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1. Introduction 
 

Functionally graded materials (FGMs) have been 

increasingly used in the various engineering fields, notably 

in high temperature applications such as thermo-mechanical 

loadings structures, spacecraft, aircraft and plasma coatings 

for fusion reactors (Li et al. 2008, Kar and Panda 2015a), 

the considerable advantages offered by functionally graded 

materials over conventional materials are eliminated the 

interface problems of conventional composite materials and 

the stress distribution becomes mitigated. By gradually 

varying the volume fraction of constituent materials, their 

material properties exhibit a smooth and continuous change 

from one surface to another, thus are being capable to 

withstand intense high temperature gradient while preserve 

structural integrity (Huang and Shen 2004). FGMs were 

firstly designed as thermal barrier materials for aerospace 

structures and fusion reactors where immensely high 

temperature and large thermal gradient exist (Ebrahimi 

2013). Currently, FGMs are explored in wide engineering 

applications including mechanical, nuclear, and civil 

engineering. Hence, examining their responses under 

various types of loading using accurate models of structures 

(plates, beams and shell) is extremely important. 

Subsequently, the static, vibration, thermo-mechanical and 
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buckling and post-buckling analyses of laminated 

composite and functionally graded structures have been 

performed by many researchers (Houari et al. 2013, Ahmed 

2014, Kar and Panda 2014, Panda and Mahapatra 2014, 

Yaghoobi et al. 2014, Belabed et al. 2014, Behravan Rad 

2015, Sofiyev and Kuruoglu 2015, Akbaş 2015, Darilmaz 

2015, Darilmaz et al. 2015, Ebrahimi and Dashti 2015, 

Arani et al. 2016, Ebrahimi and Habibi 2016, Mahapatra et 

al. 2016a, b, c, Ebrahimi and Jafari 2016, Sahoo et al. 2016, 

Abdelaziz et al. 2017, Kolahchi et al. 2017a, b, Sofiyev and 

Osmancelebioglu 2017, Benahmed et al. 2017, Menasria et 

al. 2017, El-Haina et al. 2018, Kaci et al. 2018, Belabed et 

al. 2018, Younsi et al. 2018, Karami et al. 2018). Various 

plate theories have been performed to predict and provide 

more precisely their responses. These plate theories can be 

divided into three groups namely: classical plate theory 

(CPT), first-order shear deformation plate theory (FSDT) 

and higher-order shear deformation plate theory (HSDT). 

The first group represents the classical (thin plate) also 

known as the Kirchhoff plate theory (Kirchhoff 1850) 

assumes a non-compressible plate model and which 

neglects the transverse shear deformation effect. The first-

order shear deformation plate theory (Reissner 1945) 

surmounts this problem by taking into account this effect 

and the literature related to this is described in the second 

group. The third group describes the refined higher-order 

shear deformation theories which are either based on the 

three-dimensional approach or the two dimensional 

approach with a nonlinear variation of high order axial 
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displacement giving parabolic variation of transverse shear 

strains through the plate thickness (Kant 1993). Therefore, 

this theory has been increasingly used to predict the 

behavior of advanced composite material plates by giving 

the possibility to increase the accuracy of numerical 

evaluations for moderately thick plates and very thick plates 

(Kant and Swaminathan 2001, Wu et al. 2008). A few 

researchers have utilized classical plate theory (CPT) to 

studies vibration and static behavior of thin functionally 

graded (FG) plates in thermal environment. Woo et al. 

(2006) investigated the nonlinear vibration of FG plates in 

thermal environments with arbitrary boundary conditions 

based on CPT hypothesis and Von-Karman assumptions. 

Allahverdizadeh et al. (2008) used semi-analytical approach 

to investigate non-linear forced and free vibration of 

circular functionally graded plate in thermal environment. 

Chakraverty and Pradhan (2014) have utilized the classical 

plate theory to investigate the free vibration of functionally 

graded plate in thermal environment under different 

boundary conditions. Joshi et al. (2016) presented an 

analytical solution for buckling and free vibration analysis 

of partially cracked thin orthotropic rectangular plates in 

thermal environment. Cui and Hu (2016) studied the 

thermal buckling and natural vibration of uniformly heated 

rectangular thin plates with stick-slip-stop boundaries. Joshi 

et al. (2017) used classical plate theory and the modified 

couple stress theory to investigate free vibration and 

buckling of partially cracked isotropic and FGM micro 

plates in thermal environment. The classical plate theory 

ignores the transverse shear effects, provides reasonable 

results for relatively thin plates, and suffices for computing 

the first few modes of vibrations (Xiao et al. 2007). First-

order shear deformation theory considers the transverse 

shear deformation effects and gives acceptable results for 

thick and thin plates, but requires the use of shear correction 

coefficients which is hard to find as it depends on the 

geometries parameters, the loading, material properties and 

boundary conditions of each problem (Ferreira et al. 2009, 

Abualnour et al. 2018). On the basis of the first-order shear 

deformation plate theory with von Karman assumptions, 

Praveen and Reddy (1998) conducted the nonlinear 

transient thermoelastic analysis of functionally graded 

ceramic-metal plates using finite element formulation under 

thermal and mechanical loadings. Sundararajan et al. (2005) 

used the first-order shear deformation theory (FSDT) and 

von- Karman’s nonlinearity theory to obtain nonlinear 

vibration response of functionally graded plate in thermal 

environment. Alijani et al. (2011) provided an analytical 

solution for the nonlinear free vibration behavior of FG 

rectangular plates in thermal environments using the FSDT 

and the von-Karmans nonlinearity. Based on the first order 

shear deformation theory of shells, the free vibration 

analysis of rotating functionally graded cylindrical shells 

with temperature-dependent material properties is presented 

by Malekzadeh and Heydarpour (2012). Duc and Cong 

(2015) presented an analytical approach to investigate the 

nonlinear dynamic response and vibration of (FGM) plates 

resting on elastic foundation using the first-order shear 

deformation plate theory. Based on orthotropic Mindlin 

plate theory. Kolahchi et al. (2016a) examined the 

temperature-dependent nonlinear dynamic stability for a 

functionally graded CNT reinforced visco-plate resting on 

an orthotropic elastomeric foundation. Lim and Kim (2017) 

