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1. Introduction 
 

In conventional analysis and design of framed 

structures, the behavior of beam-to-column connections is 

treated as either ideally pinned or perfectly rigid, which 

circumvents the need of properly accounting for the actual 

connection stiffness. On the other hand, experimental 

findings exhibit a broad spectrum of behaviors of the 

connections in between these two extreme cases, so that 

semi-rigid, or partially restrained, connections are more 

appropriate idealizations (Jones et al. 1983, Bjorhovde et al. 

1990).  

Building codes of steel structures such as Eurocode 3 

(EC3) (CEN 2005) and the AISC-LRFD Specification 

(AISC 1994) have long considered semi-rigid connections 

in addition to rigid and pinned connection. However, the 

relevance of this topic is not limited to steel framed 

structures (Chen and Lui 1987, Chiorean 2009, Csébfalvi 

2007, Hadianfard and Razani 2003, Sakurai et al. 2001, 

Sekulovic and Salatic 2001, Simões 1996, Thai et al. 2016, 

Zohra and Nacer 2018, Artar and Daloglu 2015, Gorgun 

and Yilmaz 2012, Esfandyary et al. 2015, Hadidi and Rafiee 

2014, Katkhuda et al. 2010, De Domenico et al. 2018) but 

also apply to other structures, for example precast  
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reinforced concrete structures (Kartal et al. 2010, Görgün 

1997), steel-braced reinforced concrete frames (Basaga et 

al. 2012), steel-concrete composite frame systems (Nie et 

al. 2011, Faella et al. 2008, Amadio et al. 2006, Pisano et 

al. 2014, 2015, De Domenico et al. 2014), timber-concrete 

composite beams (Agel and Lokaj 2014), as well as timber 

structures (Larsen and Jensen 2000). Almost all of the 

above quoted literature studies were based on the use of 

rotational spring stiffness to characterize the semi-rigid 

connection, or the connection percentage, which is 

expressed in terms of a so-called “fixity factor” (Chiorean 

2009, Sekulovic and Salatic 2001, Simões 1996, Thai et al. 

2016, Kartal et al. 2010). The commonly used approach is 

to incorporate moment-rotation relationships to describe the 

behavior of the joint, which is generally featured by a 

nonlinear constitutive behavior whose main parameters are 

calibrated according to experimental data (Jones et al. 1983, 

Chen and Lui 1987, Kishi and Chen 1990).  

Experimental testing on the rotational stiffness often 

leads to a large scatter of measures, even when the same 

kind of connection is investigated: for instance in (Rauscher 

and Gerstle 1992) the coefficient of variation of the initial 

stiffness of double-web angle steel connections was as high 

as 23%. This indicates that results arising from a 

deterministic model of the connection may lead to wrong 

estimates of the actual behavior. Moreover, due to the large 

scatter of experimental data it is quite difficult for an 

engineer to decide which value of the rotational stiffness to 

use, and to assess which consequences such an assumption 

has in the design process. On the contrary, these questions 
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could be answered by incorporating the randomness of the 

beam constraints within a probability-based design 

approach. To deal with semi-rigid connections modelled as 

random variables, various approaches were proposed in the 

literature: typically, Monte Carlo simulation (MCS) 

techniques (Thai et al. 2016) in conjunction with stochastic 

finite elements (Hadianfard and Razani 2003, Çavdar et al. 

2009, Adhikari and Manohar 1999) or the perturbation 

method (Sakurai et al. 2001) were adopted; alternatively, 

interval analysis is performed in (Tangaramvong et al. 

2016) to obtain the extreme stochastic response of a semi-

rigid frame. However, the accuracy of the approximated 

results underlying the MCS is strictly related to the number 

of samples that are generated. Indeed, the probability 

density function (PDF) of the response is approximated 

with reasonable accuracy provided that thousands of 

simulations, not to say millions, are carried out, especially 

when strongly nonlinear input-output relationships are 

involved. 

Along this research line, in this paper we attempt to 

characterize, from a probabilistic point of view, the static 

structural response of an individual beam (which is isolated 

from a more general framed structure) and of simple frames 

with partially restrained end nodes. More specifically, we 

investigate to what extent the uncertainty in the semi-rigid 

constraints affects the stochastic structural response in 

terms of a few indicators that are of interest for design 

purposes, including the element-stiffness-matrix terms, the 

reactions at the beam ends, the mid-span deflection and the 

mid-span bending moment. The Probabilistic 

Transformation Method (PTM), is employed to readily 

derive the exact PDFs of the above response indicators. The 

PTM, based on a well-known relationship between the 

PDFs of two vectors of random variables (Papoulis and 

Pillai 2002), is here resorted to in the peculiar form 

presented in (Falsone and Settineri 2013a, Falsone and 

Settineri 2013b). Connection flexibility at the beam ends is 

incorporated based on a linear approximation, i.e., only the 

first branch of the actual nonlinear moment-rotation curve 

is addressed, which is characterized by a constant initial 

stiffness. The beam fixity factors or connection percentages 

are treated as uniformly distributed random variables. The 

analysis of the PDFs of the aforementioned response 

indicators sheds light on the vital importance of a 

probability-based approach: indeed, results inferred from 

deterministic average values, which could be adopted for a 

preliminary assessment, may lead to misleading estimates 

of the actual beam response because they are considerably 

different from the median of the corresponding PDF. More 

importantly, it is seen that such deterministic average values 

may in some cases represent non-conservative estimates 

from a design viewpoint.  
Although most of the presented numerical applications 

refer to steel semi-rigid connections, the present research 
work is of analytical nature and the discussed approach and 
analysis method is, in principle, applicable also to other 
fields, for instance precast reinforced concrete structures, 
steel-braced reinforced concrete frames, steel-concrete 
composite frame systems, timber-concrete composite 
beams, as well as timber structures. Therefore, the aim of 
the paper is directed towards a general class of engineering  

 

Fig. 1 Typical moment-rotation behavior of rigid and 

pinned idealizations along with that of semi-rigid beam-to-

column connection 

 

 

problems, not just confined to steel frames. 

 

 

2. Deterministic response of beams with semi-rigid 

nodes 
 

2.1 Beams with semi-rigid end nodes modeled via 
rotational springs 
 

Typically, framed structures are analyzed and designed 

considering some idealizations (cf. Fig. 1). For instance, 

reinforced concrete framed structures are usually treated as 

frames with perfectly rigid beam-to-column connections, 

whereas steel framed structures are modelled with ideally 

pinned connections at the joints. In reality, the moment-

rotation relationship of joints is more appropriately and 

more generally described by semi-rigid (or partially 

restrained) connections, in that the actual rotational 

behavior lies in between the two extreme cases of pinned 

(zero rotational stiffness) and rigid (zero rotation) 

connection. The partially restrained joints considerably 

affect the overall moment distributions and displacements 

of the structure, so that it is of interest to incorporate semi-

rigid connections into the model. Accounting for the actual 

semi-rigid behavior of connections in the design of 

structures is both realistic and economical, because the 

redistribution of internal stress leads to more balanced 

results between the two extreme scenarios of pinned and 

rigid connections.  

