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1. Introduction  
 

Finding efficient solutions for discontinuous Euler-

Bernoulli beams (EBBs) is of great interest in engineering 

applications. In particular, shear force and bending moment 

discontinuities arise where concentrated forces and 

moments are applied, given either as external loads or 

reactions of along axis essential constraints, i.e., external 

roller and rotational supports.  

In a classical approach, a 4th-order differential 

equilibrium equation shall be written for each of the   

beam portions singled out by   distinct discontinuity 

locations. In this manner, however, the computational effort 

can become significant when the number of discontinuity 

locations increases.  

An alternative analytical solution method involves 

reformulating the bending problem in the space of 

generalized functions. The first contribution in this sense 

has been the singularity function method due to Macaulay 

(1919), where point loads are treated as continuous by the 

introduction of appropriate generalized functions. These 

functions include the so-called bracket functions, 

introduced by the same Macaulay, and the distribution 

functions (Pilkey 1964, Schwartz 1966) The solution is 

built through integrations made in the generalized sense, 

that is following the Macaulay bracket formulation or the 

rules of the distribution functions, respectively. In this way 

the beam deflection is a generalized function itself and it is 

always given in terms of only four integration constants, to 

be determined by imposing the four boundary conditions 

(Falsone 2002). Macaulay’s method has been later extended 

by Brungraber (1965) to EBBs with discontinuities due to 

along axis essential and natural constraints. Specifically, 

Brungraber has shown that each discontinuity results in an 
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equivalent load, modelled by an appropriate generalized 

function involving an unknown response variable at the 

discontinuity location. An exhaustive review on Macaulay’s 

and Brungraber’s solutions may be found in Falsone (2002). 

The birth of Schwarz (1966) distribution theory 

provided a rigorous justification for a number of very 

common formal manipulations in the engineering literature. 

Indeed, certain types of distributions, in particular, the Dirac 

delta function and its derivatives, were used in engineering 

problems years before the development of distribution 

theory. The delta function dates back to the first half of the 

19th century. Dirac (1930) introduced this function in 

quantum mechanics and since then the function has been 

known as the Dirac delta function. 

A more recent work on discontinuous beams, also based 

on the use of generalized functions, is due to Kanwal 

(1983). It considers mixed-type discontinuous EEBs; the 

discontinuities are due both to along axis essential and 

natural constraints, and to flexural-stiffness jumps. The 

response of the original beam is obtained as linear 

superposition of the responses of a uniform reference beam 

to loading conditions given by: (i) the external loads; (ii) the 

generalized loads, each given in terms of one or more 

unknown response variables at each discontinuity location. 

The solutions are sought in the space of classical functions. 

Obviously, this method offers no computational advantage 

as compared to the previous heuristic approaches. However, 

it is a first attempt to apply the theory of generalized 

functions to discontinuous beams with flexural-stiffness 

jumps. 

As an improvement to Kanwal’s method, Yavari et al. 

(2000) proposed the so-called auxiliary beam method. The 

auxiliary beam is a uniform reference beam, subjected to 

the external loads and equivalent generalized loads 

depending on the flexural-stiffness jump parameters. The 

original beam response is then expressed as the auxiliary 

beam response, corrected by a number of additional 

generalized functions depending on the unknown response 

 
 
 

The use of generalized functions modeling 
the concentrated loads on Timoshenko beams 

 

Giovanni Falsone
 

 
Department of Engineering, University of Messina, Contrada Di Dio, 98166 Sant’Agata, Messina, Italy 

 
(Received October 17, 2017, Revised March 13, 2018, Accepted June 20, 2018) 

 
Abstract.  An incongruity is underlined about the analysis of Timoshenko beams subjected to concentrated loads modelled 

through the use of generalized functions. While for Euler-Bernoulli beams this modeling always leads to effective results, on the 

contrary, the contemporary assumptions of concentrated external moment, interpreted as a generalized function (doublet), and of 

shear deformation determine inconsistent discontinuities in the deflection laws. A physical/theoretical explanation of this not-

neglecting incongruity is given in the text. 
 

Keywords:  Timoshenko beam; concentrated loads; generalized functions; physical incongruity 

 



 

Giovanni Falsone 

 

variables at the discontinuity locations. The solution is built 

in the space of classical functions.  