have presented the micro-mechanical models in thermal 

environment for the vibration behavior of functionally 

graded materials plate using first-order shear deformation 

theory (FSDT). Lei et al. (2013) presented the free vibration 

of FG nanocomposite plates reinforced with single-walled 

(SWCNTs) in thermal environment, by using first-order 

shear deformation theory (FSDT) and the element-free kp-

Ritz method. The higher-order shear deformation theories 

(HSDTs) have been developed and do not require any shear 

correction factor. The HSDT theory predicts more accurate 

than CPT and FSDT, and it is not necessary to introduce the 

notion of shear correction factor. Yang and Shen (2002) 

analyzed free and forced vibration for initially stressed 

functionally graded plates in thermal environment based on 

the third-order shear deformation plate theory. Kim (2005) 

investigated the temperature-dependent vibration of stressed 

functionally graded rectangular plates using Rayleigh-Ritz 

procedure. The third-order shear deformation plate theory is 

adopted to formulate their theoretical model. Free and 

forced vibration responses of clamped functionally graded 

plates in thermal environment was investigated by 

Wattanasakulpong et al. (2013) applying the improved 

third-order shear deformation plate theory of Shi (2007) and 

Ritz method. Pandey and Pradyumna (2015) have studied 

the free vibration behaviour of functionally graded 

sandwich plate using the layerwise finite element 

formulation with different thermal environment. Parandvar 

and Farid (2016) studied the dynamic response of 

functionally graded material (FGM) plates subjected 

simultaneously to thermal, static, and harmonic loads based 

on the Reddy plate theory and nonlinear finite element 

model. Kar and Panda (2015b) presented an analytical 

approach to investigate the free vibration responses of shear 

deformable functionally graded single and doubly curved 

panels under under various types of thermal loading based 

on higher order shear deformation theory. Mahapatra and 

Panda (2015) studied the non-linear vibration of the 

laminated composite curved panel of different geometries 

under thermal environment based on higher-order shear 

deformation theory by taking Green-Lagrange type of non-

linear kinematics. Mehar et al. (2016) computed the natural 

frequency of the functionally graded carbon nanotube (FG-

CNT) composite plate in thermal environment by a finite 

element formulation based on higher order shear 

deformation theory. The analysis of nonlinear vibration and 

dynamic response of functionally graded simply supported 

plates in thermal environment was studied by Huang and 

Shen (2004). Hirwani and Panda (2018), also, studied the 

nonlinear frequency of pre-damaged curved layered 

composite panel structure using higher-order finite element 

method including the excess geometrical distortion via 

Green–Lagrange nonlinearity. Hirwani et al. (2018a) 

developed an analytical procedure for determining the 

deflection responses of the damaged doubly curved shallow 

shell panels under the combined thermomechanical loading 

using two higher-order displacement kinematic theories and 

solved via finite element method. Within the last two 

decades, the classic, first order and refined higher-order 

shear deformation theories had been developed and 
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improved for functionally graded structures (Li and Cheng 

2009, Mahi et al. 2015, Malekzadeh and Monajjemzadeh 

2016). While a series of two-dimensional and three-

dimensional elasticity solutions have been obtained for 

FGM beams and plates subjected to thermal environment. 

Li et al. (2009) presented free vibration analysis of FGM 

rectangular plates with simply supported and clamped edges 

in thermal environment based on three-dimensional 

elasticity theory and solved with the Ritz method. Lim et al. 

(2009) studied the in-plane vibration of functionally graded 

circular arches in thermal environment using 2-D theory of 

elasticity by means of the combination of the Fourier series 

expansion and the state space method. Malekzadeh et al. 

(2010) analyzed free vibration of thick functionally graded 

annular plates in thermal environment based on three-

dimensional elasticity theory of and differential quadrature 

method. Setoodeh et al. (2012) obtained two-dimensional 

elasticity solutions for free vibration analysis of elastically 

supported sandwich beams with functionally graded face 

sheets subjected to thermal environment using two-

dimensional finite element method. We also note that many 

studies are available on the composite structure solved the 

frequency, deflection, and dynamic responses either 

numerical, experimental or via simulation for the of 

classical and advanced composite structures under the effect 

of mechanical and/or thermal and hygrothermal loading 

(Mahapatra et al. 2015, Madani et al. 2016, Mahapatra and 

Panda 2016, Mehar et al. 2017a, b, Sahoo et al. 2017, 

Hirwani et al. 2017, Hadjmohammad et al. 2017, Hirwani 

et al. 2018b, c). Recently, Tounsi and his colleagues (Tounsi 

et al. 2016, Houari et al. 2016, Hachemi et al. 2017, 

Mouffoki et al. 2017) developed a novel refined plate 

theory for bending, buckling and free vibration of FGM 

plate and beam with only three unknown functions using 

various polynomial and non-polynomial functions. Most 

recently, Tounsi and his co-workers (Khetir et al. 2017, 

Chikh et al. 2017) developed another novel refined and 

robust plate theory for mechanical behaviour of simply 

supported plate with only four unknown. These theories 

have a new displacement field which introduces 

undetermined integral variables. As opposed to five or even 

greater numbers in the case of other higher shear 

deformation theories. The most interesting feature of this 

theory is that it accounts for a parabolic variation of the 

transverse shear strains across the thickness and satisfies the 

zero traction boundary conditions on the top and bottom 

surfaces of the plate without using shear correction factors. 

