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1. Introduction  
 

Structural health monitoring (SHM) has been considered 

as a very important research field in civil engineering. The 

main parts of the SHM are damage detection, which are 

essential monitoring zones for structures after severe 

loading such as earthquakes (Garevski 2013).   

System identification (SI) for dynamical parameters 

estimation of structures in recent years with the 

development of dynamic testing has become one of the 

useful methods for structural damage detection (Moaveni 

2007). The basic idea is that modal parameters, such as 

frequencies, mode shapes, and modal damping, are 

functions of the physical properties of the structure (mass, 

stiffness, and damping) and damage changes the physical 

properties such as stiffness and it will cause changes in the 

modal properties and based on structural damage can be 

detected (Fan and Qiao 2011).  

Therefore, accurate dynamical parameters estimation 

based on SI methods is a very important step in damage 

detection and also finite element model updating. Generally, 

SI is the process of determining relation or the parameters 

of a mathematical model from a physical system using a set 
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of input-output information obtained from experiment. This 

technique in the various fields of engineering is known as 

inverse problem (Sirca Jr and Adeli 2012). In the case of 

structures, the input-outputs are excitation-responses of 

structure and the unknown parameters can be structural 

parameters such as mass, stiffness, damping and/or modal 

parameters such as natural frequencies, damping ratios and 

mode shapes. 

There are many classical and non-classical methods for 

system identification in the time domain. Classical methods 

are mainly based on state space realization and eigen mode 

data analysis such as Eigen Realization Algorithm (Juang 

and Pappa 1985), Nature Excitation Technique (James et al. 

1993), Generalized Realization Algorithm (De Callafon et 

al. 2008), Stochastic Subspace Identification (Overschee 

and Moor 1996). 

Genetic Algorithm (GA) and Neural Network (NN) are 

now the two most commonly non-classical methods that 

used in structural parameters identification and damage 

detection problem. GA is a stochastic search technique 

based on natural selection and genetics, developed by 

Holland. GA is a robust tool for solving large and 

complicated optimization problems that can be used in the 

system identification. GA uses multiple points to search for 

the solution rather than a single points in the traditional 

gradient based optimization method and leads to the global 

optimum without converging to a local optimum or 
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diverging (Koh and Perry 2010, Marwala 2010, Monti et al. 

2010, Wang 2009, Perry et al. 2006, Koh et al. 2000). 

Shear structures are used to model tall buildings. A 

practical large structure usually requires a complex model 

that involves many degree-of-freedoms (DOFs) and 

unknown parameters. The main challenges are that data 

measurement and identification of an entire structure are not 

easy jobs and the difficulty and computation time required 

for convergence increase dramatically with the increase in 

the number DOFs. To overcome these problems, some 

researchers have been using the substructure method for 

large-scale structures. Substructure identification methods 

divide a large structure into many smaller substructures, 

each of which has far fewer DOFs and unknown 

parameters, and perform parameter identification for each 

substructure independently.                

Since substructure identification methods highly 

decrease the size of unknown parameter search space for 

the optimization thus, convergence and ill-condition 

problems are reduced. Because only the structural responses 

related to the identified substructure are required in 

substructure identification, there is no need to monitor all 

DOFs simultaneously, which may greatly reduce the cost of 

structural health monitoring system. Several research works 

have proposed sub structuring methods for system 

identification and damage detection of large-scale 

structures. Koh et al. (1991) are considered to be the first to 

present the concept of substructure identification. They 

adapted the extended Kalman filter by adding a weighted 

global iteration algorithm to determine the stiffness matrix 

and the damping matrix of a substructure through solving 

the state and observation equations of the substructure. This 

approach needs acceleration, velocity and displacement 

responses of the substructures under consideration. This 

approach was further modified to use acceleration responses 

only with a non-classical approach of genetic algorithms 

was applied (Koh et al. 2003). Koh and Shankar (2003) 

proposed a substructure identification approach in 

frequency domain without the need of interface 

measurement. Tee et al. (2005) proposed a substructure 

identification method considering both first order and 

second order models. Xing and Mita (2012) proposed a 

substructure approach to divide a complete structure into 

several substructures in order to significantly reduce the 

number of unknown parameters for each substructure so 

that damage identification processes can be independently 

conducted on each substructure. Weng et al. (2012) 

