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1. Introduction  
 

Due to unique properties carbon fiber reinforced 

polymers (CFRP) composites have been extensively 

employed in various structural applications and are suitable 

substitutes for traditional metals. Some characteristics such 

as fatigue and wear resistance, formability of complex 

shapes and high strength to weight ratio, increase a 

widespread use of CFRPs in industries which weight plays 

a great role, such as military, aerospace engineering, and 

automotive. Significant efforts in the research community 

have been carried out on enhancing CFRPs properties. On 

the other hand, combination of nanoparticles and 

macroscale matrices can present a novel type of composites 

with enhanced properties. Prior to discuss about the 

nanocomposite structures, the researchers are hugely 

advised to study about the nanomaterials (Alizada et al. 

2012). Meanwhile, as powerful tools, numerical methods 

have been often used to solve related complicated equations 

(Civalek and Demir 2016). Carbon nanotubes (CNT) are an 

ideal candidate as nanoscale reinforcement for improvement 

of the multi functionality of CFRP composites. Their tensile 

strength of over 150 GPa and elastic modulus of over 1000 

GPa make them very stronger and stiffer than steel while 

being three to five times lighter (Kim et al. 2009). Research 

groups have demonstrated that mechanical properties of 
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composites can strongly increase by adding a few weight 

percent (wt.%) of CNTs (Spitalsky et al. 2010, Sahoo et al. 

2010). Extraordinary properties such as high strength, high 

stiffness, high aspect ratio and low density of the CNT, 

makes it an opportunity for combining potential advantages 

of nanoscale reinforcement and functionality with well-

accepted CFRPs to develop multiphase composites. 

Thermal and moisture analysis in structures and 

nanostructures has been one of the prominant subjects for 

many researchers (Ebrahimi and Barati 2016a-n, Ebrahimi 

and Barati 2017). 

A research on the development of modern structural 

based on engineered CNTs/fiber/polymer multiphase 

composite is presented by Bekyarova et al. (2007). Godora 

et al. (2009) presented the effect of CNT reinforcement on 

the processing and the mechanical behavior of CFRP 

composites. They discussed the CNT dispersion and its 

stability during the processing steps and the characteristics 

of CFRPs. Thostenson et al. (2002) studied the effect of 

local nanotube reinforcement on load transfer at the 

fiber/matrix inter face of CNT multiphase composites. 

Green et al. (2009) studied synthesis, and thermo 

mechanical behavior of carbon nano fiber/epoxy nano 

phased polymer matrix.  

Rafiee et al. (2014b) investigated nonlinear vibration of 

CNT multiphase laminated composites integrated with 

piezoelectric. In another work (Rafiee et al. 2014a) they 

using an analytical approach presented modeling and stress 

analysis of smart polymer/CNT/fiber composite plates. 

Nonlinear dynamic response and flexural of 

polymer/CNT/fiber multiphase nanocomposite plates are 

analyzed by Bhardwaj et al. (2013). They used double 
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Chebyshev polynomials to solve the problem. He et al. 

(2015) investigated large amplitude vibration of fractionally 

damped viscoelastic polymer/CNT/fiber nanocomposite 

beams. 

Furthermore, a limited number of research works 

studied the dynamic response of the CNT reinforced 

composite. However, all of these studies are performed for 

two-phase CNT-reinforced polymeric composites. Yas and 

Heshmati (2012) presented dynamic analysis of functionally 

graded carbon nanotube reinforced composites beam under 

the action of moving load using the finite element method. 

Eshelby–Mori–Tanaka approach based on an equivalent 

fiber employed to estimate material properties of the beam. 

Also, they in another study (Heshmati and Yas 2013), 

investigated the dynamic behaviors of MWCNT-poly 

styrene beams subjected to multi-moving loads. Moradi-

Dastjerdi et al. (2013) investigated dynamic analysis of 

carbon nanotube- reinforced functionally graded cylindrical 

panels subjected to an impact load using the mesh-free 

method. Wang and Shen (2012) analyzed the nonlinear 

dynamic response of temperature-dependent nanotube-

reinforced composite plates on an elastic foundation under 

thermal by applying the rule of mixture. They used a two-

step perturbation technique to solve the problem. Lei et al. 