The purpose of this paper is to extend the novel refined and 

robust plate theory developed by Tounsi and his colleagues 

(Khetir et al. 2017, Chikh et al. 2017, Besseghier et al. 

2017) to the free vibration of functionally graded plates in 

thermal environment. Using the proposed theory, both free 

vibration analysis of FG plates in thermal environment are 

investigated. Three types of environmental condition 

namely uniform, linear and nonlinear thermal load are 

imposed at the upper and lower surface for simply 

supported FG plates. The material properties of functionally 

graded plate are supposed to be temperature-dependent and 

vary gradually along the thickness direction via power-law 

model. In this study, analytical of vibration solutions are 

obtained for functionally graded plate and accuracy is 

verified by comparing the obtained results with those 

reported in the literature. The influences of some 

parameters including gradient index, plate geometry, mode 

number and thermal loading on the vibration characteristics 

of the FG plates are presented. It can be concluded that the 

present theories are not only accurate but also simple in 

predicting the free vibration responses of temperature-

dependent FG plates. 
 

 

2. Theoretical formulation 
 

2.1 Power-law FG plate equations based 
 

Consider a simply supported rectangular functionally 

graded plate of length a, width b and uniform thickness h in 

the unstressed reference configuration. The coordinate 

system for FG plates is shown in Fig. 1. The FG plate is 

made of elastic and isotropic functionally graded material 

with its material properties vary smoothly through the 

thickness direction only. The effective material properties of 

the FG plate such as Young’s modulus E(z), thermal 

conductivity k(z), thermal expansion α(z) and mass density 

ρ(z) based on power function of the volume fractions of the 

constituents can be expressed as follows 

 
p

mcmeff
h

z
PPPzP 





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

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1
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(1) 

To predict the behavior of FGMs under high 

temperature more precisely, it is needful to consider the 

temperature dependency on material properties. The 

nonlinear equation of thermo-elastic material properties in 

function of temperature T(K) can be expressed as the 

following (Shahrjerdi et al. 2011, Attia et al. 2015, Kar et 

al. 2017) 

 3
3

2
21

1
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  

(2) 

where P(z) denotes material property and T=T0+ΔT(z) 

indicates the environmental temperature; T0=300(K) is 

room temperature; P-1, P0, P1, P2 and P3 are the coefficients 

of temperature dependent material properties unique to the 

constituent materials which can be seen in the table of 

materials properties (Table 1) for FG (ZrO2/Ti-6Al-4V) and 

(Si3N4/SUS304) (Kim 2005, Shahrjerdi et al. 2011, Attia et 

al. 2015), and ΔT(z) is the temperature rise only through the 

thickness direction, whereas thermal conductivity k is 

temperature-independent. 

 

2.2 Constitutive equations 
 

For elastic and isotropic FGMs, the linear constitutive 

relations can be written as 
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(3) 

where (ζx, ζy, ηxy, ηyz, ηxz) and (εx, εy, γxy, γyz, γxz) are the stress 

and strain components, respectively. Using the material 

properties defined in Eq. (3), stiffness coefficients, Qij, can 
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Fig. 1 Geometry of rectangular FGM plate with uniform 

thickness in the rectangular Cartesian coordinates 
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(4) 

Based on the thick plate theory, the basic assumptions 

for the displacement field of the plate can be described as 
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The coefficients k1 and k2 depends on the geometry and 

the proposed theory of present study has a hyperbolic 

function in the form (Nguyen 2015) 
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It can be observed that the kinematic in Eq. (5) uses 

only four unknowns (u0, v0, w0 and θ). Nonzero strains of 

the five variable plate model are expressed as follows 
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where 
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It can be observed from Eq. (7) that the transverse shear 

strains (γxz, γyz) are equal to zero at the upper (z=h/2) and 

lower (z=−h/2) surfaces of the plate. A shear correction 

coefficient is, hence, not required. The integrals used in the 

above equations shall be resolved by a Navier type 

procedure and can be expressed as follows 
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where the coefficients 'A  and 'B  are considered 

according to the type of solution employed, in this case via 

Navier method. Therefore, 'A , 'B , k1 and k2 are expressed 

as follows 
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where α and β are defined in Eq. (32). 

 

2.3 Governing equations 
 

The equations of motion for the free vibration of the FG 

plate can be derived from the Hamilton’s principle 
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where t is the time, t1 and t2 are the initial and end times, 

respectively, δK is the variation of the kinetic energy and 

δU is the variation of the total strain energy. The total strain 

energy of the beam can be represented as 

Td UUU 
 (12) 

where Ud is the strain energy due to the mechanical stresses 

and UT is the strain energy caused by the initial stresses due 

to temperature rise. The strain energy Ud and UT are given 

by (Shahrjerdi et al. 2011, Li et al. 2009, Kim 2005) 
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where dij, (i, j=1,2) is the nonlinear strain-displacement 

relationship (Shahrjerdi et al. 2011). By substituting dij into 

Eq. (14) the following equation is obtained 
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In Eq. (15), the thermal stresses 
T
x  and 

T
y

 are 

given by, 

     zTTzCCT
x  ,1211   and  

     zTTzCCT
y  ,2221 

 

(16) 

The kinetic energy of plate can be expressed as 

  dVwvuTzK

V
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2

1


 
(17) 

By substituting Eqs. (12)-(17), into Eq. (11) and 

integrating by parts with respect to space and time 

variables, the equations of motion in terms of the 

displacement components of the FG plate are obtained as 
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where dij, dijl and dijlm are the following differential 

operators 
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and stiffness components are calculated as 
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The inertias are also defined as 

 

      




2/

2/

22

222110

)(,,,,,1

,,,,,

h

h

dzzzfzfzzzfz

KJIJII



 

(24) 

 

2.4 Temperature field 
 

In this study, four cases of one-dimensional temperature 

distribution through the thickness are considered, with 

T=T(z). 
 