An effective and straightforward way to incorporate the 

characteristics of semi-rigid connections is by means of 

rotational springs at the beam end nodes. The moment-

rotation behavior of the ith joint of a structure is thus 

modelled either through a constant spring rotational 

stiffness ki, thus relying on a linearized model, or via a more 

complicated nonlinear spring rotational stiffness function 

ki(φi) wherein the tangent stiffness depends on the actual 

value of the rotation experienced by the joint φi. In this 

paper, attention is limited to the former case, in that the 

partially restraint is featured by a constant spring stiffness 

ki. This stiffness represents the so-called initial stiffness of 

the connection that is identified in the first branch of the 

actual nonlinear moment-rotation curve (i.e., corresponding 

to reasonably low rotation values, cf. again Fig. 1). These 

simplifying assumptions restrict the scope of the present 
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work to structures subjected to static loading. Moreover, 

due to the linear rotational behavior, the following results 

and conclusions only apply to serviceability limit states, 

where the functioning of the structure or structural members 

under normal use is of interest. Extension to ultimate limit 

states would be desirable to investigate the probability-

based response beyond the elastic limit, for instance in 

terms of collapse moment or ultimate rotation. This would 

require extension of the present study by incorporating a 

nonlinear rotational relation, which is the object of an 

ongoing research of the authors. With reference to the 

sketch depicted in Fig. 2, a constant cross-section beam of 

length L, having moment of inertia I and made of a material 

with Young’s modulus E is partially restrained at its end 

nodes 1 and 2 by two rotational springs. The relation 

between rotations at the beam ends 
(b) ( 1,2)i i =  and 

rotations of the nodal restraints ( 1,2)i i =  is expressed as 

(r) (b)

1 1 1

0

(r) (b)

2 2 2

( )
;  

( )

x

x L

dw x

dx

dw x

dx

  

  

=

=

− = = −

− = = −

 
(1) 

where 
(r) ( 1,2)i i =  represents the additional, relative 

spring rotation due to the flexibility of the rotational springs 

and w(x) is the transversal displacement of the beam axis. In 

the absence of rotational springs, that is in the case of 

perfectly rigid connections, 
(r) 0i → and 

(b) ( 1,2)i i i  = , and, consequently, the distinction 

between rotations at the beam ends and rotations at the 

nodal restraints is meaningless. On the contrary, due to the 

flexibility of the connection, a relative rotation 
(r) ( 1,2)i i =  is induced by the rotational springs. The 

bending moment at the beam ends depends on the relative 

rotations 
( r )

i  and on the spring rotational stiffness ki or, 

equivalently, the spring deformability λi=1/ki as follows 

(r)

(r) ( 1,2)i

i i i

i

M k i





= − = − =  (2) 

where the minus sign means that the moment reaction at the 

beam end is opposed to the relative spring rotation. 

Focusing on the flexural behavior of the beam, we consider 

the element displacement array 1 1 2 2[ , , , ]T w w =u . The 

stiffness matrix of a beam having rotational springs at its 

ends may easily be constructed by analyzing four loading 

scenarios in which we impose one displacement at a time 

equal to one and the remaining three displacements equal to 

zero. Through the fourth-order beam-bending differential 

equation, for each loading scenario we compute moment 

and transversal-force reactions at either nodes, collected in 

the force array 1 1 2 2[ , , , ]T M V M V=F  (cf. again Fig. 2).  

The values of the F terms form the four columns of the 

stiffness matrix of the partially restrained beam element 

1 2( , ) S , which depends on the spring deformability 

( 1,2)i i =  and can be expressed in the following compact 

form 

 

Fig. 2 Sketch and conventions of a beam with partially-

restrained (semi-rigid) end nodes 

 

 

1 2 1 2( , ) ( , )r c   =S S S  (3) 

The matrix Sr entering Eq. (3) is the classical element 

stiffness matrix of the beam supposed rigid at its end 0, 

whereas 
1 2( , )c  S  is a corrective dimensionless matrix 

arising from the flexibility of the connection, which 

depends on the spring deformability terms λ1 and λ2 as 

follows 

1 2
1 2

2 2 2

2 1 2 1 1 2

1 1 1

2 1 2 1 1 2

1
( , )

( , )

3 2 2
1 1 1 1

2 2
1 1 ( ) 1 1 ( )

2 3 2
1 1 1 1

2 2
1 1 ( ) 1 1 ( )

c

EI EI EI

L L L

EI EI EI EI

L L L L

EI EI EI

L L L

EI EI EI EI

L L L L

 
 

  

     

  

     

= 


 
+ + + 

 
 + + + + + +
 
 
 + + +
 
 
 + + + + + +
 

S

 
(4) 

where the function Δ(λ1, λ2) is defined as 

( )
2

1 2 1 2 1 22

4 12( )
( , ) 1

EI EI

L L
      = + + +  (5) 

As an example, the first-column terms of the element 

stiffness matrix S(λ1, λ2) read 

11 2

1 2

12 2 142

1 2

13

1 2

4 3
1 ;

( , )

6 2
1 ;

( , )

2

( , )

EI EI
s

L L

EI EI
s s

LL

EI
s

L


 


 

 

 
= + 

  

−  
= + = − 

  

=


 (6) 

This format of the stiffness matrix, which is similar to 

other forms presented in the relevant literature, (e.g., 

Sekulovic and Salatic 2001, Kartal et al. 2010), makes it 

easy to retrieve the limit cases of a beam with perfectly 

rigid (clamped) and ideally hinged end nodes by assuming 

λi→0 and λi→∞ (i=1,2), respectively. For example, the 

rotational stiffness at the node 1 is particularized in the 

following forms 
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Fig. 3 Beam with partially-restrained (semi-rigid) end nodes 

subject to a uniformly distributed load 

 

1

2

1

2

1

2

11 11 rigid
0
0

11 11 rigid-hinged
0

11 11 hinged

4
lim s ;

3
lim s ;

lim 0 s

EI
s

L

EI
s

L

s










→
→

→
→

→
→

= 

= 

= 

 (7) 

Furthermore, it is of interest to evaluate the nodal 

actions transmitted to the beam end nodes due to the loads 

applied along the beam axis, which could be useful for 

implementation of an automated finite element program. A 

uniformly distributed transversal load of magnitude q is 

considered, as sketched in Fig. 3. The fourth-order beam-

bending differential equation with the appropriate boundary 

conditions leads to 

2
(q)

1 2

1 2

2
(q)

2 1

1 2

(q)

1 1 2 2

1 2

(q)

2 1 2 1

1 2

1 6
1 ;

12 ( , )

1 6
1 ;

12 ( , )

1 2
( , ) ;

2 ( , )

1 2
( , )

2 ( , )

qL EI
M

L

qL EI
M

L

qL EI
V

L

qL EI
V

L


 


 

   
 

   
 

 
= + 

  

 
= − + 

  

 
= − + 

  

 
= − + 

  