(2015) carried out elasto-dynamic analysis of carbon 

nanotube-reinforced functionally graded plates. The 

governing differential equations were obtained using the 

first-order shear deformation plate theory, which were 

solved using the element-free kp-Ritz method. 

There are many shear deformation plate theories have 

been proposed by researchers. Classical Laminated Plate 

Theory (CLPT) was developed based on the assumptions of 

Kirchhoff’s plate theory which neglects the interlaminar 

shear deformation, and is less accurate. The first order shear 

deformation theory (FSDT) by Reissner (1945) and Mindlin 

(1951) proposed, assuming constant transverse shear 

deformation through the thickness of the plate. This theory 

does not satisfy the stress-free boundary conditions on the 

surfaces of the plate and requires a shear correction factor. 

To overcome these disadvantage, Reddy (1984) proposed a 

simple higher order theory for laminated plates which is 

free from any shear correction factor.  

In the past the various polynomial and non-polynomial 

higher-order shear-deformation theories have been 

developed. The polynomial shear-deformation theories 

(PSDTs) were presented based on Taylor’s series expansion 

of higher-order terms, and important works on PSDTs can 

be found in Levinson (1980), Lo et al. (1977), Reddy 

(2004), Kant and Pandya (1988), Talha and Singh (2010). 

In non-polynomial shear deformation theories, the in-plane 

displacements are the function of thickness coordinate, and 

developed by Murthy (1981), Soldatos (1992), Aydogdu 

(2009), Mantari et al. (2011) , (2012), and EL Meiche et al. 

(2011). Most recently, Grover et al. (2013) proposed new 

non-polynomial shear deformation theory with Inverse 

Hyperbolic function and applied for responses of laminated 

composite and sandwich plates. 

To the best of author’s knowledge, there is no analysis 

on the dynamic response of CNTs/fiber/polymer multi-

phase composites in thermal environment have been carried 

out till now. Therefore, in the present study, Nonlinear 

dynamic response of polymer-CNT-fiber multiscale 

nanocomposite plate resting on elastic foundations in 

thermal environments using the finite element method is 

performed. In this regard, the governing equations are 

derived based on Inverse Hyperbolic Shear Deformation 

Theory (Grover et al. 2013) and von Kármán geometrical 

nonlinearity. Three type of distribution of temperature 

through the thickness of the plate namely, uniform linear 

and nonlinear are considered. The considered element is C
1
-

continuous with 15 DOF at each node. The effective 

material properties of the multiscale composite are 

calculated using Halpin-Tsai equations and fiber 

micromechanics in hierarchy. The carbon nanotubes are 

assumed to be uniformly distributed and randomly oriented 

through the epoxy resin matrix. Five types of impulsive 

loads are considered, namely the step, sudden, triangular, 

half-sine and exponential pulses.  

After examining the validity of the present work, the 

effects of the weight percentage of SWCNTs and 

MWCNTs, nanotube aspect ratio, volume fraction of fibers, 

plate aspect, temperature, elastic foundation parameters, 

distribution of temperature and shape of impulsive on 

nonlinear dynamic response of CNT reinforced multi-phase 

laminated composite plate are studied in details. 

 

 

2. Theoretical formulation 
 

Fig. 1 shows a rectangular multiphase nanocomposite 

plate composed of isotropic matrix (epoxy resin), CNTs and 

fibers (carbon) on elastic foundation. Coordinate system 

and the geometric parameters used for the plate are depicted 

in Fig. 1. 

 

2.1 Carbon nanotube/fiber/polymer multi-phase 
composite material model 

 

The effective mechanical properties of these composites 

can be obtained based on a combination of Halpin-Tsai 

(Thostenson et al. 2002) and micromechanics approach 

scheme (Shen 2009), with two steps in the hierarchy as 

depicted in Fig. 2. The resulting properties of the CNT 

reinforced multi-phase laminated composite plate are 

orthotropic and can be expressed as (Shen 2009) 
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Fig. 1 The geometric parameters CNT reinforced multi-

phase laminated composite plate resting on elastic 

foundations 

 

 

Fig. 2 Hierarchy of the CNT reinforced multi-phase 

laminated composite (Kim et al. 2009) 

 

 

where   ,          and    denote the Young’s modulus, 

shear modulus, mass density, volume fractions and 

Poisson’s ratio, respectively, while the superscript or 

subscript F and MNC signify the fibers and matrix of 

nanocomposite, respectively.  