Arbabi (1991) generalized the singularity function 

method for a beam with an internal hinge and a beam with 

jump discontinuities in flexural stiffness, starting the 

analysis from the bending moment expression. 

In a recent paper (Failla and Santini 2007) an analytical 

solution for arbitrary mixed-type discontinuous EBBs is 

presented. It implicitly satisfies the boundary conditions and 

depends on unknown parameters to be computed by 

appropriate conditions at the discontinuity locations. This 

objective is achieved by reformulating the bending problem 

in the space of generalized functions and computing the 

beam response in terms of the Green’s functions of a 

uniform reference beam. 

In the last years, the generalized functions have been 

used also for the study of discontinuous EBBs on elastic 

foundations (Yavari et al. 2001, Colajanni et al. 2009) and 

in the field of dynamical analyses (Ecsedi and Dluh 2004, 

Failla and Santini 2008, Cheng et al. 2014, Failla 2014). 

The generalized function have been used in the stochastic 

EBB, both in the case of random concentrated loads 

(Falsone and Settineri 2013) and in the case of stochastic 

beam properties (Failla et al. 2005). Finally, in the theory of 

cracked beams, the generalized functions have been 

advantageously taken into account for representing the 

arising discontinuities (Grossi and Raffo 2016).  

In some cases, the approaches before cited for the EBBs 

have been extended to the discontinuous Timoshenko 

beams (TBs), in the static case (Yavari et al. 2001), for the 

multi-stepped beams (Caddemi et al.  2013) and in the 

dynamic case (Ghannadiasl and Mofid 2014). But, however, 

the discontinuities treated in these works are always jumps 

in slope, deflection, bending stiffness and shear stiffness 

and they are considered in the space of generalized 

functions. No case of concentrated force or moment has 

been highlighted. 

In the present work, after having recalled the 

expressions of the generalized functions, distinguishing the 

Macaulay functions from the distributions, giving the 

differentiation and integration rules for both the types, in 

Sec.3 the EBB excited by a concentrated force and by a 

concentrated moment is taken into consideration. The space 

of the generalized functions allows the definition of all the 

response characteristics (deflection, slope, bending moment 

and shear force) at the discontinuity abscissa. In Sec.4, the 

attempt to consider the TB loaded by the same concentrated 

actions is presented with the goal to find an explanation, if 

there is, of the lack of this kind of applications in the 

literature. 

 

 
2. EBB under concentrated actions 
 

It is well known that the transversal force equilibrium of 

a loaded EBB is governed by the following continuum 

differential equation 

 
  ;       0

dT x
p x x l

dx
     (1) 

T(·) being the internal shear force and p(·) the distributed 

transversal load. The integration of this equation gives the 

law of the internal shear force as follows 

   
1

T x p x dx C    (2) 

where C1 is an integration constant depending on the 

boundary conditions.  

If the transversal load is concentrated at the abscissa x0, 

Eqs. (1), (2) can be still used if the generalized functions are 

used and the integrations are made in the appropriate 

generalized sense. In particular, the load can be represented 

by a Dirac delta function (DDF), that, using the notation 

reported in Falsone (2002), can be written as  

     
0 1 0

p x P x x PR x x


     (3) 

The generalized integration of this equation leads to 

     
0 1 0 0 1

T x PU x x C PR x x C         (4) 

U(x−x0)≡R0(x−x0) being the unit step function (USF) placed 

at x0, that is considered as the integral function of the DDF 

in the generalized sense. The presence of this generalized 

function in the shear law implies a jump of amplitude −P in 

the corresponding diagram. This is obviously a classical 

result in the beam theory.  
The moment equilibrium equation implies that the 

bending moment law M(x) can be obtained by integrating 

T(x) that is 

   
1 0 1 2

M x PR x x C x C      (5) 

where R1(x−x0) is a generalized function, usually called 

linear ramp, that is the integral of the USF in the 

generalized sense and determining a change of slope at x0 in 

the bending moment diagram, in accordance with the 

classical EBB theory. 

