken into account. By applying Eq. 

(4) to this case, a set of wavelet coefficients will be 

obtained. These set of wavelet coefficients is shown by Eq. 

(6). (Kim and Melhem 2004, Staszewski 1998). 

𝑐𝐷𝑅(𝑘) = ∫ 𝑓(𝑥)𝜓𝑅‚𝑘(𝑥)𝑑𝑥
∞

−∞

 (6) 

The coefficients 𝑐𝐷𝑅(𝑘) are known as the reference 

level R detail coefficients. By applying the dyadic scale and 

reference level R, Eq. (5) will tend to other set of 

coefficients which is shown by Eq. (7).   

𝑐𝐴𝑅(𝑘) = ∫ 𝑓(𝑥)∅𝑅‚𝑘(𝑥)𝑑𝑥
∞

−∞

 (7) 

The coefficients 𝑐𝐴𝑅(𝑘)  are known as the 

approximation coefficients for reference level R.  

The function ∑ 𝑐𝐷𝑅(𝑘)𝜓𝑅‚𝑘(𝑥)∞
𝑘=−∞  is known as the 

detail function of reference level R. 

𝐷𝑟(𝑥) = ∑ 𝑐𝐷𝑟(𝑘)𝜓𝑟‚𝑘

∞

𝑘=−∞

(𝑥) (8) 

Now we have two sets of signals, but in damage 

detection, we are interested in the details of the signals. If 

𝑓(𝑥)is assumed to be a structural response (for example, a 

deformation curve), the signals 𝐷𝑟(𝑥) contain information 

necessary for determining damage in the structure (Kim and 

Melhem 2004, Ovanesova and Suarez 2004). 

The wavelets in higher dimensions are obtained by the 

tensor product of one-dimensional wavelet, (Mallat 2008). 

In short, this concept is expressed in a two (𝑅2) and three-

dimensional (𝑅3) state, in which 𝑅2‚𝑅3 is considered with 

coordinates (x, y) and (x, y, z) respectively.  

Assume that ∅  and 𝜓  are the scale and mother 

wavelet function, the two-dimensional separable functions 

are shown by Eqs. (9)-(10). 

𝜙𝑟𝑘𝑠𝑡(𝑥‚𝑦) = 𝜙𝑟𝑘(𝑥)𝜙st(𝑦) (9) 
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𝜓𝑟𝑘𝑠𝑡(𝑥‚𝑦) = 𝜓𝑟𝑘(𝑥)𝜓st(𝑦) (10) 

Where r, k, s, t are integers and  𝜙𝑟𝑘 , 𝜓𝑟𝑘 ,   𝜙𝑠𝑡 , 

𝜓𝑠𝑡  are shown by Eqs. (11)-(14) 

𝜙𝑟𝑘(𝑥) = 2
𝑟
2𝜙(2𝑟𝑥 − 𝑘) (11) 

𝜓𝑟𝑘(𝑥) = 2
𝑟
2𝜓(2𝑟𝑥 − 𝑘) (12) 

𝜙𝑠𝑡(𝑦) = 2
𝑠
2𝜙(2𝑠𝑦 − 𝑡) (13) 

𝜓𝑠𝑡(𝑦) = 2
𝑠
2𝜓(2𝑠𝑦 − 𝑡) (14) 

These bases are orthogonal. In addition, each 𝜓𝑟𝑘 is 

perpendicular to all 𝜙𝑟𝑘 and each 𝜓𝑠𝑡  is perpendicular to 

all 𝜙𝑠𝑡, indices r and 𝑠 vary between 0 and upper limit 

(integer). The indices 𝑘  and 𝑡  correspond to the 

transferred components, which depend on arbitrary 

amplitude.  

In three-dimensional separable case, 3D wavelet 

functions are shown by Eqs. (15)-(16). (Kaarna et al 2008, 

Mallat 2008). 