Based on the Halpin-Tsai model, the tensile modulus of 

composites may be stated as (Kim et al. 2009) 
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where   
  ,     ,    

      and       indicate the Young’s 

modulus, thickness, outer diameter, length and the volume 

fraction of carbon nanotubes, respectively, and   
  and 

   are the Young’s modulus and volume fraction of the 

matrix, respectively. 

The volume fraction of carbon nanotubes may be 

defined as (Rafiee et al. 2013) 
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where 𝑤   is the mass fraction of the carbon 

nanotubes,     and     are the mass densities of the 

matrix and carbon nanotube, respectively. 

The Poisson’s ratio and mass density   may be stated 

as 
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where    is Poisson’s ratio of the matrix. Since the 

amount of carbon nanotube was small,       was 

considered to be the same as that of matrix (Kim et al. 

2009, Rafiee et al. 2014b). The thermal expansion 

coefficients in the longitudinal and transverse directions can 

be expressed as (Shen 2009) 
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where     
 and     

  are the thermal expansion coefficients 

of the fiber.      indicate the polymer matrix containing 

carbon nanotubes and is given by (Hu et al. 2013) 

(15) 
     

 

 
 (
      

           
   

      
        

 
) 

     
          

             
            

where    and    are the thermal expansion coefficients 

of the carbon nanotube and epoxy resin matrix, 

respectively. The temperature distributions are assumed 

through the thickness of the plate by Na and Kim (2004) 

(16) Uniform 𝑇 𝑧  𝑇0  Δ𝑇  

(17) Linear 𝑇 𝑧  𝑇0  Δ𝑇 
𝑧

ℎ
   

(18) Nonlinear 𝑇 𝑧  𝑇0  Δ𝑇 
𝛩 𝑧 

ℎ
   

where ΔT is the rise in temperature with respect to T0 the 

reference temperature, respectively. 

 

2.2 Displacement field model 
 

According to the Inverse Hyperbolic Shear Deformation 

Theory, the displacement field of laminated plate theory can 

be expressed as (Grover et al. 2013) 

(19) 

𝑢 𝑥 𝑦 𝑧    𝑢0 𝑥 𝑦    𝑧
𝜕𝑤0

𝜕𝑥
 𝛩 𝑧 𝜙𝑥 𝑥 𝑦    

𝑣 𝑥 𝑦 𝑧    𝑣0 𝑥 𝑦    𝑧
𝜕𝑤0

𝜕𝑦
 𝛩 𝑧 𝜙𝑦 𝑥 𝑦    

𝑤 𝑥 𝑦 𝑧    𝑤0 𝑥 𝑦    

where 𝑢0, 𝑣0 , and 𝑤0 denote the displacements at the 

mid-plane of the reference plane of the plate and 𝜙𝑥 and 

𝜙𝑦  are rotations about the y and x axes, respectively. 
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𝛩 𝑧  indicate the transverse shear function and is given by 

(Grover et al. 2013) 

(20) Θ 𝑧  𝑐𝑜 − (
𝑟ℎ

𝑧
)  

 𝑟𝑧

[ℎ  𝑟    ]
 ; 𝑟  0. 6 

The strain–displacement relations, based on von 

Kármán’s large deformation assumption are (Ebrahimi and 

Habibi 2016) 

{
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(22) 

In the above relations,  𝑥𝑥 ,  𝑦𝑦  and  𝑥𝑦  denote in-

plane strains. Also,  𝑦𝑧  and  𝑥𝑧  are transverse shear 

strains. The governing equations can be generated by 

applying principle of virtual work (Lei et al. 2014) 
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0
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(23) 

where    denote the density of reaction force of foundation 

and is given by (Chien and Chen 2006) 

(24)    𝐾 𝑤  𝐾  
𝜕 𝑤

𝜕𝑥 
 
𝜕 𝑤

𝜕𝑦 
  

where 𝐾  and 𝐾  are stiffness of Winkler’s and Pasternak 

foundation.      is the impulsive load and can be any one 

of the types is given by (Shen et al. 2000) 
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−𝜏𝑡  