Considering the moment-curvature constitutive equation 

and integrating the curvature-rotation congruence 

differential equation, at last the following expression is 

obtained for the rotation law φ(x)  

   
2

2 0 1 2 3

1 1

2

P x
x R x x C C x C

EI EI EI
       (6) 

EI being the beam flexural stiffness, considered to be 

constant along the axis, while R2(x−x0) is the so-called 2nd 

order ramp and that can be considered as the integral of the 

linear ramp in the generalized sense. It is important to note 

that this expression guarantees the continuity of the φ(x) 

law. 

The last step for characterizing the EBB response is the 

evaluation of the transversal deflection w(x) which is 

obtained by the integration of the congruence rotation-

deflection equation valid for the EBB, that is 

φ(x)=−dw(x)/dx. It has the following expression 

   
3 2

3 0 1 2 3

4

1 1

6 2

           

P x x
w x R x x C C C x

EI EI EI

C

     



 (7) 

where R3(x−x0) is the 3rd order ramp. Also this expression 

guarantees the continuity of the deflection law. The four 
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integration constants depend on the boundary conditions 

and, hence, on the constrains acting on the beam extremes. 

When the load is a concentrated moment M  applied at 

x0, it can be modeled, as a distributed action p(x), by a 

doublet (Shames 1989, Falsone 2002, Chalishajar et al. 

2016), that is the formal derivative, in the generalized sense, 

of the DDF 

     
2 0 0

p x MR x x M x x


     (8) 

This representation is justified by the consideration that 

a concentrated moment can be considered as a couple of 

concentrated forces whose arm tends to zero. Each force 

can be represented by a DDF, whose intensity, which is 

already ∞, must be multiplied again for ∞ when the arm 

tends to zero. The generalized function deriving from this 

concept is just the doublet. 

Recalling the same previous sequence of operations 

made for the concentrated force, it is easy to verify that 

10101 )(ˆ)(ˆ)( CxxMCxxRMxT     (9a) 

2100 )(ˆ)( CxCxxRMxM   (9b) 

32

2

101

1

2

1
)(

ˆ
)( Cx

EI
C

x

EI
CxxR

EI

M
x   (9c) 

43

2

2

3

102
2

1

6

1
)(

ˆ
)( CxC

x

EI
C

x

EI
CxxR

EI

M
xw   (9d) 

It is worth noting that Eq. (9a) shows the presence of a 

DDF in the internal shear law. This means that the value of 

T(x) remains unchanged passing from the section placed 

immediately before the abscissa x0 (
0

x x


 ) to that one 

placed immediately after x0 (
0

x x


 ). The presence of the 

USF into Eq. (9b) implies the correct jump in the bending 

moment law. The rotation law (Eq. (9c)), showing the 

presence of the linear ramp function, implies a jump in the 

derivatives of rotations and, hence, the correct jump in the 

curvature. At last, the form of Eq. (9d) guarantees the 

continuity of the deflection law w(x). 

Alternatively, the concentrated moment load could be 

modeled as a distributed moment load m(x) by considering 

the DDF, that is    
1 0

m x MR x x


  . In this case, the 

second member of the equilibrium Eq. (1) is zero and its 

integration implies T(x)=C1. The internal moment 

differential equation writes 

 
   

 
 

1 0 1

   

   

dM x
m x T x

dx

dM x
MR x x C

dx


  

    

 (10a-b) 

whose integration has exactly the same expression of Eq. 

(9a). The further operation is just the same of that made 

before and leading to Eqs. (9b)-(d). This implies that this 

procedure is perfectly equivalent to the previous one. 

The results obtained in this section confirm the 

correctness of using the generalized functions for 

representing the concentrated loads on the EBB, with the 

corresponding computational advantage of having always 

four integration constants to be evaluated, against the 4n 

necessary if the traditional approach of dividing the beam in 

n parts where, in each, the response is continuous. 

 

 
3. TB under concentrated loads  
 

When the shear deformability of the beam is taken into 

account, the Timoshenko (1922) beam theory is usually 

considered (Elishakoff et al. 2015 and references herein). 