2.4.1 Uniform temperature 
In this case, a uniform temperature field is used as 

follows 

   zTTzT  0  (25) 

where ΔT(z) denotes the temperature change and T0=300K 

is room temperature. 
 

2.4.2 Linear temperature 
For a functionally graded plate, assuming temperatures 

Tb and Tt are imposed at the bottom and top of the plate, the 
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temperature field under linear temperature rise along the 

thickness can be obtained as follows 

  




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
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2

1
0

h

z
TTzT

 

(26) 

 

2.4.3 Nonlinear temperature 
The nonlinear temperature rise across the thickness of 

the plate is determined by solving the one dimensional heat 

conduction equation. The one dimensional steady-state heat 

conduction equation in the z-direction is given by 
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d
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(27) 

with the boundary condition T(h/2)=Tt and T(−h/2)=Tb=T0. 

Here a stress-free state is assumed to exist at T0=300K. The 

thermal conductivity coefficient k(z) is assumed here to 

obey the power-law relation in Eq. (5). The analytical 

solution to Eq. (27) is 
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(28) 

In the case of power-law FG plate, the solution of Eq. 

(27) also can be expressed by means of a polynomial series 

(Shahrjerdi et al. 2011, Attia et al. 2015, Mahapatra et al. 

2017) 

 
 

   

      













 










 










 


















 










 










 






15

5

514

4

413

3

3

12

2

21

2

2

152

2

142

2

14

2

2

122

2

12

2

p

b

tb

p

b

tb

p

b

tb

p

b

tb

p

b

tb

tb

bt
b

h

hz

kp

k

h

hz

kp

k

h

hz

kp

k

h

hz

kp

k

h

hz

kp

k

h

hz

C

TT
TzT

 

(29) 
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(30) 

where ktb=kt−kb, with kt and kb are the thermal conductivity 

of the top and bottom faces of the plate, respectively. 

 

 

3. Analytical solution of simply supported FG plate 
 

In this work, we are concerned with the exact solutions 

of Eq. (20) for a simply supported nanoplate. Using the 

Navier solution procedure, the following expressions of 

displacements (u0, v0, w0, and θ) are taken 
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am /  , 
bn / 

 (32) 

 

Fig. 2 Variation of elastic modulus versus non-dimensional 

thickness of FG plate in room temperature field and 

different values of grading index (p) 

 

 

Fig. 3 Variation of elastic modulus versus non-dimensional 

thickness of FG plate in linear temperature field and 

different values of grading index (p) 
 

 

where 1i , am /  , β=nπ/b, ω is the natural 

frequency, and (Umn, Vmn, Wmn, Xmn) are the unknown 

maximum displacement coefficients.  

Substituting Eqs. (31) into Eq. (18), the analytical 

solutions can be determined by 
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(33) 

where aij and Mij are given in Appendix. 
 
 

4. Results and discussions 
 

4.1 Thermal environment, temperature distributions 
and material properties 
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Fig. 4 Variation of elastic modulus versus non-dimensional 

thickness of FG plate in nonlinear temperature field and 

different values of grading index (p) 
 

 

According to the above literature, temperature 

distribution has a significant influence on the behavior of 

the FGM plate. Thermal and mechanical properties of the 

FGMs subjected to high perform surgering temperature 

have importantly been affected by the temperature 

variation. For example, Young’s modulus of stainless steel, 

nickel, Ti-6Al-4V, and zirconia is reduced by 37%, 21%, 

34% and 31%, respectively, when the temperature rises 

from room temperature 300−1000(K) (Yang and Shen 

2003). 

The real structural response of functionally graded plate 

required to account the temperature dependency of the 

material properties and temperature distribution through the 

thickness of the plate. The variation of Young modulus in 

FG plates through the thickness in room temperature, 

uniform, linear and nonlinear thermal conditions is 

presented in Figs. 2-4, respectively. Room temperature is 

defined at T0=300(K) for all thermal conditions. The 

temperature rise in linear temperature is Tb=Tt=600(K), the 

nonlinear thermal conditions are Tb=0(K) and Tt=600(K) 

and the sinusoidal thermal conditions are Tb=300(K) and 

Tt=300(K). 

Figs. 2 and 3 show that the variation of elastic Young’s 

modulus of functionally graded plates on room temperature 

and linear temperature variation with the volume fraction 

index. It is seen from the above figures that Young's 

modulus is similar for conditions with room temperature 

and uniform temperature, but the graphs move to smaller 

values with the uniform temperature rise. It is clear that 

Young’s modulus decreases with increasing the power law 

index.  

In addition, it can be observed from Fig. 4 that the 

behavior of Young’s modulus in nonlinear thermal loads is 

completely different from that in room and linear 

temperature cases. The value of Young’s modulus increases 

close to the lower surface, then decreases when p<1, and 

the modulus decreases when 1≤p<10. However, Young’s 

modulus decreases then increases close to upper surface for 

the large value of grading index p>10. Thus, it can be 

concluded that the environmental conditions type has a 

considerable effect on Young’s modulus. 

Table 1 Number of elements used to achieve optimum mesh 

for isotropic rectangular plates “S4R” 

Approximate  

Global Size 
Number of Mesh Gh   ˆ

1111   

21  
10×10 0.069079 

225.0 
 

20×20 0.068438 

4225.0 
 

40×40 0.068266 

1021.0 
 

100×100 0.068218 

20205.0 
 

200×200 0.0682101 

 

 

Fig. 5 Mesh Convergence “S4R” 

 

Table 2 Natural frequencies Gh   ˆ   of an isotropic 

rectangular plate with v=0.3, a/h=10 and ab 2  

(m,n) Present 
(Reddy 1984) 

(TSDT) 

Srinivas et al. 