 
(8) 

that are the moment reactions and transversal reactions at 

the end nodes, where the function η(λ1, λ2) is defined as 

( )
2

1 2 1 2 1 22

3 12( )
( , ) 1

EI EI

L L
      = + + +  (9) 

The deterministic limit cases of a rigid, rigid-hinged and 

hinged beam are retrieved as 

1

2

1

2

1

2

2
(q) (q)

1 1 rigid
0
0

2
(q) (q)

1 1 rigid-hinged
0

(q) (q)

1 1 hinged

lim ;
12

lim ;
8

lim 0

qL
M M

qL
M M

M M










→
→

→
→

→
→

= 

= 

= 

 (10) 

Finally, we also compute the mid-span moment ( )
0
q

M  

due to sagging bending 
2

(q)

0

2

1 2 1 22

1 2

24

1 6 36( )
1 ( )

( , )

qL
M

EI EI

L L
   

 

= 

 
+ + + 

  

 (11) 

and the mid-span deflection ( )
0
q

w  

4
(q)

0

2

1 2 1 22

1 2

384

1 8 60( )
1 ( )

( , )

qL
w

EI

EI EI

L L
   

 

= 

 
+ + + 

  

 (12) 

All these quantities are purposely written as the term 

related to the fixed beam multiplied by a dimensionless 

function whose shape is quite similar from variable to 

variable. Limit cases can easily be retrieved, e.g., 

concerning Eqs. (11) and (12).  

1 1

2 2

1 1

2 2

2 2
(q) (q) (q) (q)

0 0 rigid 0 0 hinged
0
0

4 4
(q) (q) (q) (q)

0 0 rigid 0 0 hinged
0
0

lim ;  lim
24 8

5
lim ;  lim

384 384

qL qL
M M M M

qL qL
w w w w

EI EI

 
 

 
 

→ →
→ →

→ →
→ →

=  = 

=  = 

 (13) 

 

2.2 Frames with semi-rigid end nodes modeled via 

rotational springs 
 

The analysis is here extended to simple frames with 

semi-rigid nodes, Fig. 4: two situations are considered, a 

single-bay frame with semi-rigid beam-to-column 

connections (frame I) and a single-bay frame with semi-

rigid column-to-foundation connections (frame II). 

Although it could be argued that these frames are too 

simple, the choice to adopt one-bay and one-floor frames is 

motivated by convenience reasons: indeed, for these very 

simple frames, it is easy to derive compact closed-form 

expressions of the displacements and reactions as explicit 

functions of the rotational spring deformability terms, 

which is related to the main focus of the present study. For 

simplicity, the quantities E, I and L of the beam and of the 

columns are assumed to be identical. The structural 

response is easily derived via the displacement method. 

Neglecting the axial deformations in structural elements, 

the unknown displacements are collected in the array 

[ , , ]T
B C  =u , and the stiffness matrix is expressed as 

( )

( )

11 1 2 31 1 2 2

I
1 2 13 1 2 33 1 2 2

2 2 3

33 1 43 1

II
1 2 33 1 2 43 1

34 1 34 1 44 1

4 6
( , ) ( , )

4 6
( , ) ( , ) ( , )

6 6 24

4 2
( ) ( )

2 4
( , 0) ( , ) ( )

( ) ( ) 2 ( )

EI EI
s s

L L

EI EI
s s

L L

EI EI EI

L L L

EI EI
s s

L L

EI EI
s s

L L

s s s

   

     

 

    

  

 
+ 

 
 

= + 
 
 
 
 

 
+ 


= = +




 

K

K








 

(14) 

wherein Sij is the term of the stiffness matrix 
1 2( , ) S  of 

the beam element with partially restrained nodes that has 

been defined in Eqs. (3) and (4). Once the stiffness matrix is 

constructed, the unknown displacements u are readily 

computed via 

( ) ( ) ( )
1

1 2 1 2 1 2( , ) ( , ) ( , )  with  ( I, II).
i i i

i     
−

= =u K F  (15) 
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where the force vectors F(i) for the two frames are given by 

( ) ( )

(q) 2

1 1 2

I II(q) 2

1 2 2 1 2

0 ( , ) 0 /12

( , ) 0 ( , ) ; 0 /12

M qL

M qL

P P P P

 

   

      
      

= − = − −      
            

F F  (16) 

For example, the rotation in the node C and the lateral 

displacement in the frame I are  

( ) ( ) ( )

( ) ( ) ( )

( )

I ,I ,I

1 2

3

1 2

2 2

1 2 1 22

I ,I ,I

1 2

3

1 2

23

1 2

1 2 2

1

( , )

3
[ 1 (5 3 )
72 7

2 8( )
1 (4 7 ) ]

28 3

1

( , )

[
84

48( )5 28
1 ( ) ]

84 15 15

q P

C C C

q P

qL EI

EI L

PL EI EI

EI L L

qL

EIPL EI

EI L L

  
 

 

   

  
 

 

 
 

= + = 


 
+ − + 

 

 −
+ + + 

 

= + = 


− + +

 
+ + + 

 

 
(17) 

where the superposition principle is resorted to by adding 

the two separate effects arising from the loads q and P. In 

(17), the function 
1 2( , )   is defined as 

( )
2

1 2 1 2 1 22

23 8( )
( , ) 1

21 7

EI EI

L L
      = + + +  (18) 

The resulting bending moments at the beam-to-column 

connection and at the column base are  
( ) ( ) ( )

( ) ( ) ( )

I ,I ,I

2

2 2

1 2

I ,I ,I

1 2

2

1 2

2

1 2 1 22

1 6 3 4
1 1

( , ) 18 7 14 4

1

( , )

3
[ 1 ( 3 )

36 7

2 2( )
1 (10 7 ) ].

7 6

q P

B B B

q P

D D D

M M M

qL EI PL EI

L L

M M M

qL EI

L

PL EI EI

L L

 
 

 

 

   

= + =

    
+ − +    

     

= + = 


 
+ − + 

 

 
+ + + + 

 

 

(19) 

In a similar way, the lateral displacement and the 

bending moments in the frame II are 

( ) ( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

II ,II ,II ,II

3

1,II

1

II ,II ,II

2

1 1,II ,II

1 1

II ,II ,II

2

1,II ,II

1 1

1 5 18
1

84 5( )

1 3 1 3 2
1 1

18 14( ) ( )

1 3 1 2
1 .

36 7( ) ( )

q P P

P

q P
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q P

q P

D D D

q P

PL EI

EI L

M M M

qL EI PL EI

L L

M M M

qL EI PL
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= +  =

 
+ 

  

= + =

   
+ − +   

    

= + =

 
+ + 

  

 
(20) 

in which the functions 
( ),II

1( )
q

  and 
( ),II

1( )
P

  are 

given by 

( ) ( ),II ,II

1 1 1 1

10 6
( ) 1 ;  ( ) 1

3 7

q PEI EI

L L
    = +  = +  (21) 

By inspection of Eqs. (17)-(20), it is observed that any 

variable of the structural response can be expressed as a 

term related to the perfectly rigid case multiplied by a 

dimensionless corrective function that depends on the 

rotational spring deformability of the beams. In the authors’ 

opinion, dealing with more complex, though certainly more 

realistic, frames with multiple bays and floors, would not 

add significant insight into the probability-based study here 

conducted.  