 

2.3 Constitutive equations 
 

The constitutive relation of the kth layer of the laminate 

in the material axes can be stated as (Reddy 2004) 
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where 

    
   

        
   

                
   

        
           

    
      

        
           

(31) 

If the fiber angle with the geometric x axis is denoted by 

θ, the relation (30) can be transferred to the geometric 

coordinates as 
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(33) 

 

 

3. Finite element formulation 
 

There are also nonlinearities in the realistic mechanical 

problems which generate difficulties in the solving 

procedure of the final governing equations of these 

problems. Based on this phenomenon, it is usually hard or 

sometimes impossible to solve nonlinear problems 

incorporating analytical solution methods. In this cases, 

researchers majorly prefer to choose powerful numerical 

solution methods like differential transformation method 

(DTM), differential quadrature method (DQM), discrete 

singular convolution method (DSCM), finite element 

method (FEM) and so on instead of analytical ones. 

Baltacıoglu et al. (2010) developed a DSC based model in 

order to solve the nonlinear bending characteristics of 

composite plates. Later, Tornabene et al. (2015) combined 

the FEM with the DQM and presented that these methods 

are powerful enough for the goal of solving mechanical 

problems. Ebrahimi et al. (2015) showed the accuracy of 

the DTM for solving the vibrational responses of 

compositionally graded nanobeams. 

In present section, the equations of CNT reinforced 

multi-phase laminated composite plate by applying finite 

element method are discretized. Based on Eq. (23), one may 

write (Ebrahimi and Habibi 2016) 
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where {  0 }=  𝑢0 𝑣0 𝑤0 𝜙𝑥  𝜙𝑦 
𝑡  is the displacement 

vector of a point in middle-plane, and 
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(36) 

and     denote the thermal force and is given by 

(37)       0  𝑧   𝑧    
𝑡  {

   

   

0
}  𝑇 𝑧  𝑇0  

From the strain-displacement relationships, can observe 

that the first and second-order derivatives of generalized 

displacements are appeared in equations. Therefore, to 

guarantee the integrability of equations, the C
1
-continuity of 

the generalized displacement functions is generally 

necessary in finite element procedure (Ebrahimi and Habibi 

2016). Hence, in this paper, the four-nodded rectangular 

conforming element based on HSDT is used. The element is 

C
1
-continuous via 15 DOF at each node. According to the 

nodal displacement vector, the displacement vector of the 

reference plane may be written as 

(38) 
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where: 

     {
𝑢0  𝑣0  𝑤0  𝜙𝑥  𝜙𝑦  𝑢0  𝑥  𝑣0  𝑥 𝑤  𝑥  

𝜙𝑥  𝑥 𝜙𝑦  𝑥 𝑢0  𝑦  𝑣0  𝑦 𝑤0  𝑦  𝜙𝑥  𝑦  𝜙𝑦  𝑦
}

 

are 

the 15-DOF associated with each node.  

The displacement interpolation functions can be written 

as 
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   (41) 

where α and β are the half length of element in the x and y 

directions and the normalized coordinates are  

  
𝑥  𝑥 

 
.     

𝑦  𝑦 
 

 (42) 

where (𝑥 , 𝑦 ) is the center of rectangular element. Based 

on Eqs. (38)-(42), Eq. (34) can be expressed as 
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Eq. (45) holds for any arbitrary (     )
𝑡
 0, therefore 

in a compact form 

𝐾 
    0

   
 𝐾  

    0
   

+     ̈0
   

      (46) 

where, the element stiffness matrixes 𝐾 
     𝐾  

   
, element 

load vector     , element mass matrix      and can be 

given as 
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(48)      𝑌     𝑡         
    

(49) 
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where 𝑌    is the element force vector due to thermal 

𝑌    ∫ [ 0
𝑡    

𝑡    
𝑡] [

 0
  

  
  

  
  

]
  
   

 𝑥 𝑦 (50) 

Resulting time-dependent may be expressed as 

[𝐾]    [ ]{ ̈}      (51) 

where,   and  ̈ are respectively the displacement and 

acceleration vector. F is the global load vector, which 

includes the impact force and thermal force K is the global 

stiffness matrix, includes linear and nonlinear stiffness 

matrix. Also M denote the global mass matrix. 