proposed a substructural model updating method to obtain 

the independent substructural dynamic flexibility matrices 

under force and displacement compatibility conditions. The 

extracted substructural flexibility matrices are then used as 

references for updating the corresponding substructural 

models. Kuwabara et al. (2013) proposed a damage 

identification method for high-rise buildings which is 

devised to find the story shear and bending stiffness of a 

specific story from the floor accelerations just above and 

below the specific story. Zhang et al. (2014) presented a 

loop substructure identification method to estimate the 

parameters of any story in a shear structure using the cross 

power spectral densities (CPSD) of structural responses. 

Mei et al. (2015) proposed a substructural identification 

approach for shear structure based on changes in the first 

AR model coefficient matrix. Mei et al. (2016) proposed an 

improved substructural damage detection approach of shear 

structure based on auto regressive moving average with 

exogenous inputs (ARMAX) model to correct the former 

damage indicator. In this method the correction coefficient 

is defined as the normalized Kolmogorov-Smirnov (KS) 

test statistical distance between the two distinguished data 

sets of ARMAX model residual generalized from input-

output data process for undamaged and damaged states.  

Block pulse functions (BPFs) have been extensively 

investigated and used as an elementary set of functions for 

signal characterizations in system identification. The BPFs 

set proved to be the most fundamental and it enjoyed 

prolific popularity in different applications. In comparison 

with other basal functions or polynomials, the BPFs can 

result more easily to solve concrete problems. Sannuti 

(1997) showed that the application of BPFs results in a 

great decrease of computational effort over Walsh function 

in the control system. Pacheco and Steffen (2002) with 

integration of motion equation of mechanical system and 

using specific properties of the BPFs obtained a simple 

algebraic equation which leads to the determination of the 

unknown parameters. Bouafoura et al. (2010) proposed an 

analytic method for the fractional state space realization of 

non-integer systems with BPFs. Yinggan et al. (2015) 

converted the fractional differential equation to an algebraic 

one through a generalized operational matrix of block pulse 

functions and identified the parameters of fractional-order 

systems. Ajorloo and Ghaffarzadeh (2017) proposed a 

method to identify the dynamical parameters of shear 

building based on continuous time state space estimation 

using BPFs and least squares algorithm.  

The main goal of this research is the implementation of 

BPFs in identification of the dynamic parameters of the 

shear building and simplification of identification process 

using substructural technique and the special properties of 

block pulse functions. These identified parameters can be 

used in structural damage detection, vibration control, 

model updating and etc. Using generalized block pulse 

operational matrices, in the block pulse domain each 

substructure vibration equation separately can be integrated. 

This integration is performed twice on both sides of 

substructural equations and the simulated BP coefficients of 

response for each story can be achieved. Based on this 

simulated and original BP coefficients, a cost function can 

be defined for each story and structural parameters 

including mass, damping and stiffness can be obtained by 

minimizing cost function with genetic algorithm then modal 

parameters including natural frequencies, and mode shapes 

can be computed based on identified structural parameters. 

The validity of the proposed method is verified by 

numerical examples for structural system subjected to 

random signals also the effects of noise studied and finally 

identified parameters are compared with the original values.  

 
 
2. Block pulse functions and generalized operational 
matrices 
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BPFs are the family of orthogonal functions used widely 

as a rudimentary set of functions for signal characterizations 

in system science because of their simple formulations, easy 

operations and exact approximation (Younespour and 

Ghaffarzadeh 2014, Maleknejad et al. 2011, Mohan and Kar 

2013, Ghaffarzadeh and Younespour 2015, Babolian and 

Masouri 2008, Younespour and Ghaffarzadeh 2016). The 

basic view of using BPFs for system identification is 

simplification of problem by applying fundamental 

properties of the BPFs. 

The BPFs are defined on a time interval [0, T) as (Jiang 

and Schaufelberger 1992) 

𝜑𝑖(𝑡) = {
 1              

(𝑖 − 1)𝑇

𝑚
 ⩽ 𝑡 ⩽

𝑖𝑇

𝑚
    

 0                 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒        

  (1) 

Where 𝜑𝑖  is i-th element of the orthogonal basis and 

𝑖 = 1, 2,   …  , 𝑚 with positive integer value for m. Also, 

consider 𝑕 =
𝑇

𝑚
  and 𝑇 is the time horizon.  