While the transversal and moment internal equilibrium 

differential equations, the compatibility rotation-curvature 

differential equation and the constitutive curvature-bending 

moment equation remain unchanged respect to the 

corresponding ones considered in the EBB, in the 

compatibility rotation-deflection differential equation must 

take into account the presence of the shear deformability 

and another constitutive equation between the internal shear 

force and the corresponding deformation γ(x) must be 

considered, that are 

   
 

   ;       
dw x

x x x T x
dx GA

  


    (11a-b) 

where χ/GA is the shear deformability of the beam, here 

considered constant along the axis.  

If a transversal concentrated load P is applied at the 

abscissa x0 of a TB, as the internal equilibrium conditions 

do not change respect to what said for the EBB in the 

previous section, then Eqs. (1)-(5) are still valid for the TB 

case. Moreover, as the rotation -curvature compatibility 

equation remains unchanged, too, then Eq. (6) is still valid 

also. Hence, taking into account Eq. (11a), where Eqs. (6) 

and (11b) have been replaced, then the following expression 

is obtained for the deflection derivative 

 
   

0 0 2 0

2

1 2 3

1

1 1
           

2

dw x
F R x x R x x

dx GA EI

x
C xC C

GA EI EI

    

   

 
  

 
 
 





 (12) 

that, integrated, gives 

     
1 0 3 0

3 2

1 2 3 4

1

1 1
        

6 2

w x F R x x R x x
GA EI

x x
x C C C x C

GA EI EI

    

    

 
  

 
 
 




 (13) 

As the generalized functions Ri(x−x0), with i≥2, can be 

considered continuous at x0 together with their first order 

derivatives, it is easy to recognize that Eq. (12) implies a 

jump in the derivative of deflection law, which is confirmed 

by Eq. (13) where the deflection law shows, for the 

presence of the generalized function R1(x−x0), a tangent 

jump. Nevertheless, if the rotations φ(x) are considered, the 

application of Eq. (11a) shows that no jumps arise in their 

diagram representation. It is not difficult to verify that the 

results so obtained are coincident with those obtained by the 

classical approaches, but with a sure computational effort 

advantage. 
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What before exposed shows that when the TB is loaded 

by concentrated transversal forces, then the generalized 

functions can be used for the load representation in such an 

efficient way as for the EBB case.  

When a concentrated moment M̂  is considered 

applied at the abscissa x0 of the TB, even in this case the 

laws of the internal shear force, the bending moment and 

the rotations are just the same of those defined for the EBB 

in the previous section. Then Eqs. (9a)-(c) remain valid for 

the TB, too. Now, taking into account Eqs.  (9a), (c) and 

(11b), Eq. (11a) gives  

 
   

1 0 1 0

2

1 2 3

1
ˆ

1 1
           

2

dw x
M R x x R x x

dx EI GA

x
C xC C

GA EI EI


    

   

 
  

 
 
 




 (14) 

whose integration leads to 

     
2 0 0 0

3 2

1 2 3 4

1
ˆ

1 1
        

6 2

w x M R x x R x x
EI GA

x x
x C C C x C

GA EI EI

    

    

 
  

 
 
 




 (15) 

The presence of the USF R0(x−x0) in this expression 

implies a jump of intensity  M̂ GA   in the deflection 

law, that is obviously incongruent for the beam continuity.  

If the concentrated moment M̂  is represented as a 

distributed moment    
1 0

ˆm x MR x x


   the Eqs. (10a, 

b), considered in the previous section for the EBB, are still 

valid for the TB, together with the condition on the shear 

force, that is T(x)=C1. Then, it is not difficult to verify that 

the compatibility equation on the shear deformability writes 

as follows 

 
 

1 0

2

1 2 3

1
ˆ

1 1
           

2

dw x
M R x x

dx EI

x
C xC C

GA EI EI

  

   
 
 
 


 (16) 

That, integrated, gives the following expression for the 

deflection law 

   
2 0

3 2

1 2 3 4

1
ˆ

1 1
         

6 2

w x M R x x
EI

x x
x C C xC C

GA EI EI

  

    
 
 
 


 (17) 

It is easy to recognize that in this expression no term 

determines discontinuity on the deflection law, implying the 

congruence of the assumption of modeling the concentrated 

moment as a distributed moment through the use of the 

DDF, instead of modeling it as a distributed transversal load 

through the use of a doublet. The difference in the 

deflection law between the two assumptions, observable in 

Eqs. (15) and (17), consists just only in the presence of the 

term determining the jump in Eq. (15). 