The boundary conditions for clamped and simply 

supported conditions are given below: 

𝑢  = 𝑢  = 𝑤0 = 𝜙  𝜙  0 (Clamped edge) 

𝑢  = 𝑤0 = 𝜙  = 0 (Simply supported edge) 

where the subscripts s and n denote the tangential and 

normal directions, respectively, on the boundaries. 

 

 

Table 1 Material properties of the multi-phase 

nanocomposite plate (Zhang and Wang 2006, Rafiee et al. 

2014b)  

Material properties of fiber (carbon): 

   
 =233.05 GPa,    

 =23.1 GPa ,    
  =8.96 GPa,  

  =0.2 ,   =1750 kg/m ,    0.6 

 
  

  0.    0−  𝐾−  ,  
  

 10.08   0−  𝐾−  

Material properties of epoxy matrix: 

  =0.34,   =1150 kg/m3 ,   
 =2.5 GPa 

      0−  𝐾−  

   .6   0−  wt%−  

Material properties of CNT:  

SWCNT: 

  
  =640 GPa 

  
   =1.4  0−9 m 

   =0.34  0−9 m 

   =1350 kg/m3 

   
  =0.33 

    25  0−  m 

  3.4584  0−  𝐾−  

MWCNT: 

  
  =400 GPa 

  
   =20  0−9 m 

   =0.34  0−9 m 

   =1350 kg/m3 

   
  =0.33 

    50  0−  m 

 

 
Fig. 3 Comparisons of central deflection history of an 

(CFRC) composite laminated plate subjected to suddenly 

applied uniform load 
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In order to solve Eq. (53), Newmark’s numerical time 

integration method is used. Based on this method, 

accelerations and velocities of the end of each time step are 

computed by Zhu et al. (2005) 

 ̈      (       )     ̇     ̈  
(52) 

 ̇     ̇     ̈     ̈  

where   is the time step counter and 

   
 

      
;     

 

   
;    

 

 
  ;   ≤   

          ;       ;    0.  

(53) 

By substituting Eq. (52) into Eq. (51), we obtain 

𝐾         ̂    (54) 

where 

𝐾    𝐾           (55) 

 ̂              (56) 

where    is the following vector 

           ̇     ̈  (57) 

Since Eq. (51) is a nonlinear equation, Picard or 

Newton-Raphson method has to be employed in each time 

step to reach a convergence criterion, e.g.  

‖  
        

   ‖

  
     

   (58) 

 

 

where j,    and   are the time step counter, iteration 

counter, and a sufficiently small number, respectively. 

 

 

3. Results and discussions 
 

In present section, after examining the validity of the 
present work, the effects of the weight percentage of 
SWCNTs and MWCNTs, nanotube aspect ratio, volume 

fraction of fibers, plate aspect, temperature, elastic 
foundation parameters, distribution of temperature and 
shape of impulsive on nonlinear dynamic response of CNT 
reinforced multi-phase laminated composite plate are 
studied in details. Due to enable tracing time variations of 
the response more adequately, the time integration steps 

must be much less than the fundamental natural period of 
the structure. Hence in this paper, a time step that is equal 
or less than 10

- 6
 (sec) is chosen. Also Δ  0.000  is used 

for the convergence criterion (Eq. (51)). 
 

3.1 Validation 
 

To validate the results of the present work, an example 

previously used by Kant et al. (1990) is re-solved. The 

material properties and geometrical parameters are set 

according to that in (Kant et al. 1990), of which the results 

are compared. Material properties of the [0/90/90/0] 

composite plate are E1/E2=25, E2=2.1×10
-6

 N/cm
2
; G12= 

G13=G23=0.5E2; G12=3.5 GPa; ν12=0.25; ρ=8×10
-6

 N.s
2
/cm

4
. 

The plate is simply supported with geometrical properties  

 

Fig. 4 Effect of the weight percentage of SWCNTs on the central deflection of plate (ΔT=0 K) (a) SSSS; (b) CCCC; (c) 

CSCS, (d) CCCF 
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a=b=25 mm and h=5 cm. The suddenly applied uniform 

load has f0=10 N/cm
2
. In Fig. 3 the results of this study for 

the central deflection histories are compared with those 

presented by Kant et al. (1990). As it is obvious from Fig. 