(1970) 

3-D 

Abaqus 

Shell 

(1,1) 0.0704 0.0704 0.0704 0.06822 

(1,2) 0.1374 0.1374 0.1376 0.1333 

(2,1) 0.2015 0.2041 0.2018 0.1988 

(2,2) 0.2630 0.2628 0.2634 0.2554 

 
 
4.2 Validation of the results 

 

4.2.1 Validation 
In this section, the accuracy of the presented refined 

hyperbolic plate theory (RSDT) having with four unknowns 

only for the free vibration of simply supported isotropic 

rectangular plates is compared by the analytical solution 

with those of other available results in the literature and via 

finite element model using Abaqus software package. In 

addition, the temperature-dependent FG plates is also 

demonstrated by comparing the present solution with those 

of other available results in the literature of higher-order 

shear deformation theories (Shahrjerdi et al. 2011, Huang 

and Shen 2004) with more unknowns. Thus, the influences 

various parameters like power law index parameter p, shear 

deformation, temperature distribution on vibration response 

of functionally graded plate have been investigated. The 

non-dimensional frequency parameter is taken as, where  
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Table 3 Temperature-dependent material properties for 

(ZrO2/Ti-6Al-4V) and (Si3N4/SUS304)  

Material Properties P0 P-1 P1 P2 P3 

Si3N4 

E(GPa) 348.43 0 -3.070×10-4 2.160×10-7 -8.946×10-11 

α(K-1) 5.8723×10-6 0 9.095×10-6 0 0 

ρ(Kg/m3) 2370 0 0 0 0 

v 0.24 0 0 0 0 

k 9.19 0 0 0 0 

SUS304 

E(GPa) 201.04 0 3.079×10-4 -6.534×10-7 0 

α(K-1) 12.330×10-6 0 8.086×10-4 0 0 

ρ(Kg/m3) 8166 0 0 0 0 

v 0.3262 0 -2.002×10-4 3.797×10-7 0 

k 12.04 0 0 0 0 

ZrO2 

E(GPa) 244.27×10+9 0 -1.371×10-3 1.214×10-6 -3.681×10-10 

α(K-1) 12.766×10-6 0 -1.491×10-3 1.006×10-5 -6.788×10-11 

ρ(Kg/m3) 3000 0 0 0 0 

v 0.3330 0 0 0 0 

k 1.80 0 0 0 0 

Ti-6Al-4V 

E(GPa) 122.56×10+9 0 -4.586×10-4 0 0 

α(K-1) 
7.75788×10-

6 
0 6.638×10-4 -3.147×10-6 0 

ρ(Kg/m3) 4429 0 0 0 0 

v 0.2888 0 1.108×10-4 0 0 

k 7.82 0 0 0 0 

 

 

And is at (Shahrjerdi et al. 2011, Huang and Shen 2004). 

Two types of FGMs are considered: (ZrO2/Ti-6Al-4V) and 

(Si3N4/SUS304). The description of material properties 

used in the analysis is listed in Table 3. 

Example 1 

As a first example, the validation of the solution of the 

proposed refined hyperbolic plate model is carried out by 

comparing the obtained results with those computed via 

finite element model using Abaqus software package with 

considering the mesh convergence study to optimize the 

results. The FEM solution of Abaqus Software is obtained 

by using “S4R” shell elements. The analysis of a FEM 

using Abaqus software package was performed and results 

were obtained as shown in Table 1 and plotted in Fig. 5. 

The following parameters are used for numerical 

computations: 1,3.0,1,2,10  Eabha . As 

clearly shown in Table 1 and Fig. 5, the convergence begins 

from 10×10 mesh number with lowest non-dimensional 

frequency 0.069079 and fully converges at 200×200 with 

lowest non-dimensional frequency 0.0682101, but 100×100 

mesh number with lowest non-dimensional frequency 

0.068218 was chosen for the comparison, in order to reduce 

the number of nodes and elements in the analyses. 

The present non-dimensional natural frequency 

parameters Gh  


 are compared with the different 

vibration modes using finite element model using Abaqus 

software, the exact solutions of the three-dimensional 

elasticity theory (Srinivas et al. 1970) and the third shear 

deformation plates theory (Reddy 1984) for isotropic 

Table 4 Non-dimensional natural frequency parameter of 

simply supported (ZrO2/Ti-6Al-4V) FG plate in thermal 

environments  

Mode (1,1) Natural frequency of   

(ZrO2/Ti-6Al-4V) FG plate 

Tb=300(K) 

Tt=300(K) 

Tt=400(K) Tt=600(K) 

Temperature- 

dependent 

Temperature- 

independent 

Temperature- 

dependent 

Temperature- 

independent 

ZrO2 

SSDT(a) 8.333 7.614 7.892 5.469 6.924 

TSDT(b) 8.273 7.886 8.122 6.685 7.686 

Present 8.288 7.818 8.070 6.547 7.613 

p=0.5 

SSDT(a) 7.156 6.651 6.844 5.255 6.175 

TSDT(b) 7.139 6.876 7.154 6.123 6.776 

Present 7.120 6.791 6.968 5.941 6.656 

p=1 

SSDT(a) 6.700 6.281 6.446 5.167 5.904 

TSDT(b) 6.657 6.435 6.592 5.819 6.362 

Present 6.665 6.383 6.537 5.675 6.275 

p=2 

SSDT(a) 6.333 5.992 6.131 5.139 5.711 

TSDT(b) 6.286 6.101 6.238 5.612 6.056 

Present 6.294 6.055 6.189 5.476 5.974 

Ti-6Al-4V 

SSDT(a) 5.439 5.103 5.333 4.836 5.115 

TSDT(b) 5.400 5.322 5.389 5.118 5.284 

Present 5.410 5.290 5.357 5.097 5.250 

(a) Shahrjerdi et al. (2011) (b) Huang and Shen (2004) 
 

 

rectangular plates. For the modes (m, n), the integers m and 

n denote the number of half-waves in the x and y directions, 

respectively. The comparison of the dimensionless 

frequencies of isotropic square plates for four different 

planar half-wave numbers (i.e., m and n) are presented in 

Table 2. 