BPFs possess disparate properties, the most salient 

characteristics are disjointness, orthogonality and 

completeness. The disjointness property can be easily 

proved from the definition of BPFs 

𝜑𝑖(𝑡)𝜑𝑗(𝑡) = {
𝜑𝑖(𝑡)        𝑖 = 𝑗
0            𝑖 ≠ 𝑗

      𝑖, 𝑗 = 1, 2, . . . , 𝑚 (2) 

The second property is orthogonally which can be 

represented as follows 

∫  𝜑𝑖(𝑡)𝜑𝑗(𝑡) 𝑑𝑡 = 𝑕𝛿𝑖𝑗

𝑇

0

 (3) 

Where, δ𝑖𝑗 is Kronecker delta.  

The last property is completeness. For every 

𝑓𝜖𝐿2(,0, 𝑇))  

Parseval’s identity holds 

∫ 𝑓2(𝑡)𝑑𝑡
𝑇

0

=∑𝑓𝑖
2‖𝜑𝑖(𝑡)‖

2 

∞

𝑖=1

 (4) 

The orthogonality is the main property and based on  

arbitrary real bounded function f(t), that is square inte-

grable in the interval t € [0,T), can be expanded into block 

pulse series as follow 

𝑓(𝑡) ≃ 𝑓𝑚(𝑡)  =∑𝑓𝑖 

𝑚

𝑖=1

𝜑𝑖(𝑡) (5) 

Where 𝑓𝑖  is block pulse coefficient corresponding to 

the 𝑖th BPF. This formulation can also be expressed in 

vector form as 

𝑓(𝑡) ≃ 𝑓𝑚(𝑡) = 𝐹𝑇𝛷(𝑡) (6) 

Where , 𝛷𝑻(𝑡) = ,𝜑1(𝑡), 𝜑2(𝑡) …  𝜑𝑚(𝑡)- and  𝐹𝑇 =
,𝑓1, 𝑓2  . . .  𝑓𝑚-   is the block pulse coefficients vector. The 

criterion of this approximation is minimization of the mean 

square error between  𝑓(𝑡)  and 𝑓𝑚(𝑡)  in a time 

interval 𝑡 𝜖 ,0, 𝑇) 

𝜀 =
1

𝑇
∫ (𝑓(𝑡) −∑𝑓𝑗

𝑚

𝑗=1

𝜑𝑗(𝑡))

2

𝑑𝑡
𝑇

0

 (7) 

This yields to the determination of BP coefficients 

𝑓𝑖 =
1

𝑕
∫ 𝑓(𝑡)
𝑖ℎ

(𝑖−1)ℎ

𝑑𝑡   (8) 

A major attraction feature of BPFs is that the multiple 

integration of the real function in the BP domain is related 

to operational matrices. This idea is realized as generalized 

block pulse operational matrices by the Wang (1982) and 

can be expressed for k-times integration as follows 

∫ … ∫ 𝑓(𝑡)𝑑𝑡 …  𝑑𝑡 ≅ 𝐹𝑇
𝑡

0

𝑡

0

𝑃𝑘𝛷(𝑡) (9) 

Where 𝑃𝑘 is the generalized operational matrix, which is 

given by 

𝑃𝑘 =
𝑕𝑘

(𝑘 + 1)!
   

(

 
 
 
 
 

𝑃𝑘,1   𝑃𝑘,2   𝑃𝑘,3    …  

0    𝑃𝑘,1   𝑃𝑘,2   … 

0  0   𝑃𝑘,1    …   𝑃𝑘,𝑚−2
       

⋮     ⋮       ⋮    ⋮   

 0   0  0  … 𝑃𝑘,1  
  )

 
 
 
 
 

 (10) 

With 

𝑃𝑘,𝑗 

= {
1                        𝑓𝑜𝑟  𝑗 = 1          

𝑗𝑘+1 − 2(𝑗 − 1)𝑘+1 + (𝑗 − 2)𝑘+1  𝑓𝑜𝑟  𝑗 = 2, 3, … ,𝑚
 
(11) 

Since the BP operational rule of integration is much 

simpler than original function integration, the aim of 

simplification can be attained.    