3, there is a good agreement between present results and 

results of Kant et al. 

 

3.2 Parametric studies 
 

In this section, nonlinear dynamic response of 

polymer/CNT/fiber multiphase nanocomposite plate resting 

on elastic foundations in thermal environments investigated. 

A plate with material properties listed in the Table 1 and 

geometry a=b=200 mm and h=20 mm and the stacking 

sequence [0/90/90/0] is considered. The dynamic load is 

assumed to be a suddenly applied uniform load with f0=2 

MPa. Volume fraction of fibers V
F
=0.7 is considered. For 

convenience, dimensionless foundation stiffness is defined 

by: 

 0  
 𝑜ℎ

 

      0
  
  𝐾𝑤  

𝐾  
 

 0

  𝐾  
𝐾  

 

 0

 

 

3.2.1 Effect of adding CNT  
Effect of weight percentage of CNT on the nonlinear 

dynamic response of a multi-phase laminated composite 

plate reinforced with SWCNT and MWCNT under different 

boundary conditions are depicted in Fig. 3, Fig. 4. Four 

different weight percentage of carbon nanotube, 𝑤  =0%, 

1%, 2% and 3% are considered. Four sets of boundary 

conditions, i.e., CCCC, SSSS, CCCF and CSCS, are 

considered. As may be noted, Increasing the CNTs weight 

 

 

percentage leads to a plate with higher bending rigidity and 

subsequently, higher natural frequencies and smaller 

response times. Due to this reason, central deflection has 

decreased with increasing the weight percentage. Further 

the effect of weight percentage of is more prominent in 

SWCNTs reinforced composite plates rather than 

MWCNTs reinforced composite plates.  

Also, as can be observed, The central deflection related 

to the CCCC boundary is the lowest, followed by CCCF, 

CSCS and SSSS in that order. 

Fig. 5 show the effect of aspect ratio of CNT on the 

nonlinear dynamic response of simply supported, 

symmetric cross ply, SWCNT and MSCNT reinforced 

multi-phase laminated composite plate. Four sets of aspect 

ratios have been considered here, i.e.,       ⁄ =100; 500; 

1000, and 2000.  

As may be noted, composite plate reinforced with longer 

CNTs has more stiffening behavior and as the aspect ratio 

of CNT increases the peaks of central deflection decreases. 

It should be noted that for aspect ratios higher than 500 

(      ⁄ >500) this effect insignificant. 

 

3.2.2 Effect of thermal environment 
In this section, it is intended to investigate effect of 

thermal environment on the nonlinear dynamic response of 

a multi-phase laminated composite plate reinforced with 

single walled carbon nanotube. In this regard, weight 

percentage of SWCNT wcn=3% is considered. The 

temperature field is assumed to be varied uniformly through 

the thickness of the plate. Specifications are the same with 

the preceding section. 

 
Fig. 5 Effect of the weight percentage of MWCNTs on the central deflection of plate (ΔT= 0 K). (a) SSSS; (b) CCCC; (c) 

CSCS, (d) CCCF 
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Table 2 present the effect of temperature rise and 

volume fraction of fibers on the maximum deflection for 

simply supported CNT reinforced multi-phase laminated 

composite plate with different SWCNTs weight percentage. 

As may be observed, as the plate temperature increases 

peak central deflection increases. That is because increasing 

the plate temperature leads to structure loses stiffness 

generally.  

As mentioned in Fig. 3 and Fig. 4 central deflection of 

plate has decreased with increasing the weight percentage, 

but From Table 1, it is noticed that in thermal environment 

central deflection of plate was reduced using a maximum of 

1% of the CNT in polymer composites and adding more 

than this weight percentage no significant change in peaks 

of central deflection is observed. The reason is that, the 

thermal expansion coefficients of nanocomposite decreases 

as weight percentage of carbon nanotube changes from 0 to 

1% while increases when the weight of carbon nanotubes is 

more than 1%. 