The main difference would be related to the slightly 

more complicated expressions of the displacements and 

reactions that would arise in this case, which would require 

finite element discretizations and would make the analysts 

lose the direct relationship between response and uncertain 

stiffness factor expressed in a compact manner by the 

previous equations. 

 

2.3 From the rotational spring deformability to the 

connection fixity factor 
 

In order to investigate a range of behaviors that are 

actually representative of semi-rigid connections, attention 

is now focused on the concept of fixity factors (Chiorean 

2009, Sekulovic and Salatic 2001, Simões 1996, Thai et al. 

2016, Kartal et al. 2010). It is widely recognized that an 

estimate of the initial stiffness of a joint can be expressed in 

terms of the element stiffness (related to the Young’s 

modulus E along with the moment of inertia I and the 

length L of the beam) and a dimensionless fixity factor f as 

follows 

joint

4 3

4(1 )

EI f
k

L f
=

−
 (22) 

The fixity factor represents the semi-rigid behavior as 

connection percentage and it varies from 0% for a zero joint 

stiffness (ideally pinned connection) to 100% when the joint 

stiffness is infinity (perfectly rigid connection). In the 

sequel of the paper, attention is focused on steel semi-rigid 

connections, although the methods presented are not 

material-specific or element-specific, as already stated in 

the Introduction. The choice to discuss more in-depth steel 

semi-rigid connections for the numerical applications is 

useful to link the present study to a practical problem 

encountered in the structural analysis of structures with 

semi-rigid connections. With regard to the steel framed 

structures, in the Eurocode 3 (CEN 2005) a classification 

has been established of the fixity factors for pinned, rigid 

and semi-rigid joints. In particular, the limit values of the 

fixity factor for pinned and rigid joints are 14% and 89%, 

respectively (Thai et al. 2016). In other words, joints having 

f<0.14 could be dealt with as pinned, whereas joints with 

f>0.89 could be approximately described through the 

perfectly rigid idealization. Some qualitative moment-

rotation curves of typical beam-to-column connections in 

steel structures are shown in Fig. 5(a). Since the present 

investigation is concerned with semi-rigid connections in 

general, the analysis discussed below will be extended to 

the entire interval [0.14,0.89]f  .  
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This is reflected by an interval in terms of rotational 

spring stiffness and, similarly, in terms of rotational spring 

deformability (normalized with respect to the perfectly rigid 

case) [0.16,8.19] , the latter depicted in Fig. 5(b). From 

a probabilistic point of view, if no accurate experimental 

background is available on the actual beam-to-column 

connection, the spring deformability of the joint could 

reasonably be assumed as a uniformly distributed random 

variable with lower bound and upper bound values equal to 

0.16 and 8.19, respectively. This is what is done in the 

sequel of the paper, although these figures are far from 

being representative of all the beam-to-column connections.  

Obviously, the analyst may decide to deal with a 

narrower, more realistic interval whenever experimental 

evidence leads to scattered data whose variability range is 

reduced as compared to the above one. Indeed, the design 

scenario is usually determined in terms of a single, or just 

few connection types involved in a steel frame. In these 

cases, dealing with a more restricted interval of λ values 

that is more appropriate for the specific type of connection  

 

 

used (e.g., extended endplate, top-and-seat angle, etc.) is 

reasonable. Implications of this choice will be briefly 

outlined in the following sections.  
 

 

3. The probabilistic transformation method 
 

The probabilistic transformation method (PTM) is based 

on the probabilistic approach of the space transformation 

laws of random vectors. In particular, the PTM gives the 

direct deterministic relationship between the joint PDFs of 

two random vectors related to each other by the 

deterministic law corresponding to the assigned space 

transformation. 

Let us consider a n-dimensional random vector x (input 

variables), whose joint PDF px(x) is known, and let h(∙) be a 

n-dimensional invertible application with 
1( ) ( )−  = h f , 

such that one can write 

( );= =z h x x f (z)  (23) 

  
(a) semi-rigid beam-to-column connections (b) semi-rigid beam-to-foundation connections 

Fig. 4 Single-bay frame analyzed with different connection types 

 

  

Fig. 5 Moment-rotation curves for various beam-to-column connections along with Eurocode 3 boundaries (adapted from 

Chen et al. (2011) (left) and corresponding rotational spring deformability of the beam (right) 
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It is well known that once the direct and inverse 

relationships in (23) are defined, the joint PDF of the 

random vector z (output variables), that is pz(z), can easily 

be obtained through the following expression (Papoulis and 

Pillai 2002)  

1
( ) ( ( ))

det[ ( )]
p p=

z x

h

z f z
J z

 (24) 

where Jh(z) is the Jacobian matrix associated to the 

transformation law given in Eq. (23)1 

( )
( ) ( ( ))T

=
=  h x x f z

J z h x  (25) 

T
x

 being the nth order row-vector operator collecting 

all the partial derivatives with respect to the components xi 

of x  and the symbol   indicating the Kronecker tensor 

product (Graham 1981). Expression (24) gives a direct 

deterministic relationship between the joint PDFs of the 

random vectors z and x, which are two scalar functions of 

multidimensional variables. In other words, the PDF of the 

output variables pz(z) can be computed once the PDF of the 

input variables px(x) is known and the transformation law is 

defined.  

A variant of this formulation has been presented in 

(Falsone and Settineri 2013a). In particular, it is noted that 

due to Eq. (24) the vectors x and z should have the same 

number of components. However, this is not a restriction, as 

a number of auxiliary variables can be added either to x or 

to z in order to balance the vector relationship (Lutes and 

Sarkani 2004). Another simplification can be introduced 

when only a marginal PDF of the joint PDF pz(z) is sought. 

The traditional way would be performing n−1 indefinite 

integrations of the joint PDF pz(z) in order to saturate this 

function with respect to the non-required components, thus 

isolating the required variable. As a more effective 

alternative, owing to the properties of the Dirac delta 

function δ(∙), Eq. (24) is rewritten in the following form 

( )

( )
( ) ( ) 1

1
( ) d d

det
n

p

p y y
+ +

− −

=

−
  

 

z

x

h

z

y y f z
J y

 
(26) 

wherein the multi-dimensional Dirac delta function 

centered in the point y=f(z) is introduced  

( )

( ) ( ) ( )1 1 2 2

( )

( ) ( ) ..... ( )n ny f y f y f



  

− =

− − −

y f z

z z z
 (27) 

The multi-dimensional Dirac Delta introduced above has 

non-zero value only if y=f(z); then, it is equivalent to a 

multi-dimensional Dirac Delta centered in 

( )1( )−= =z f y h y , provided the determinant of the Jacobian 

matrix related to the application h(y) is introduced 

( )( ) ( ) ( )( )det − = −  h
y f z J y z h y  (28) 