From the examination of Table 2, it is observed that the 

present refined hyperbolic plate theory (RSDT) yields 

excellent values of frequencies for all modes of vibration as 

compared to those of exact solutions of the three-

dimensional elasticity theory (Srinivas et al. 1970), the third 

shear deformation plates theory (Reddy 1984) and with the 

finite element results using Abaqus software package. 

Example 2  

In this second example, a comparison of the first non-

dimensional natural frequency parameters is realized for a 

(ZrO2/Ti-6Al-4V) FG plate in thermal environments and the 

dimensionless fundamental frequencies are tabulated in 

Table 4. 
The FG plate is made of titanium alloy (Ti-6Al-4V) on 

its lower surface and zirconium oxide (ZrO2) on its upper 
surface. For this end, the geometric of FG plates is taken as: 
h=0.0025 m, a=b=0.2 m. An identical value of Poisson’s 
ratio v=0.3 is assumed for both ceramic and metal. The 
validation of the proposed refined hyperbolic plate model is 
carried out by comparing the obtained results with those 
computed via second order shear deformation plate theory 
(SSDT) developed by Shahrjerdi et al. (2011) and  the 
higher-order shear deformation plate theory (HSDT) 
developed by Huang and Shen (2004). 

As clearly shown in Table 4, the results of the (SSDT)  

376



 

A new plate model for vibration response of advanced composite plates in thermal environment 

 

Table 5 Non-dimensional natural frequency parameter of 

simply supported (Si3N4/SUS304) FG plate in thermal 

environments 

Mode (1,1) 

Natural frequency of  (Si3N4/SUS304) 

FG plate 

Tb=300(K) 

Tt=300(K) 

Tt=400(K) Tt=600(K) 

Temperature 

dependent 

Temperature 

independent 

Temperature 

dependent 

Temperature 

independent 

Si3N4 

SSDT(a) 12.506 12.175 12.248 11.461 11.716 

TSDT(b) 12.495 13.397 12.382 11.984 12.213 

Present 12.519 12.319 12.389 11.899 12.126 

p=0.5 

SSDT(a) 8.652 8.361 8.405 7.708 7.887 

TSDT(b) 8.675 8.615 8.641 8.269 8.425 

Present 8.617 8.461 8.507 8.127 8.281 

p=1 

SSDT(a) 7.584 7.306 7.342 6.674 6.834 

TSDT(b) 7.555 7.474 7.514 7.171 7.305 

Present 7.551 7.406 7.444 7.090 7.225 

p=2 

SSDT(a) 6.811 6.545 6.575 5.929 6.077 

TSDT(b) 6.777 6.693 6.728 6.398 6.523 

Present 6.777 6.638 6.670 6.330 6.454 

SUS304 

SSDT(a) 5.410 5.161 5.178 4.526 4.682 

TSDT(b) 5.405 5.311 5.335 4.971 5.104 

Present 5.415 5.278 5.300 4.929 5.061 

(a) Shahrjerdi et al. (2011) (b) Huang and Shen (2004) 

 

 

plate theory developed by Shahrjerdi et al. (2011) and the 

(HSDT) plate theory developed by Huang and Shen (2004) 

are in a good agreement with the present results of refined 

hyperbolic plate theory (RSDT) and these for all values of 

power law index p, either for the case of temperature-

dependent and temperature-independent FG plates. Also, 

inspection of Tables 4 reveals that the dimensionless 

fundamental frequencies of the FG plate decreases with the 

increase of power law index p and the temperature rise 

decreases the dimensionless fundamental frequencies. 

Example 3 

In the third example, a FG (Si3N4/SUS304) plate is 

examined. For this materials, the Poisson’s ratio is taken 

v=0.28. The dimensionless fundamental frequencies 

obtained by present refined hyperbolic plate theory (RSDT) 

are compared with the published results of Shahrjerdi et al. 

(2011) and Huang and Shen (2004) in Table 5 for different 

values of power law index p. It can be seen that the 

fundamental frequency values computed from present 

model are in a good agreement with those reported by 

Shahrjerdi et al. (2011) and Huang and Shen (2004). 

Example 4 

In the section, the comparison is performed for 

(ZrO2/Ti-6Al-4V) FG plate. This example aims to verify the 

obtained results with (SSDT) of Shahrjerdi et al. (2011) and 

(HSDT) of Huang and Shen (2004). The non-dimensional 

fundamental frequency is given in Table 6 for different 

vibration mode. For the modes (m,n), the integers m and n 

denote the number of half-waves in the x and y directions, 

respectively. It is observed that the present refined 

Table 6 Non-dimensional frequency parameter of simply 

supported (ZrO2/Ti-6Al-4V) FG plate in thermal 

environments (p=2) 

Mode numbers of of 

(ZrO2/Ti-6Al-4V) FG plate 

Tb=300(K) 

Tt=300(K) 

Tt=400(K) Tt=600(K) 

Temperature 

dependent 

Temperature 

independent 

Temperature 

dependent 

Temperature 

independent 

(1,1) 

SSDT(a) 6.333 5.992 6.132 5.139 5.711 

TSDT(b) 6.286 6.101 6.238 5.612 6.056 

Present 6.294 6.055 6.189 5.476 5.974 

(1,2) 

SSDT(a) 14.896 14.383 14.684 13.260 14.253 

TSDT(b) 14.625 14.372 14.655 13.611 14.474 

Present 14.699 14.301 14.588 13.453 14.363 

(2,2) 