𝜙𝑟𝑘𝑠𝑡𝑝𝑞(𝑥‚𝑦‚ 𝑧) =  𝜙𝑟𝑘(𝑥)𝜙st(𝑦)𝜙pq(𝑧) (15) 

𝜓𝑟𝑘𝑠𝑡pq(𝑥‚𝑦‚ 𝑧) = 𝜓𝑟𝑘(𝑥)𝜓st(𝑦)𝜓pq(𝑧) (16) 

Where r, k, s, t, p, q are integers,  𝜓𝑝𝑞(𝑧)  is one-

dimensional orthonormal discrete mother wavelet which its 

equation is shown by Eq. (18) and 𝜙𝑝𝑞(𝑧) is scale function 

and its equation shown by Eq. (17).  

𝜙𝑝𝑞(𝑧) = 2
𝑝
2𝜙(2𝑝𝑧 − 𝑞) (17) 

𝜓𝑝𝑞(𝑧) = 2
𝑝
2𝜓(2𝑝𝑧 − 𝑞) (18) 

 

2.2 FIS 
 

Concept of fuzzy set was introduced for the first time by 

Lotfizadeh (1965) who is among the leading developers of 

fuzzy logic as a substitute for the Aristotelian logic. In the 

Aristotelian logic, each proposition or phrase might be true 

or false, which is attributed to 1 or 0, respectively. 

However, in the fuzzy logic, a proposition might have a 

value between 0 and 1, the proposition might be not 

completely true or false, but with the degree of trueness and 

falseness. For more information on features of the fuzzy 

sets, see references, (Sivanandam et al. 2007, Nguyen and 

Walker 2005). 

In this paper, fuzzy is used as an approximator. This 

article only focused on FIS in forming the appropriate 

structure of two and three-dimensional matrices. The 

corresponding structural analysis is used for two and three-

dimensional WTs.  

 

2.3 PSO algorithm 
 

PSO algorithm was first introduced by Eberhart and 

Kennedy (1995). The algorithm is inspired by the lives of 

birds, living in groups and meeting their requirements such 

as searching for foods in flocks. For more information on 

features of the PSO algorithm, see references: (Li et al. 

2007, Perez and Behdinan 2007, Shi and Eberhart 1998).  

 In this article, the PSO algorithm is used to optimize 

FIS. 

 

 

3. Optimal fuzzy system design with PSO intelligent 
algorithm 

 

A fuzzy system contains name, type, rules, combining 

methods of conditional proposition (and method) and 

conditional proposition (or method), input, output, 

aggregation method and defuzzification method. 

In general, there are two types of fuzzy system, 

including Mamdani and Sugeno. (Mamdani and Assilian 

1975, Sugeno 1985). The first two parts of the fuzzy 

inference process, fuzzifying the inputs and applying the 

fuzzy operator, are exactly the same. The main difference 

between Mamdani and Sugeno is that the Sugeno output 

membership functions are either linear or constant. Since 

Sugeno is more compressed and computationally efficient 

compared to the Mamdani, therefore, in creating the fuzzy 

models, it can be benefited from optimization techniques. In 

this paper, Sugeno type is used in FIS.  

Training data included the input data and output data. 

Each input data contains a few variables, for instance, the 

three-variable input vector X is 𝑋𝑇 = {𝑋1 𝑋2 𝑋3} , and 

output 𝑌 is 𝑌 = {𝑌1}, and corresponding to each input data 

X, will be an output data Y. The relationship between input 

vectors and outputs is expressed by the rules.  

Conditional proposition (and method), describes how to 

combine inputs and output based on their membership 

functions in each rule. Aggregation combines rules. 

Conditional proposition (or method) describes how to 

combine rules and defuzzification extracts the numeric 

value of output from aggregation.  
Each input data variable and each output data contain 

three sections, including the name such as 𝑋1, 𝑋2, 𝑋3, range 
of operation, and membership function. Membership 
function is a function that specifies the value of the 
attributes of the variables in the desired fuzzy set. There are 
many membership functions, some of which included 
Gaussian, triangular, trapezoidal, sigmoid functions.  