The determinant of the Jacobian matrix Jh guarantees 

that the functions appearing in both sides of Eq. (28) have 

unitary area. Substituting Eq. (28) into (26) yields  

( ) ( ) ( )( ) 1d d np p y y
+ +

− −
= − z x

z y z h y  (29) 

We now consider the single component zj of the output 

random vector z  defined by the scalar transformation 

( )j jz h= x . The PDF of zj is readily computed by 

integrating both sides of Eq. (29) with respect to all the 

variables , with  1, ,  and iz i n i j=  , thus obtaining  

1( ) ... ( ) ( ( ))d d
jz j j j np z p z h y y

+ +

− −

= −  x y y
 

(30) 

Eq. (30) is very suitable for defining the single response 

PDF. In an analogous way, the joint PDF of two 

components of the output random vector z can be obtained 

as 

1

( , )

... ( ) ( ( )) ( ( ))d d

j kz z j k

j j k k n

p z z

p z h z h y y 
+ +

− −

=

− −  x
y y y

 (31) 

All the input-output relationships analyzed in this paper 

involve transformation laws hj(∙) of nonlinear type, because 

we are dealing with linear structural systems having 

uncertain parameters (rotational fixity factors). For these 

cases, the evaluation of the inverse relationship 

( ) ( )1− = f h  is not always an easy task, therefore 

expressions (30) and (31) can be usefully employed in order 

to compute the PDF of the structural response variables. 

 

 

4. Probability-based response of beams with semi-
rigid nodes 
 

In this Section, we present results concerning the 

probabilistic structural response, in terms of PDF and 

cumulative distribution function (CDF), of beams with 

partially restrained nodes. First, we investigate the 

uncertainty propagation from the beam end constraints to 

the elements of the beam stiffness matrix 
1 2( , ) S  

reported in (3) and (4). To this aim, based on the 

probabilistic characterization of the fixity factors as per the 

EC3 (CEN 2005, Thai et al. 2016), discussed above in 

Section 2.3, we compute the exact PDF of the various terms 

of the stiffness matrix through the PTM as described in 

Section 3. The semi-rigid end nodes are modeled via 

rotational spring deformability that are uniformly 

distributed random variables within the interval 

[0.16,8.19] . For the sake of generality, all the variables 

reported in this study are shown in a dimensionless form by 

normalizing them with respect to the perfectly rigid case, 

i.e., the beam with clamped ends (λ=0). As an example, the 

normalized rotational spring stiffness at the node 1 is 

expressed as 

( )

11 1 2

11 1 2 2

11 1 2

2

2

1 2 1 22

( , ) 1 3
( , ) 1

( , )

3
1

4 12( )
1

r

s EI
s

s L

EI

L

EI EI

L L

 
  

 



   

 
= = + = 

  

 
+ 

 

+ + +

 

(32) 
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where 
11 1 2( , )s    is the term reported in (6)1 and 

11 4 / Lrs EI=  denotes the rotational stiffness of the 

corresponding clamped beam. Similar normalizations are 

employed for all the other terms. Therefore, such 

dimensionless variables are not affected by the magnitude 

of the EI/L ratio and the corresponding PDF and CDF 

results can be applied to any beam.  

In Fig. 6, the PDF of the normalized beam rotational 

stiffness 
11s  and 

13s  is depicted. Dealing with semi-rigid 

connections leads to a narrower interval than [0−1] in the 

corresponding rotational stiffness: indeed, the extreme 

value 
11 1s →  (or also 

13 1s → ) would be attained for 

1 2 0 = →  (beam with perfectly rigid connections), 

whereas 
11 0s →  (or also 

13 0s → ) would be obtained for 

1 2 = →  (beam having ideally pinned connections). In 

particular, it will be seen below that two characteristic 

points are found that represent a lower bound and an upper 

bound of the two rotational stiffness terms, namely 

11 0.12772 0.86 1[ ]07s  −  and 
13 0.021596 0.78 7[ ]32s  − . 

The lower bound is associated with the couple 

1 2 8.19 = = , while the upper bound is related to couple 

1 2 0.16 = = . These figures are strictly related to the 

choice of the interval [0.16,8.19]  made above. It is 

clearly seen in Fig. 6 that, assuming λ1 and λ2 as uniformly 

distributed random variables, the terms of the beam 

stiffness matrix are far from being uniformly distributed 

between their lower bound and upper bound values. This is 

due to the nonlinear relationship between rotational spring 

deformability and rotational beam stiffness, cf. Eq. (32). In 

particular, both the 
11s  and 

13s  PDF are strongly 

asymmetrically distributed and are shifted towards the 

“lower bound case” that resembles an ideally pinned 

connect ion 1 2( 8.19) = = .  An addi t ional ,  th ird 

characteristic point is identified in the PDF curve as a cusp 

(red circle in the plot of Fig. 6), which corresponds to the 

couple λ1=0.16 and λ2=8.19. This point may be meant as the 

semi-rigid counterpart of a clamped -hinged beam 

idealization. This also explains the reason why such cusp 

occurs closer to the upper bound case for 
11s  (rotational  

 

 

stiffness at the node 1 that is “quasi-rigid”) and is located 

closer to the lower bound case for 
13s  (rotational stiffness 

at the node 2 that is “quasi-hinged”). 

The implications of such probability-based outcomes in 

a design process are investigated. To this aim, in Fig. 7 we 

particularize the qualitative PDF shown in Fig. 6 by 

computing the median of the distribution. This median may 

be considered as a reference design value from a 

probabilistic point of view. Indeed, there is just a 

probability of 50% that, within the class of semi-rigid 

connections characterized by the assumed interval 

[0.16,8.19] , the median is exceeded. It seems 

reasonable to compare the median with the average value 

that would be calculated according to a deterministic 

approach, i.e., the mid-point between the two extreme 

values (boundaries) corresponding to the two extreme cases 

of quasi-rigid 1 2( 0.16) = =  and quasi-pinned 

connections 1 2( 8.19) = = . By inspection of Fig. 7, it is 

observed that the median (probability-based design value) 

and the average value (deterministic quantity) are largely 

different from each other. In particular, the average value of 

11s  is 0.49422 and represents the 89.51th percentile of the 

distribution (see the CDF depicted in Fig. 7(c)), whereas the 

median is 0.12772. This means that if one is dealing with 

the wide class of semi-rigid connections featured by 

[0.16,8.19] , the element stiffness, on average, would 

be overestimated of around 125% by assuming the value 

calculated from the deterministic approach. Similar 

conclusions can be drawn for the 
13s  stiffness term, in 

which the median (0.071224) and the average value 

(0.40243) differ for up to 465%. In this case, the average 

value represents the 98.81th percentile of the distribution.  

The peculiarity of a probability-based approach for 

semi-rigid connections is that a design value of the stiffness 

(and of any other quantity of interest for design purposes) 

that is related to a given non-exceeding probability (i.e., 

associated to a given limit state) can straightforwardly be 

identified. The probabilistic nature of the structural 

response can also be accounted for via the MCS. 