 

 
3. Substructural dynamic formulation of shear 
building and identification process   
 

The equations of motion for multi degrees of freedom 

(MDOF) structure in generalized coordinate system can be 

written in matrix form as 

𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝑋(𝑡) = 𝐵𝑢(𝑡) (12) 

Where 𝑀,𝐶  and 𝐾  are 𝑛 ×  𝑛  matrices of mass, 

damping and stiffness of a simulated structure, 𝑛  is 

number of building stories respectively. 𝑋(𝑡), �̇�(𝑡)  and 

�̈�(𝑡) are vectors of generalized displacement, velocity and 

acceleration, respectively and 𝑢(𝑡)  is the 1× 𝑟  input 

vector containing 𝑟  external excitations acting on the 

system and 𝐵 is the input matrix with dimension 𝑛×1. 

The mass matrix of shear structure is a diagonal matrix in 

which the mass of each story is sorted on its diagonal, as 

given in the following 

𝑀 = [
𝑚1         …          0   
 ⋮           ⋱            ⋮ 
  0           ⋯      𝑚𝑛

]  (13) 

The structural stiffness matrix can be described based on 

the individual stiffness of each story 𝑘𝑖 as follows (Note 

that the 𝐶 matrix is the same configuration as 𝐾 matrix) 
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Fig. 1 Model and free-body diagram of shear structure 

 

 

Fig. 2 Divided substructure model 

 

 

𝐾 =

[
 
 
 
 
 
𝑘1 + 𝑘2       −𝑘2           0                 …                 0    
  −𝑘2       𝑘2 + 𝑘3     − 𝑘3               …                 0   
       ⋮                 ⋮             ⋮                    …                 ⋮    

                 
                                     −𝑘𝑛−1        𝑘𝑛−1 + 𝑘𝑛    −𝑘𝑛
         0               0       …                 − 𝑘𝑛                 𝑘𝑛]

 
 
 
 
 

 (14) 

A sketch of a multi-story shear building under external 

excitation is shown in Fig. 1. The equation of motion for 

each degree of freedom can be written as 

{
  
 

  
 
𝑚1�̈�1 + 𝑐1�̇�1 − 𝑐2(�̇�2 − �̇�1) + 𝑘1𝑥1 − 𝑘2(𝑥2 − 𝑥1) = −𝑚1𝑢(𝑡)

⋮
 𝑚𝑗 �̈�𝑗 + 𝑐𝑗(�̇�𝑗 − �̇�𝑗−1) − 𝑐𝑗+1(�̇�𝑗+1 − �̇�𝑗)      

+𝑘𝑗(𝑥𝑗 − 𝑥𝑗−1) − 𝑘𝑗+1(𝑥𝑗+1 − 𝑥𝑗) = −𝑚𝑗  𝑢(𝑡)   

⋮
𝑚𝑛�̈�𝑛 + 𝑐𝑛(�̇�𝑛 − �̇�𝑛−1) + 𝑘𝑛(𝑥𝑛 − 𝑥𝑛−1) = −𝑚𝑛𝑢(𝑡)

 

(15) 

Where 𝑥𝑖 , �̇�𝑖 , �̈�𝑖  are nodal displacement of the i-th story.  

Eq. (15) shows a complete structure can be divided into 

several substructures which have a considerably smaller 

number of degrees of freedom (DOFs), as shown in Fig. 2.   

In the block pulse domain with two-times integration 

from 0 to t on both side of Eq. (15) and assuming zero 

initial conditions, the algebraic relations are obtained as 

follow 

{
 
 

 
 

𝑚1(𝑋1
𝐵𝑃)𝑇𝑃0𝛷(𝑡) + 𝑐1(𝑋1

𝐵𝑃)𝑇𝑃1𝛷(𝑡)

−𝑐2.(𝑋2
𝐵𝑃)𝑇𝑃1𝛷(𝑡) − (𝑋1

𝐵𝑃)𝑇𝑃1𝛷(𝑡)/ + 𝑘1(𝑋1
𝐵𝑃)𝑇𝑃2𝛷(𝑡)