The structure of a fuzzy set with three inputs and one 

output shown in Fig. 1. 

Among all the blocks of this structure, the input and 

output, and among the various parts of input and output, the 

membership function is focused. Each membership 

function, depending on the type of function, has parameters 

that are working as function regulator. For instance, the 

Gaussian membership function parameters are the mean and 

standard deviation of the Gaussian function. The 

optimization techniques can make the membership 

parameters more efficient, so that the fuzzy system becomes 

able to simulate the data in the best possible manner. 

Using PSO optimization algorithm, the parameters are 

regulated in such a way that the fuzzy inference system 

provides the best overlap from the response space. The 

optimization algorithm of membership function parameters 

of the fuzzy inference system using PSO method is as 

follows: 

1. Obtaining the training data. 
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2. Creating a basic fuzzy system. 

3. Regulating the membership function parameters of the 

basic fuzzy system using modeling error function 

(minimizing the mean square error) by the PSO intelligent 

optimization algorithm.  

4. Obtaining the fuzzy system with best values for 

membership function parameters. 

 

 

4. Wavelet damage detection procedure 
 

Response of structure is an important data, which is 

required to find damage in a structure. In theoretical 

problem response of structure is obtained by finite element 

methods. In this study, linear elastic analysis is performed. 

In practical problem response of structure is obtained by 

sensors, which are installed in some points of structure. In 

irregular structure, damage detection by wavelet is formed 

in four stages mentioned bellow. 

1. Obtaining the response of structure. 

2. Regulating the response of structure. 

3. Applying wavelet transform on regulated response.  

4. Finding perturbation in detail matrix.      

All of these are used in regular structure except stage 2. 

Stage 2 is an important subject in damage detection of 

irregular structure by wavelet, which is proposed in this 

paper, and discussed in this section.  

Before proceeding to the subject, it is necessary to 

define regularity in 2D and 3D continuum structures.  

 

 

Fig. 2 Geometrically irregular two-dimensional plate 

 

 

In this study, a 2D or 3D continuum structure is defined 

as a 2D or 3D regular continuum structure if the structural 

meshes have an equal distance in two or three directions, 

otherwise it would be an irregular continuum structure. 

A geometrically irregular 2D plate, is shown in Fig. 2. 

The elements of plate are configured according to the 

following mesh.  

As can be observed, the sizes of the elements are not the 

same. Consequently, the element nodes that the structural 

responses are obtained at them have different distances. In 

order to apply the 2D wavelet transform, these intervals 

must be equal. The question is, how to overcome this 

problem? 

The plate shown in Fig. 2 is supposed to be positioned 

inside a regular plate (ABCD) and this regular plate is 

divided into regular vertical and horizontal distances, until 

the following mesh plate shown in Fig. 3 would be 

obtained. This mesh would provide the expected regular 

two-dimensional matrix for 2D discrete wavelet transform. 

Here are two things that need to be considered. 

 

Fig. 1 The structure of a fuzzy set with three inputs and one output 
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Fig. 3 The irregular plate placed inside a hypothetical 

regular rectangle 

 

 

Fig. 4 Geometrically irregular three-dimensional 

 

 

1- There are some points in the meshing that are located 

outside the studied structure which they did not actually 

exist (empty circle with red color).  

2- There are some points (solid circle with blue color) 

on the studied structure that they are not the points, which 

their responses are obtained from finite elements analysis 

(the mesh in Fig. 2). FIS, which optimized by PSO 

algorithm, is used to find the structural responses at these 

points. 

It is recommended to add some points near or outside 

the structure’ boundary with zero value to the mesh input 

points responses to have more precise results for fuzzy 

system. The results of optimized FIS are acceptable if the 

correlation coefficient between real data (which is obtained 

by finite element analysis) and approximation data (which 

is obtained by optimized FIS) reached the maximum. The 

ordering of input data into the FIS program varies so much 

to achieve this goal. 