Nevertheless, only an approximation of the exact PDF may 

be obtained in this case: the number of samples needed to 

  

(a) normalized 
11s  PDF (b) normalized 

13s  PDF 

Fig. 6 Qualitative examination of rotational stiffness PDF and characteristic points in partially restrained beams: (a) 

normalized 
11s  PDF; (b) normalized 

13s  PDF 
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construct a reasonably accurate PDF exceeds millions, see 

again Fig. 7(a) and 7(b), which implies higher 

computational times. This concept is even more marked 

when the input-output relationship is nonlinear, as in the 

case of 
11s , cf. Eq. (32). 

The PDF of the nodal reactions 
(q)

1M  and 
(q)

1V  of the 

partially restrained beam subject to a uniformly distributed 

load q is qualitatively different. Among the possible 
(q)

1M  

values that may occur depending on the spring 

deformability λ1 and λ2, the minimum moment reaction  

 

 

(equal to 0.14375) occurs when λ1=8.19 and λ2=0.16, i.e., in 

the semi-rigid counterpart of a hinged-clamped beam 

idealization, whereas the maximum moment reaction (equal 

to 1.2996) takes place in the other way around for λ1=0.16 

and λ2=8.19, i.e., in the semi-rigid approximation of a 

clamped-hinged beam, cf. Fig. 8. Other two characteristic 

points are detected in the 
(q)

1M  PDF, see Fig. 8(a): one is 

that for (
(q)

1 0.23384M = , which corresponds to a cusp) and 

the other is for 1 2 0.16 = = , 
(q)

1 0.93816M = . 

In quite a similar way, the characteristic points of the  

  
(a) normalized 

11s  PDF (b) normalized 
13s  PDF 

  
(c) normalized 

11s  CDF (d) normalized 
13s  CDF 

Fig. 7 Probabilistic response, in terms of rotational stiffness, of partially restrained beams: (a) normalized 
11s  PDF; (b) 

normalized 
13s  PDF; (c) normalized 

11s  CDF; (d) normalized 
13s  CDF 

 

  

(a) 
(q)

1M  (b) 
(q)

1V  

Fig. 8 Variability of the nodal reactions with the spring deformability terms: (a) 
(q)

1M ; (b) 
(q)

1V  
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transversal reaction 
(q)

1V  PDF are identified and associated 

to limit values of the λi values, cf. Fig. 8(b). As expected, 

deviations of 
(q)

1V  from the value 
(q)

1 1V =  only occur 

when the two spring deformability terms are different from 

each other, i.e., for asymmetric beam restraints. Partially 

restrained beams with identical spring deformability at the 

two beam ends behave like clamped-clamped or hinged-

hinged beams in terms of transversal nodal reactions. In the 

limit cases of quasi hinged-clamped (λ1=8.19, λ2=0.16) and 

quasi clamped-hinged beams (λ1=0.16, λ2=8.19) the extreme 

values of 
(q)

1V  are 0.80735 and 1.1926, respectively. The 

quantitative analysis of Fig. 9 reveals that the average value 

of the moment reaction (0.72169) represents the 85.39th of 

the distribution and deviates from the corresponding median 

value (0.36202) of 99.35%; on the contrary, due to the 

symmetric format of the 
(q)

1V  PDF, average and median 

values are coincident.  

Finally, in Figs. 10 and 11, the mid-span bending 

moment 
(q)

0M  and the mid-span deflection 
(q)

0w  are 

characterized from a probabilistic point of view. These 

results are consistent with those of the stiffness terms, as the 
(q)

0M  and the 
(q)

0w  PDFs are both concentrated close to 

the quasi-pinned connection boundary (right side 

corresponding to λ1=λ2=8.19). The mid-span response is 

related to the overall deformability of the beam, therefore it  

 

 

is not affected by the specific values of λ1 and λ2 at the two 

end nodes individually considered, but rather it only 

depends on the sum λ1+λ2, which is physically reasonable. 

For instance, the same response in terms of bending 

moment and deflection would be obtained for λ1=8.19, 
λ2=0.16 and for λ1=0.16, λ2=8.19, cf. Fig. 10. Quantitative 

analysis of the 
(q)

0M  and the 
(q)

0w  PDFs, shown in Fig. 

11, is of paramount importance from a design viewpoint: 

adopting the average (deterministic) value of mid-span 

moment and mid-span deflection means that the design is 

being carried out with the 19.42th and with the 19.41th 

percentile of the corresponding distribution, respectively. In 

other words, the deterministic approach would lead to 

assuming non-conservative (unsafe) estimates of mid-span 

moment and mid-span deflection that are lower than the 

median of the corresponding PDFs. In particular, the 

deterministic approach would underestimate the median of 
(q)

0M  by 15.26% and the median of 
(q)

0w  by 19.89%, 

respectively. 

In Table 1, the main results of the present investigation 

are summarized. In particular, we report the two boundaries 

of the response indicators computed by assuming proper 

combinations of the two λ1 and λ2 deformability terms as 

discussed above. 

The average value is the mean of these two bounds, 

which is compared to the median value. Considerable errors 

are found from this comparison, which alert the design 

  

(a) 
(q)

1M  PDF (b) 
(q)

1V  PDF 

  

(c) 
(q)

1M  CDF (d) 
(q)

1V  CDF 

Fig. 9 Probabilistic response of partially restrained beams subject to a uniformly distributed load: (a) 
(q)

1M  PDF; (b) 
(q)

1V  

PDF; (c) 
(q)

1M  CDF; (d) 
(q)

1V  CDF 
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engineer that misleading outcomes may result from a 

deterministic approach applied to beams with partially 

restrained nodes if the fixity factors can be modelled as 

uniformly distributed random variables. These values, along 

with the PDFs illustrated above, could be employed to 

decide which value of rotational stiffness, mid-span 

deflection, bending moment (and so forth) to assume in a 

design process, and to assess which consequences such an 

assumption has from a probabilistic point of view.  

It is worth noting that the above calculation considers a  

quite large spectrum of fixity factors, which encompasses 

the whole range of semi-rigid connections discussed in 

Section 2.3. However, as already noted in Section 2.3, when 

the type of connection is chosen for a steel framed structure, 

the range of variability of the fixity factor, and also of the 

spring deformability λ, is reduced as compared to the one 

assumed above, see e.g., (Abdalla and Chen 1995, Kim and 

Choi 2001). Which implications this restricted interval has 

in a design process is here briefly outlined.  

To this aim, just as an example we suppose that a top-

and-seat angle connection is adopted and a more realistic 

interval of λ is considered. Following the qualitative plot of 

Fig. 5(a), among the steel semi-rigid connections this quite 

flexible type of connection is close to the pinned EC3 

connection boundary, therefore it has been characterized in 

terms of a λref=7.0 value, assumed as a reference value in a 

design process. In line with the scope of the paper, in order 

to incorporate the largely scattered results that may arise  

 

 

from experiments, a 50%  deviation is assumed so that 

the λ variable is a uniformly distributed variable in the 

range ref ref[0.5 ,1.5 ]  . The probabilistic response of a 

beam complying with this more realistic assumption is 

illustrated in Fig. 12 in terms of mid-span bending moment 
(q)

0M  and deflection 
(q)

0w  PDF and CDF, respectively.  