−𝑘2((𝑋2
𝐵𝑃)𝑇𝑃2𝛷(𝑡) − (𝑋1

𝐵𝑃)𝑇𝑃2𝛷(𝑡)) = −𝑚1 (𝑈
𝐵𝑃)𝑇𝑃2𝛷(𝑡)

⋮

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

⋮

 𝑚𝑗 (𝑋𝑗
𝐵𝑃)𝑇𝑃0𝛷(𝑡) + 𝑐𝑗 .(𝑋𝑗

𝐵𝑃)𝑇𝑃1𝛷(𝑡) − (𝑋𝑗−1
𝐵𝑃 )𝑇𝑃1𝛷(𝑡)/

−𝑐𝑗+1 .(𝑋𝑗+1
𝐵𝑃 )𝑇𝑃1𝛷(𝑡) − (𝑋𝑗

𝐵𝑃)𝑇𝑃1𝛷(𝑡)/

+𝑘𝑗 .(𝑋𝑗
𝐵𝑃)𝑇𝑃2𝛷(𝑡) − (𝑋𝑗−1

𝐵𝑃 )𝑇𝑃2𝛷(𝑡)/

−𝑘𝑗+1((𝑋𝑗+1
𝐵𝑃 )𝑇𝑃2𝛷(𝑡) − (𝑋𝑗

𝐵𝑃)𝑇𝑃2𝛷(𝑡))

= −𝑚𝑗  (𝑈
𝐵𝑃)𝑇𝑃2𝛷(𝑡)

⋮

𝑚𝑛(𝑋𝑛
𝐵𝑃)𝑇𝑃0𝛷(𝑡) + 𝑐𝑛.(𝑋𝑛

𝐵𝑃)𝑇𝑃1𝛷(𝑡) − (𝑋𝑛−1
𝐵𝑃 )𝑇𝑃1𝛷(𝑡)/

+𝑘𝑛((𝑋𝑛
𝐵𝑃)𝑇𝑃2𝛷(𝑡) − (𝑋𝑛−1

𝐵𝑃 )𝑇𝑃2𝛷(𝑡))

= −𝑚𝑛 (𝑈
𝐵𝑃)𝑇𝑃2𝛷(𝑡) 

 

(16) 

Where 𝑋𝑗
𝐵𝑃 and 𝑈𝐵𝑃  are j-th output and input signals 

block pulse coefficients also 𝑃1 and 𝑃2 are corresponding 

with one and two times BP integration operational matrix 

respectively. Note that 𝑃0 is equal to the identity matrix 

and is used just to keep up appearances.     

The component of 𝛷(𝑡) can be removed from both 

sides of Eq. (16) and this equation can be configured as 

follows 

{
 
 
 
 
 

 
 
 
 
 (�̂�1

𝐵𝑃)𝑇 =
𝑏1(𝑋2

𝐵𝑃)𝑇 + 𝑑1(𝑈
𝐵𝑃)𝑇

𝑎1
⋮

(�̂�𝑗
𝐵𝑃)𝑇 =

𝑏𝑗(𝑋𝑗−1
𝐵𝑃 )𝑇 + 𝑧𝑗(𝑋𝑗+1

𝐵𝑃 )𝑇 + 𝑑𝑗(𝑈
𝐵𝑃)𝑇

𝑎𝑗
⋮

(�̂�𝑛
𝐵𝑃)𝑇 =

𝑏𝑛(𝑋𝑛−1
𝐵𝑃 )𝑇 + 𝑑𝑛(𝑈

𝐵𝑃)𝑇

𝑎𝑛

    (17) 

Where 
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{
 
 
 
 
 

 
 
 
 
 
𝑎1 = 𝑚1𝑃0 + 𝑐1𝑃1 + 𝑐2𝑃1 + 𝑘1𝑃2 + 𝑘2𝑃2 
     𝑏1 = 𝑐2𝑃1 + 𝑘2𝑃2     ,     𝑑1 = −𝑚1𝑃2