Effect of temperature rise parameter on the nonlinear 

dynamic response of a multi-phase laminated composite 

plate reinforced with SWCNT for different plate aspect 

ratio are depicted in Fig. 7. The temperature field is 

assumed to be varied uniformly through the thickness of the 

plate. Three aspect ratio, a/h=5, 10 and 20 are considered. 

 

 

 

As may be observed, the effect of temperature rise is more 

prominent in thick plates rather than in thin plates. Effect 

of the temperature distribution on the nonlinear dynamic 

response of a multi-phase laminated composite plate 

reinforced with SWCNT for different temperature changes 

is presented in Fig. 8. Three type of distribution of 

temperature through the thickness of the plate namely, 

uniform linear and nonlinear are considered. As may be 

observed, the central deflection of the plate is maximum 

under uniform distribution, followed by linear and nonlinear 

distribution. It should be noted that, as temperature changes 

increases difference between curves for temperature 

distributions increase. Three type of distribution of 

temperature through the thickness of the plate namely, 

uniform linear and nonlinear are considered. As may be 

observed, the central deflection of the plate is maximum 

under uniform distribution, followed by linear and nonlinear 

distribution. It should be noted that, as temperature changes 

increases difference between curves for temperature 

distributions increase. 

 

3.2.3 Effect of foundation stiffness 
Effect of the foundation stiffness on the nonlinear 

dynamic response of a multi-phase laminated composite 

plate reinforced with CNT is analyzed in this section. 

Table 2 Effect of temperature rise and volume fraction of fibers on the central deflection (10
-5

 m) for simply 

supported CNT reinforced multi-phase laminated composite plate with different SWCNTs weight percentage 

      ⁄  wcn 

ΔT=0 [K] ΔT=100 [K] ΔT=200 [K] 

VF VF VF 

0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 

100 

0 15.3957 12.9177 10.7348 17.1322 14.4282 12.0757 18.8687 15.9386 13.4166 

1 13.8950 11.7734 9.91972 15.9384 13.5083 11.4112 17.9818 15.2432 12.9141 

2 12.8871 11.0236 9.40035 15.1758 12.9420 11.0232 17.4671 14.8603 12.6460 

3 12.1691 10.4771 9.03984 14.6656 12.5405 10.7543 17.1622 14.6038 12.4687 

500 

0 15.3957 12.9177 10.7348 17.1322 14.4282 12.0757 18.8687 15.9386 13.4166 

1 13.1253 11.1857 9.52336 15.3646 13.0627 11.1209 17.6039 14.9397 12.7184 

2 11.9065 10.2848 8.90396 14.5008 12.4293 10.6699 17.0950 14.5738 12.4359 

3 11.1138 9.70095 8.51021 13.9972 12.0425 10.3927 16.8978 14.3890 12.2870 

1000 

0 15.3957 12.9177 10.7348 17.1322 14.4282 12.0757 18.8687 15.9386 13.4166 

1 12.9530 11.0698 9.43509 15.2390 12.9833 11.0553 17.525 14.8968 12.6756 

2 11.7197 10.1429 8.80562 14.3873 12.3387 10.6040 17.0549 14.5346 12.4024 

3 10.9259 9.56605 8.42291 13.9013 11.9703 10.3437 16.8767 14.3745 12.2645 

 

Fig. 6 Effect of the of CNTs aspect ratio on the central deflection of plate (ΔT= 0 K) .(a) SWCNT; (b) MWCNT 
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Plate is assumed at reference temperature. Two 

foundation models are considered. The stiffness are (Kw, 

Ks)=(1000, 0) for the Winkler elastic foundation, (Kw, 

Ks)=(1000, 100) for the Pasternak elastic foundation and 

(Kw, Ks)=(0, 0) for the plate without any elastic foundation. 

Numerical results of this section are provided in Fig. 9. 

Weight percentage of single walled carbon nanotube 

wcn=3% is considered. Specifications are the same with the 

preceding section. As may be observed, the central 

deflection of the plate has decreased considerably due 

increasing the foundation stiffness.  