It is interesting to compare Fig. 11 with Fig. 12 that 

report the same results but arise from two different 

probabilistic characterizations of the beam-to-column 

connections. This comparison reveals that, as expected, the 

narrower interval of the λ values leads to a reduced 

variability of the response indicators. If the variation of λ 

were neglected and the calculation were performed 

assuming a deterministic λref=7.0 value, a normalized 

moment and deflection equal to 2.391 and 3.7821 would be 

obtained (the average value in this case corresponds to the 

deterministic assumption λ=λref). These values represent the 

28.77th and 28.62th percentile of the corresponding 

distribution, respectively. Therefore, similar design 

implications to the above calculation are deduced, as the 

deterministic approach leads to non-conservative estimates 

of mid-span moment and mid-span deflection that are lower 

than the median of the corresponding PDFs. This result has 

been already obtained with the larger λ interval examined 

above. The underestimation is however less pronounced 

than the previous case with larger λ interval, and the 

associated relative error is reduced accordingly.  

  

(a) 
(q)

0M  PDF (b) 
(q)

0w  PDF 

Fig. 10 Qualitative examination of PDF of mid-span moment and mid-span deflection in partially restrained beams subject to 

a uniformly load q: (a) 
(q)

0M  PDF; (b) 
(q)

0w  PDF 

 

Table 1 Probability-based approach versus deterministic approach for the design of beams with semi-rigid connections 

response 

indicator 

probability-based 

approach 
deterministic approach 

error (%) 
median 

(50th percentile) 
lower bound upper bound average value 

average 

percentile (%) 

11s  0.21926 2.62 2.53 3.34 2.67 2.46 

13s  0.07122 0.021596 0.78327 0.40243 98.81 465.02 

(q)

1M  0.36202 0.14375 1.2996 0.72169 85.39 99.35 

(q)

1V  1.00 0.80735 1.1926 1.00 50.00 0.00 

(q)

0M  2.1572 1.1237 2.5323 1.828 19.42 -15.26 

( )

0

qw  3.3152 1.2474 4.0646 2.656 19.41 -19.89 

449



 

Dario De Domenico, Giovanni Falsone and Rossella Laudani 

 

 

 

Obviously, the higher is the dispersion, the more 

uncertain are the results. On the contrary, if λ were a 

deterministic variable, i.e., λ=λref without variation, all the 

response indicators would follow a Dirac Delta distribution 

centered at the average value and the probabilistic study 

here proposed would provide no added value as compared 

to a deterministic analysis. This underlines that the above 

conclusions are far from being of general validity, and the 

specific situation should be analyzed from case to case on 

the basis of available experimental data and input 

parameters (e.g., type of connections involved in a specific 

project). 

 

 

5. Probabilistic response of frames with semi-rigid 
nodes 
 

In this Section we present results concerning the 

probabilistic structural response of frames with semi-rigid 

connections. A single-bay frame with semi-rigid beam-to-

column connections (frame I) and a single-bay frame with 

semi-rigid column-to-foundation connections (frame II) are 

investigated, as sketched in Fig. 4. 

 

5.1 Single-bay frame with semi-rigid beam-to-column 

connections 
 

The probabilistic response of the frame I subject to both  

 

 

a uniformly distributed load q applied on the BC partially 

restrained beam and a point load P=qL applied to the node 

B is investigated. In Fig. 13, the PDF of node C rotation 

C  and lateral displacement   are illustrated. It is 

observed that when dealing with frames, due to the strongly 

nonlinear character of the relationships between the fixity 

factors and the response indicators (much higher than the 

individual beam, cf. Eqs. (17)), the number of samples 

needed to closely approximate the exact PDF by the MCS 

should be very high, largely exceeding one million. It is 

interesting to note that, due to the range of variability in the 

beam-to-column connection stiffness, a very large 

variability of the nodal rotations is expected, and the C  

value may even change its sign as compared to the perfectly 

rigid case. However, this result is ascribed to the quite large 

assumed interval of fixity factors, as already noted above. 

Additionally, it is worth noting that in more realistic frames 

with a significant number of bays and floors, the influence 

of joint stiffness on the global response is certainly reduced 

as compared to this very simple frame structure with only 

one floor and one bay. In Fig. 14, the response in terms of 

moment reaction at the beam-to-column connection BM  

and at the column base DM  is scrutinized from a 

probabilistic point of view. In line with the expectations, 

one million of samples in the MCS seems to be a 

satisfactory number for approximating the exact PDF of  

  

(a) 
(q)

0M  PDF (b) 
(q)

0w  PDF 

  

(c) 
(q)

0M  CDF (d) 
(q)

0w  CDF 

Fig. 11 Probabilistic response of partially restrained beams subject to a uniformly distributed load: (a) 
(q)

0M  PDF; (b) 
(q)

0w  

PDF; (c) 
(q)

0M  CDF; (d) 
(q)

0w  CDF 
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BM  but not that of DM  that involves a slightly more 

intricate relationship in terms of fixity factors, cf. Eqs. (19).  

Average and median BM  values differ for almost 

300%, which means that a design based on the average 

value would disproportionally overestimate the design 

moment at the node B. Indeed, the average value (0.41476) 

represents the 91.68th percentile of the BM  distribution. 

Moreover, a small influence of the semi-rigid connections 

on the moment at the column base DM  is detected, which 

is physically consistent as the randomness is concentrated 

on the beam and not on the column. Indeed, the variability 

of DM  is comprised to within nearly a 7%  of the 

perfectly-rigid case, with extreme values equal to 0.94051 

and 1.0704 corresponding to the couples 

1 2( 8.19, 0.16) = =  and 1 2( 8.19) = = , respectively. 

Owing to the narrow interval in which the DM  PDF is 

concentrated and considering the BM  PDF, it can be 

concluded that deterministic approaches would lead to 

reasonable approximations of the moment reaction at the 

column base but not of the moment reaction at the beam-to-

column connection. 
 

5.2 Single-bay frame with semi-rigid column-to- 

 
 

foundation connections 
 

The probabilistic response of the single-bay frame with 

semi-rigid column-to-foundation connections is finally 

sought. By inspection of Fig. 15, it emerges that in this case 

the moment reaction DM  PDF at the column base is not 

confined to within a rather narrow interval, as in the 

previous frame, but is widely distributed and extends from 

0.33053 to 0.94913. This is physically consistent, because 

in this case the randomness of the connection concerns just 

the base of the columns, therefore in contrast to the 

previous case the fixity factors lead to a significant 

variability of the DM  value. The deterministic average 

values of BM  and DM  represent the 72.05th and the 

77.18th percentile of the distribution, respectively. 

Therefore, in this case resorting to a probabilistic design 

approach would lead to more economical solutions, based 

on lower moments at both the beam-to-column connection 

and at the column base. The peculiar interval-like trend of 

the BM  and DM  PDFs shown in Fig. 15(a) and 15(b) is 

just a consequence of the uniform distribution assumption 

of the fixity factors. It seems interesting to scrutinize to 

what extent the probability-based structural response varies 

if a different assumption were made on the probabilistic 

distribution of the fixity factors. 