SSDT(a) 22.608 21.942 22.386 20.557 21.935 

TSDT(b) 21.978 21.653 22.078 20.652 21.896 

Present 22.197 21.663 22.082 20.581 21.849 

(1,3) 

SSDT(a) 27.392 26.630 27.163 25.077 26.700 

TSDT(b) 26.454 26.113 26.605 24.961 26.435 

Present 26.811 26.190 26.689 24.954 26.446 

(2,3) 

SSDT(a) 34.106 33.211 33.867 31.425 33.384 

TSDT(b) 32.659 32.239 32.840 30.904 32.664 

Present 33.271 32.540 33.148 31.118 32.904 

(a) Shahrjerdi et al. (2011) (b) Huang and Shen (2004) 
 
 

hyperbolic plate theory is in a good agreement with the 

previously published results (Shahrjerdi et al. 2011, Huang 

and Shen 2004) and these for different considered shape 

mode. 

Example 5 

In order to verify the accuracy of the present theory for 

large value of volume fraction index p and different values 

of thermal loads, an (Si3N4/SUS304) FG plate is now 

examined. The non-dimensional frequencies for FG 

(Si3N4/SUS304) plates predicted by Shahrjerdi et al. (2011) 

using second order shear deformation theory (SSDT), and 

present theory are presented in Table 7. An excellent 

agreement between the results predicted by (SSDT) of 

Shahrjerdi et al. (2011) and present theory is observed. It 

should be noted that the present theory contains four 

unknowns as against seven in the case of (SSDT) of 

Shahrjerdi et al. (2011). It can be concluded that the present 

theory is not only accurate but also efficient and simple in 

predicting the free vibration responses of FG plates in 

thermal environment. 
 

4.2.2 Numerical results of present study 
In the view of previous sections, it is can be seen that 

the proposed theory delivers results which are in good 

agreement with second order shear deformation plate theory 

(SSDT) developed by Shahrjerdi et al. (2011) and  the 

higher-order shear deformation plate theory (HSDT) 

developed by Huang and Shen (2004) of the vibrated FG 

plate in thermal environment. In this example, the effects 

different parameters such as the power law index p, the 

mode numbers, and temperature fields on the free vibration 
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Table 7 Non-dimensional natural frequency of temperature 

dependent (Si3N4/SUS304) FG plate for different volume 

fraction index p in thermal environments Mode (1, 1)  

Thermal Loads 

T0 = 300 (K), b = a = 0.2,  

h = 0.025 

Tb=300(K)  

Tt=300(K)  

Tb=300(K)  

Tt=300(K)  

Tb=300(K)  

Tt=300(K)  

Si3N4 
SSDT(a) 12.506 12.175 11.461 

Present 12.519 12.319 11.899 

P=0.5 
SSDT(a) 8.652 8.361 7.708 

Present 8.617 8.461 8.127 

p=10 

SSDT(a) 5.907 5.645 5.031 

Present 5.868 5.731 5.412 

p=20 
SSDT(a) 5.711 5.450 4.825 

Present 5.676 5.540 5.210 

p=40 
SSDT(a) 5.591 5.329 4.694 

Present 5.558 5.420 5.083 

SUS304 

SSDT(a) 5.410 5.161 4.526 

Present 5.415 5.278 4.929 

(a) Shahrjerdi et al. (2011) 

 

 

responses of FG plates are investigated here. All predicted 

results are carried out using present refined hyperbolic plate 

theory (RSDT). 

Table 8 shows the non-dimensional frequencies values 

in (ZrO2/Ti-6Al-4V) FG plate for different thermal loads. 

The non-dimensional natural frequency parameter is 

defined as     bb Eha 22 1   , where Eb and ρb 

are at T0=300(K) (Shahrjerdi et al. 2011). To see the effect 

of the power index p on the frequencies, the same values of 

the thermal load and the shape mode are considered. It is 

observed that the result for plates is in between those for 

pure material plates, because Young’s modulus increases 

from pure metal to pure ceramic. Also, the frequencies 

decrease by increasing the temperature difference between 

top and bottom surfaces for the same value of power law 

index and shape mode that represent the effects of thermal 

loads. The difference between temperature-dependent and 

independent FG plates is less significant, Table 7 reveals the 

smaller frequencies in temperature-dependent FG plates, 

which proves the accuracy and effectiveness of 

temperature-dependent material properties. 

The variation of the first four frequencies as a function 

of uniform, linear, nonlinear and sinusoidal temperature 

fields in simply supported FG plate is plotted in Figs. 6-8. 

The combination of (ZrO2/Ti-6Al-4V) (Table 3) is assumed 

with material and geometric parameters of p=1, a=b=0.2 

and a=h=10. The non-dimensional natural frequency 

parameter is defined as   00
22 DIb   , where 

hI 0  and  23
0 112  EhD  and it is noted that ρ, 

v and E are chosen to be the values of (ZrO2/Ti-6Al-4V) 

evaluated at the room temperature. As expected, the 

frequencies are reduced with increasing temperature and 

this is due to the decrease of Young’s modulus with rising 

temperatures. It can be seen that the decreasing slope of 

frequencies in lower modes is smaller than those in higher 

modes. At the same temperature, we note that the difference  

 

Fig. 6 First four non-dimensional frequency parameters 

versus uniform temperature field for simply supported 

(ZrO2/Ti-6Al-4V) FG plate (a/h=10, a=0.2, p=1) 
 

Table 8 Non-dimensional natural frequency parameter of 

simply supported (ZrO2/Ti-6Al-4V) FG plate in thermal 

environments and for different modes of vibration 

Mode numbers of  

FGP ZrO2/Ti-6Al-4V) 

Tb=300(K) 

Tt=300(K) 

Tt=400(K) Tt=600(K) 