 

3.2.4 Effect of shape of impulsive load 
Effect of shape of impulsive loads on the nonlinear 

 

 

 

dynamic response of a multi-phase laminated composite 

plate reinforced with CNT for different stacking sequence 

are provided in Fig. 9. Four types of impulsive loads are 

considered, namely the step, triangular, half-sine and 

exponential pulses. Weight percentage of single walled 

carbon nanotube wcn=1%, and volume fraction of fibers 

V
F
=0.6 is considered. As may be observed, the step pulse 

produces the largest displacement amplitude for the plate 

with any type of stacking sequence, whereas the 

exponential pulse leads to the smallest amplitude. Also, as 

the external load is eliminated (t0=7 s), the oscillations of 

the center point perform around the equilibrium position in 

a symmetric manner. In the case of the composite subjected 

to the half-sine impulsive load, the center point of the plate 

   
(a) (b) (c) 

Fig. 7 Effect of temperature rise for different plate aspect ratio on the central deflection of a simply supported multi-phase 

laminated composite plate reinforced with SWCNT for different plate aspect ratio (a) a/h=20; (b) a/h=10; (c) a/h=5 

 

Fig. 8 Effect of temperature distribution on the central deflection of a simply supported multi-phase laminated composite 

plate reinforced with SWCNT for different temperature changes (a) ΔT=50 K; (b) ΔT=100 K; (c) ΔT=150 K; (d) ΔT=200 K 
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is always higher than the static equilibrium position. Also, 

the peak central deflection of the plate is maximum for 

[90°/0°/0°/90°] composite plate, followed by 

[45°/45°/45°/45°], [30°/60°/60°/30°] and [0°/90°/90°/0°] 

composites. 

 

 

4. Conclusions 
 

Present study is devoted to investigate the dynamic 

bending answers of multiscale polymer-CNT-fiber 

nanocomposite rectangular plates with respect to strain 

nonlinearities. The structure is considered to be embedded 

on a Winkler-Pasternak medium. Moreover, the kinematic 

 

 

 

relations are extended in the framework of an inverse 

cotangential plate theory to capture shear deformation 

effects. Homogenization procedure for three phase 

polymer-CNT-fiber nanocomposite material is performed 

according to a two-step method including Halpin-Tsai 

model and a micromechanics approach. Finally, the 

governing equations are solved based on the Newmark’s 

method. Herein, the most important highlights of the article 

are going to be reviewed to put emphasize on the 

significance of each participant variant: 

• In the situation that the plate is subjected to a dynamic 

loading, the maximum central deflection of the plate 

becomes smaller whenever the mass fraction of the 

CNTs is added. 

 

  

 

 (a) (b)  

Fig. 9 Effect of the foundation stiffness on the central deflection of a simply supported multi-phase laminated composite plate 

reinforced with SWCNT (a) ΔT=50 K; (b) ΔT=200 K 

 
Fig. 10 Effect of shape of impulsive loads on the central deflection of a simply supported multi phase laminated composite 

plate reinforced with SWCNT for different stacking sequence. (a) [45°/45°/45°/45°]; (b) [0°/90°/90°/0°]; (c) [90°/0°/0°/90°]; 

(d) [30°/60°/60°/30°] 
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• CNT aspect ratio plays a significant role influencing 

the dynamic behavior, but only for SWCNT reinforced 

composite plates. It should be noted that for composite 

plate reinforced with short CNT (aspect ratio less than 

50) this influence is insignificant. 

• The temperature distribution (uniform, linear, 

nonlinear) have a significant effect on the nonlinear 

dynamic response of a multi-phase laminated composite 

plate reinforced carbon nanotube. Actually, the bending 

responses of plates can be increased by subjecting the 

structure to a temperature change. 

• It is clear that the maximum central deflection of the 

plate lessens once the nonlinear temperature change is 

applied. It is notable that the greatest response 

corresponds with the uniform temperature profile. 

• Central deflection of plate is reduced using a 

maximum of 1% of CNT in polymer composites and 

adding more than this weight percentage no significant 

change in peaks of central deflection is observed. 

• The step pulse produces the largest displacement 

amplitude for the plate with any type of stacking 

sequence, whereas the exponential pulse leads to the 

smallest amplitude. 

• The effect of adding foundation coefficients on the 

central deflection of the plate is a decreasing effect. In 

other words, the maximum deflection decreases while 

both Winkler and Pasternak springs are utilized. The 

reason is the applied raise in the total stiffness of the 

system in such conditions which leads to smaller 

bending responses. 
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