  

(a) 
(q)

0M  PDF (b) 
(q)

0w  PDF 

  

(c) 
(q)

0M  CDF (d) 
(q)

0w  CDF 

Fig. 12 Probabilistic response of beams with top-and-seat angle connections (
ref 7.0 = , 50%  variation) subject to a 

uniform load: (a) 
(q)

0M  PDF; (b) 
(q)

0w  PDF; (c) 
(q)

0M  CDF; (d) 
(q)

0w  CDF 
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To this aim, in Fig. 16, we report the BM  and DM  

PDFs by assuming that the fixity factors follow a lognormal 

distribution in place of a uniform distribution. The 

parameters of the lognormal distribution have been selected 

according to the following criterion 

log 1.4297

0.16 8.

;

19
0.525;

2

0.16 8.19
0.835527
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+
= =

+
= = =

 (33) 

 

 

Although the PDFs of BM  and DM  resulting from 

the lognormal distribution are qualitatively different from 

those of Fig. 15, these distributions leads to really similar 

considerations from a design viewpoint: for instance, the 

median of BM  is -1.2031 against the value -1.1978 found 

for a uniform distribution. Other relevant comparisons are 

listed in Table 2. This comparison highlights that the results 

discussed in this paper can be considered of quite general 

validity, since they are little affected by the choice of the 

fixity factors distribution. Obviously, the design engineer 

should carefully reflect upon this assumption and should  

  

(a) C  PDF (b)   PDF 

Fig. 13 Probabilistic response of frame I with semi-rigid beam-to-column connections: (a) normalized C  PDF; (b) 

normalized   PDF 

 

  

(a) normalized BM  PDF (b) normalized DM  PDF 

  

(c) normalized BM  CDF (d) normalized DM  CDF 

Fig. 14 Probabilistic response of frame I with semi-rigid beam-to-column connections: (a) normalized BM  PDF; (b) 

normalized DM  PDF; (c) normalized BM  CDF; (d) normalized DM  CDF 
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(a) normalized BM  PDF (b) normalized DM  PDF 

  

(c) normalized BM  CDF (d) normalized DM  CDF 

Fig. 15 Probabilistic response of frame II with semi-rigid column-to-foundation connections: (a) normalized BM  PDF; (b) 

normalized DM  PDF; (c) normalized BM  CDF; (d) normalized DM  CDF 
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Fig. 16 Same as Fig. 15 but with a lognormal distribution assumption for the fixity factors 

453



 

Dario De Domenico, Giovanni Falsone and Rossella Laudani 

 

 
 

adopt the most appropriate fixity factors distribution on the 

basis of available experimental data regarding the specific 

semi-rigid connections involved in the project. 
 

 

6. Conclusions 
 

A fully probabilistic approach has been presented to 

describe the structural response of steel beams and frames 

with uncertain semi-rigid connections. The non-perfect 

constraints and joints are endowed of an uncertain degree of 

rotational stiffness, through the definition of the 

deformability of the springs via random variables. 

Incidentally, closed-form expressions of a few structural 

response indicators of beams and simple frames with 

partially restrained nodes have been presented. The 

randomness of the structural response has been entirely 

ascribed to the uncertainty in the fixity factors at the beam 

end nodes, thus related to the rotational deformability of the 

springs. The adopted probabilistic approach, based on the 

application of the PTM to vector-valued random variables 

related by means of the nonlinear laws above cited, permits 

one to compute the exact PDF of the structural response 

based on the distribution of the fixity factors. Therefore, the 

design engineer can straightforwardly identify the value of 

certain indicators of the structural response associated to a 

given non-exceeding probability, which is very important in 

the framework of limit state design. The characterization of 

the rotational spring stiffness terms should be based upon 

experimental findings and laboratory calibration, which is 

beyond the scope of the proposed analytical study. In this 

paper, reference has been made to the EC3 provisions, 

wherein limit values of the fixity factors for steel semi-rigid 

connections are indicated. We have reasonably assumed that 

the fixity factors are uniformly distributed within such EC3 

interval, although the proposed analysis method is 

applicable to a more general class of elements and 

materials, not confined to steel framed structures. The PDFs 

of a few indicators of the structural response have been 

derived for both beams and simple frames.  

Design considerations have emerged when comparing 

the probability-based approach with a deterministic 

approach based on the average values, the latter referring to 

the intermediate values of the fixity factors between the two 

extreme cases. Misleading (and in some cases non-

conservative) conclusions from a design viewpoint might be 

drawn unless the probabilistic nature of the structural 

response is properly accounted for, i.e., when resorting to a 

deterministic approach. As an example, if the deterministic 

average values were assumed in the design process, one 

would underestimate the mid-span deflection of around  

 

 

20% and, similarly, the mid-span bending moment of nearly 

15% as compared to the median (probability-based) value.  

However, there is not a unified and common trend for 

all the response indicators, for instance some response 

quantities such as the moment reaction at the joint, are 

overestimated and not underestimated. In the authors’ 

opinion, more reliable reactions and deflections than those 

derived from a deterministic approach are however 

obtained, which leads to more realistic and economical 

design decisions especially when experimental data on the 

connection stiffness are quite scattered.  

Although the design engineer could decide to select 

more appropriate distributions than the uniform on the basis 

of available experimental data, it has been observed that the 

obtained results are little affected by the distribution itself. 

On the contrary, it is of relevant importance to identify 

appropriate upper bounds and lower bounds of the fixity 

factors for the given connections (that are element-specific 

and material-specific data) involved in a given structure, 

which falls beyond the scope of the present paper. In this 

regard, literature review papers as well as experimental 

testing should assist the designer in such choice. With no 

doubt, the range of variability of the fixity factors alters the 

outcomes of the probability-based investigation. In many 

practical cases, this range is narrower than the interval 

adopted in this paper, especially because the type of 

connection is known in a framed structure. However, the 

general qualitative conclusions drawn for the quite large 

interval adopted in this paper remain, as demonstrated by 

the analysis of a more reasonable case in which a specific 

connection type has been selected and a more realistic 

interval has been considered. Rather than providing precise 

probabilistic results for each specific connection type, the 

aim of this paper is just limited to present a more accurate 

method of analysis and to alert the engineer that certain 

design implications arise when resorting to a non-

probabilistic (deterministic) design approach. Semi-rigid 

connections, by nature characterized by largely scattered 

results, should be more appropriately dealt with via a fully 

probabilistic approach. 
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Table 2 Probability-based approach versus deterministic approach for the design of beams with semi-rigid connections 

response 

indicator 

uniform distribution for fixity factors lognormal distribution for fixity factors 

median 

(50th percentile) 

average value 

percentile (%) 

median 

(50th percentile) 

average value 

percentile (%) 

BM  -1.1978 72.05 -1.2031 74.65 

DM  0.47713 77.18 0.47806 80.94 
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