Temperature 

dependent 

Temperature 

independent 

Temperature 

dependent 

Temperature 

independent 

ZrO2 

(1,1) 8.288 7.818 8.070 6.547 7.613 

(1,2) 19.388 18.623 19.157 16.895 18.686 

(2,2) 29.312 28.285 29.072 26.125 28.586 

(1,3) 35.427 34.231 35.176 31.779 34.669 

(2,3) 43.996 42.579 43.742 39.766 43.229 

p=0.5 

(1,1) 7.120 6.791 6.968 5.941 6.656 

(1,2) 16.668 16.131 16.509 14.945 16.185 

(2,2) 25.217 24.498 25.051 23.0b09 24.717 

(1,3) 30.488 29.654 30.315 27.960 29.966 

(2,3) 37.881 36.896 37.706 34.954 37.355 

p=1 

(1,1) 6.665 6.383 6.537 5.675 6.275 

(1,2) 15.593 15.131 15.458 14.125 15.185 

(2,2) 23.579 22.961 23.440 21.691 23.158 

(1,3) 28.501 27.784 28.355 26.337 28.061 

(2,3) 35.402 34.557 35.255 32.896 34.958 

p=2 

(1,1) 6.294 6.055 6.189 5.476 5.974 

(1,2) 14.699 14.301 14.588 13.453 14.363 

(2,2) 22.197 21.663 22.082 20.581 21.849 

(1,3) 26.811 26.190 26.689 24.954 26.446 

(2,3) 33.271 32.540 33.148 31.118 32.904 

Ti-6Al-4V 

(1,1) 5.410 5.290 5.357 5.097 5.250 

(1,2) 12.654 12.435 12.598 12.034 12.485 

(2,2) 19.132 18.823 19.073 18.239 18.956 

(1,3) 23.122 22.757 28.654 22.060 22.939 

(2,3) 28.716 28.274 28.654 27.420 28.530 

 

 

between two consecutive lower modes is greater than that in 

two consecutive higher modes. 
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Fig. 7 First four non-dimensional frequency parameters 

versus linear temperature field for simply supported 

(ZrO2/Ti-6Al-4V) FG plate (a/h=10, a=0.2, p=1) 

 

 

Fig. 8 First four non-dimensional frequency parameters 

versus nonlinear temperature field for simply supported 

(ZrO2/Ti-6Al-4V) FG plate (a/h=10, a=0.2, p=1) 

 

 

5. Conclusions 
 

A novel hyperbolic shear deformation plate theory is 

developed for temperature-dependent free vibration of FG 

plates subjected to uniform, linear, nonlinear, and sinusoidal 

temperature fields is presented. Material properties of FG 

plates are assumed to be temperature-dependent and graded 

through the thickness according to a power-law distribution 

in terms of volume fractions of constituents. By considering 

further simplifying suppositions to the existing higher order 

shear deformation theory, with incorporation of an 

undetermined integral term, the present theory has only four 

unknowns, which is even less than the other shear 

deformation theories, and hence, make this model simple 

and efficient to employ. The equation of motion of the 

vibrated structure obtained via the classical Hamilton’s 

principle and solved using Navier’s steps. The subsequent 

main points can be drawn from the present study: 

(1) The accuracy of the present work is ascertained by 

comparing it with existing shear deformation theory 

(HSDT) and excellent agreement was observed.  

(2) The frequency decreases as temperature change 

increases in all types of temperature fields. 

(3) The present novel hyperbolic shear deformation 

plate theory is not only accurate but also simple in 

predicting the vibration analysis of FG plates in thermal 

environment. 

Finally, the formulation lend sit self particularly well to 

study several problems related to the hygro-

thermomechanical deformation of laminated and FG 

structures (Bouderba et al. 2016, Beldjelili et al. 2016, 

Bousahla et al. 2016), also by using the nonlocal strain 

gradient model for analysis of mechanical behaviour of 

nanostructures reinforced with nanoparticles and carbon 

nanotubes (Bessaim et al. 2015, Kolahchi and Bidgoli 2016, 

Arani and Kolahchi 2016, Zamanian et al. 2017, Shokravi 

2017, Hajmohammad et al. 2018, Amnieh et al. 2018, 

Karami et al. 2018), which will be considered in the near 

future. The present computations also provide a solid 

benchmark for verification of finite element and other 

numerical simulations of FGM nanobeam mechanics. 
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Appendix 
 

The stiffness and inertia coefficients aij and Mij appeared 

in governing Eq. (33) are as follows 

    6622
2

1111
2

11
AAAAa TT  

 , 

 661212
AAa  

,

   TT BBBBBa
226612

2
1111

3
13

2  
, 

    sTsTsss BBAkBBkAkBkBka
22

2
11

3'
1

2
66

'
2

'
112211114

 
,

    2222
2

1166
2

22 AAAAa TT  
,  

   TT BBBBBa
226612

2
1111

3
23

2  
 

    sTsTsss BBBkBBkAkBkBka
22

3
11

2'
2

2
66

'
2

'
122212124

 

      TTTT DDDDDDDDa
2222

4
2211

22
6612

22
1111

4
33

)2(2  
 

    22
11

'
222

'
122

4'
211

4'
1

2
12

2
222

22
66

'
2

'
1

2
12

2
11134 )()(2  sTsTsTsTsssss DBkDAkDBkDAkDDkDBkAkDDka   

    
       2

44

2'
2

2
55

2'
1222221122

22
66

2'
2

'
122112121211111144 )(





sssTss

ssTsTssTs

ABkAAkkHHkHk

HBkAkHHkkkHkHHka





 

      













22'
2

22'
1244

2'
2

2'
1234

22
20331

'
224123

022
'

1114113011

,

),(,,

,,,,







BkAkKMBkAkJM

IIMJBkMIM

IMAJkMIMIM

 

(34) 

 

383