The mathematical formula for computing correlation 

coefficient between two variables (x, y) is shown by Eq. 

(19) 

𝑓(𝑥. 𝑦) 

= (
𝑛 ∑ 𝑥𝑦 − (∑ 𝑥)(∑ 𝑦)

√𝑛(∑ 𝑥2) − (∑ 𝑥)2√𝑛(∑ 𝑦2) − (∑ 𝑦)2
) 

(19) 

where, f is correlation coefficient and n is number of pair of 

data, x is real data, y is approximation data. If x and y have a 

strong positive linear correlation, correlation coefficient is 

close to number +1. A correlation coefficient value of 

 

Fig. 5 The regular cubic with equal intervals in three 

directions 

 

 

Fig. 6 The irregular dam placed inside a cubic 

 

 

Fig. 7 Some point which add near or outside the dam’s 

boundary 

 

 

exactly +1 indicates a perfect positive fit. 

The presented dam is a geometrically irregular three-

dimensional dam, which its elements are configured 

according to the mesh, shown in Fig. 4.  

The responses are obtained at finite element points 

(mesh in Fig. 4), As can be observed, the sizes of the 

elements are not the same. Consequently, the element nodes 

have different distances. In order to apply the 3D discrete 

WT, these intervals must be equal as shown in Fig. 5. The 

question is how to overcome this problem? 

The dam shown in Fig. 4 is supposed to be positioned 

inside a regular cubic Fig. 6 and this regular cubic is 

divided into regular distances to provide the expected 

regular three- dimensional matrix for 3D discrete WT. It is 

recommended to add some point Fig. 7 near or outside the  
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Fig. 8 Irregular plate which the damaged area shown by 

number (2) and purple color 

 

 

Fig. 9 Graph of real data and approximation data (which is 

obtained by optimized FIS) 

 

 

dam’s boundary with zero value to the mesh input points 

responses to have more precise results for FIS. There are 

some points on the studied dam that they are not the points, 

which their responses are obtained from finite elements 

analysis. FIS, which optimized by PSO algorithm, is used to 

find the structural responses at these points. 

 

 

5. Numerical example 
 

In order to show the capabilities of the proposed method 

for identifying structural damage, three illustrative test 

examples are considered. The first example is an irregular 

plate with one damaged zone, the second one is a hole plate 

with one damaged zone and the third example is a dam with 

one damaged zone. 

 

5.1 Plate with one damaged zone 
 

The presented irregular plate shown in Fig. 8 is 

considered with the height of 6 m, width of 5 m at the top, 

width about of 6 m at the bottom, thickness of 0.10 m, and 

elasticity module of 3 𝐸10 𝑁 𝑀2⁄ . In the area shown by 

number (2), elasticity modulus of the plate was reduced by 

50%. It has fixed support in all borders and a uniform load 

(50000 𝑁 𝑀2⁄ ). The mentioned plate was modeled, loaded, 

and analyzed by finite elements method. The displacement 

was considered as the response. The responses were 

provided as the input to the FIS which optimized by PSO 

algorithm. Conformity of real data and approximation data 

is shown in Fig. 9, in this figure x axis shows number of 

 

Fig. 10 Correlation coefficient (Eq. (19)) of real data and 

approximation data 

 

 

Fig. 11 Perturbation in damaged area (detail matrix) 

 

 

Fig. 12 Irregular hole plate which the damaged area is 

shown by number (2) and purple color 

 

 

outputs and targets data (NOTD) and y axis shows 

normalized response (NR) of these data. Correlation 

coefficient (Eq. (19)) between real data and approximation 

data is shown in Fig. 10. 

In the next step, using the FIS which optimized by PSO 

algorithm, the original 2D matrix representing plate 

response was formed. This matrix was also analyzed using 

the 2D wavelet transform (mother wavelet is shown by Eq. 