 

Fig. 1 Infinitesimal element loaded by the concentrated 

moment 

 

 
4. Physical significance of the various approaches 
 

In this section some physical implications about the 

choice of using one of the approaches rather than another 

will be given, trying to better explain the incongruence 

evidenced in the previous section when a concentrated 

moment load is considered acting on a TB. 

Firstly, the classical approach of dividing the beam into 

continuous pieces, through a section at the abscissa x0, 

where the concentrated external moment M̂  is applied, is 

taken into account. This approach requires some further 

boundary conditions at x=x0, besides of those at the beam 

extremes x=0 and x=l. These further conditions arise in 

order to impose the continuity of the deflection and the 

rotation at x=x0 

       0 0 0 0
;       w x w x x x

   
    (18a-b) 

0
x


 and 
0

x


 being the sections immediately before and 

after, respectively, of the abscissa x=x0, belonging to the 

beam pieces I and II, respectively (Fig. 1), and the 

equilibrium of the infinitesimal beam element containing 

the section at x0 

       0 0 0 0

ˆ;       T x T x M x M x M
   
    (19a-b) 

Hence, considering Eqs. (18) and (19) implies that the 

compatibility and the equilibrium conditions at x=x0 are 

implicitly satisfied, without considering the behavior of the 

infinitesimal beam element. Moreover, Eq. (19a) shows that 

this last one is characterized by the presence of a constant 

internal shear force and, as a consequence, by a constant 

shear deformation γ(x0)=χT(x0)/(GA). This last one 

determines a relative deflection      
0 0 0

w x w x x dx
 
    

that, being infinitesimal, is not in contrast with Eq. (18a). 

If the generalized functions are considered for modeling 

the concentrated moment load, then, as said in the previous 

section, it is possible to represent this load as a distributed 

transversal load by using the doublet,    
2 0

p x MR x x


  , 

or as a distributed moment load by using the DDF,  

   
1 0

m x MR x x


  . When the generalized functions are 

used, no beam partition is required and all the beam 

governing equations must be satisfied at every x. When the 

doublet is used for the load representation, it implies the 

presence of a particular couple in the infinitesimal beam 

element at x=x0 (Fig. 2). Following the theory of the 

generalized functions, this couple is defined by transversal 

forces of intensity  M dx , determining an internal shear 

force inside the infinitesimal element    T x M dx   
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Fig. 2 Coupling of forces statically equivalent to the 

concentrated moment 

 

 

with 
0 0

x x x
 
  . As a consequence, a shear deformation 

   x M GAdx   is present, always in the same beam 

element, implying a relative deflection 

       
0 0 0

w x w x x dx M GA
 
       (20) 

which is exactly the value of the jump that is evidenced by 

the presence of the USF in the deflection law given into Eq. 

(15). It is clear that this deflection jump is not admissible 

and, as a consequence, the load representation here 

considered cannot be accepted 

It is not difficult to verify that, if the concentrated 

moment is represented through the DDF,

   
1 0

m x MR x x


  , it does not imply any internal shear 

force in the beam element at x=x0 and, hence, any shear 

deformation and deflection jump. Consequently, this load 

representation is admissible.    

 

 

5. Conclusions 
 

An application of the generalized functions (Macaulay 

brackets and distributions) for representing the concentrated 

loads on deflected beam has been presented. The use of 

these functions allows to avoid the division of the beam in 

various continuous pieces with a reduction of the 

computational effort that could be relevant in some cases. 

It has been shown that in the case of EBBs this 

application gives the expected classical response results, in 

terms of shear forces, bending moments, rotations and 

deflections. On the contrary, when the same application is 

made on the TBs, a physical inconsistence arises. In 

particular, for the case of the concentrated moment load, an 

inconsistent jump on the deflections arises. What presented 

in this work leads one to think that these results are due to 

an inconsistence of the contemporary assumptions of shear 

deformability of the beam element and of concentrated 

moment represented as a double force, analytically defined 

by the doublet. This thought originates also from the fact 

that no inconsistence comes out when the concentrated 

moment is represented as distributed moment and, hence, 

analytically defined by a DDF. 
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