(10)) for the displacement responses, and in the detailed 

matrix, a jump in the damaged area is shown in Fig. 11. In 

this figure, the x and y axes indicate the half number of 

points (HNP) that the optimized FIS calculates the response 

matrix at those points and in those directions. 

 

5.2 Plate with one hole and one damaged zone 
 

The presented irregular plate shown in Fig. 12 is 

considered with a hole with the height of 6 m, width of 5 m  
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Fig. 13 Graph of real data and approximation data (which is 

obtained by optimized FIS) 

 

 

Fig. 14 Correlation coefficient (Eq. (19)) of real data and 

approximation data (which is obtained by optimized FIS) 

 

 

Fig. 15 Perturbation in damaged zone (detail matrix) 

 

 

at the top, width of 8m at the bottom, thickness of 0.10m, 

and elasticity module of  3 𝐸10 𝑁 𝑀2⁄  . In the area 

shown by number (2), elasticity module of the plate was 

reduced by 50%. 

It has fixed support in all borders and a uniform load 

(50000 𝑁 𝑀2⁄ ). All of the process mentioned in previous 

example is done in this plate and the simulate results are 

shown in Figs. 13-15. 

 

5.3 Dam with one damaged zone 
 

The presented dam shown in Fig. 16 has the height of 

140 m, width of 190 m at the top, and width of 90 m at the 

bottom. In the zone shown darker (purple color), elasticity 

module of the dam was reduced by 50%. The above-

mentioned dam was modeled, loaded (including weight plus 

hydro static load), and analyzed by a finite element 

software: the principal stress (S1) was considered as the 

response. The response was provided as the input to the FIS 

 

Fig. 16 The dam which in the zone shown darker 

(illustrated by purple color), elasticity module of the dam 

was reduced by 50% 

 

 

Fig. 17 Graph of real data and approximation data (which is 

obtained by optimized FIS) 

 

 

Fig. 18 detail Matrix (Out of the damaged region) 

 

 

Fig. 19 detail Matrix (middle of damaged region) 

 

 

which optimized by PSO algorithm then the FIS which 

optimized by PSO algorithm perfume the process until the 

correlation coefficient (Eq. (19)) of real data and 
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approximation data (which is obtained by optimized FIS) 

reached the maximum (close to number +1). Conformity of 

real data and approximation data is shown in Fig. 17. 

Then, using the FIS which optimized by PSO algorithm, 

the original 3D matrix representing dam response was 

formed. This matrix was also analyzed using the 3D 

discrete WT (mother wavelet is shown by Eq. (16)) for 

principle stress responses. It is shown Figs. 18-19 that detail 

matrix can be specified the damaged zone of dam by 

perturbation in this area. In these figures, the y and z axes 

indicate the half number of points (HNP) that the optimized 

FIS calculates the response matrix at those points and in 

those directions. 

 
 
6. Conclusions 

 

In this paper, a new method for irregular two and three-

dimensional structural damage detection is based on a 

combination of WT and FIS, which optimized by PSO is 

proposed. Based on the numerical results the main 

conclusions are as follows: 

1. Structural responses matrix of irregular 2D or 3D 

continuum structure can be obtained by transferring the 

irregular structure inside a regular imaginary plate or 

cube.   

2. The FIS, which optimized by PSO is suitable to 

estimate the structural responses of the irregular points 

to a regular domain. This ability can be empowered by 

adding a number of points near or outside the structure’s 

boundary with zero value to the mesh input points. This 

capability can prepare suitable two and three-

dimensional structural response matrix (because the 

responses of a continuum structure should be evaluated 

at equal distance) for applying WT.  

3. The details matrix which is obtained by applying 2D 

or 3D WT to structural response matrix can specify the 

damaged zones of 2D or 3D continuum structures by 

perturbation in these areas. 
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