⋮

𝑎𝑗 = 𝑚𝑗𝑃0 + 𝑐𝑗𝑃1 + 𝑐𝑗+1𝑃1 + 𝑘𝑗𝑃2 + 𝑘𝑗+1𝑃2 

 𝑏𝑗 = 𝑐𝑗𝑃1 + 𝑘𝑗𝑃2   ,   𝑧𝑗 = 𝑐𝑗+1𝑃1 + 𝑘𝑗+1𝑃2   

   𝑑𝑗 = −𝑚𝑗𝑃2
⋮

𝑎𝑛 = 𝑚𝑛𝑃0 + 𝑐𝑛𝑃1 + 𝑘𝑛𝑃2       
     𝑏𝑛 = 𝑐𝑛𝑃1 + 𝑘𝑛𝑃2     ,     𝑑𝑛 = −𝑚𝑛𝑃2  

 (18) 

The cost functions based on original responses BP 

coefficients obtained from Eq. (8) and estimated BP 

coefficients obtained from Eq. (17) can be defined as 

{
 
 
 

 
 
 (�̂�1, �̂�1, �̂�1, �̂�2, �̂�2) = 𝑚𝑖𝑛∑(𝑋1

𝐵𝑃 − �̂�1
𝐵𝑃)

2
      

⋮

(�̂�𝑗 , �̂�𝑗 , �̂�𝑗, �̂�𝑗+1, �̂�𝑗+1) = 𝑚𝑖𝑛∑(𝑋𝑗
𝐵𝑃 − �̂�𝑗

𝐵𝑃)
2

⋮

(�̂�𝑛, �̂�𝑛 , �̂�𝑛) = 𝑚𝑖𝑛∑(𝑋𝑛
𝐵𝑃 − �̂�𝑛

𝐵𝑃)
2

  (19) 

By minimizing the cost functions, physical parameters 

of structure can be identified. To solve minimization 

problem, many conventional optimization techniques can be 

applied. In this research, genetic algorithm is selected from 

optimization toolbox of MATLAB software as minimization 

solver. In the following, the numerical simulation and 

setting of minimization algorithm will be discussed.       

   

 

4. Numerical study 
 
To demonstrate the feasibility and validity of proposed 

method a 4-story shear building model is considered and 

shown in Fig. 3. Divided substructures also shown in Fig. 4. 

At the beginning of identification process, it is assumed that 

the responses are known for all degrees of freedom and  

 

 

 

Fig. 3 Four-story shear building 
 
Table 1 Properties of normally distributed random signals 

Excitation 
Total 

time(sec) 

Number of 

data (m) 

Sampling 

time (∆t=h) 
mean 

standard 

deviation 

1 10 500 0.02 0 0.2 

2 10 2000 0.005 0 0.1 

 

 

Fig. 4 Structure division 
 
Table 2 Mass, stiffness and damping values of the original 

structure 

Story 
Mass 

(KN s2m-1) 

Stiffness 

(KN m-1) 

Damping 

(KN sm-1) 

1 5.50 1200.00 7.00 

2 5.00 1000.00 6.00 

3 4.50 800.00 5.00 

4 4.00 600.00 4.00 

 

 
excitations data are available. To evaluate the generality of 

proposed identification method, two random signals with 

different sampling time (∆𝑡 = 𝑕) are selected and cited in 

Table 1. This signals can also be an earthquake or artificial 

harmonic excitation.   

The physical properties of the original structure consist 

of mass, damping and stiffness are listed in Table 2 and the 

responses of the structure assessed from the ordinary linear 

dynamic analysis via finite element method.    

In order to use operation rules of block pulse functions, 

BP coefficients of continuous signal should be calculated. 

In the result, BP coefficients should be evaluated from Eq. 

(8) but in using this formula, evaluation is conceivable only 

when the analytical expressions of continuous signals are 

known or when measurements between the sampling 

instants are accessible. 

In the lack of any information about the variations of 

signal, BP coefficients of the continuous signal must be 

approximated by numerical methods. The simplest 

approximation of BP coefficients is the average value of the 

signal at two end point connected subinterval. This 

approximation is shown below 

𝑈𝑘
𝐵𝑃 =

1

𝑕
∫ 𝑢(𝑡)
𝑘ℎ

(𝑘−1)ℎ

𝑑𝑡  ≅
1

2
(�̅�𝑘−1 + �̅�𝑘) (20) 

Where �̅�𝑘−1  and �̅�𝑘  are the sampled values of the 

continuous signal 𝑢(𝑡) at the time instants 𝑡 = (𝑘 − 1)𝑕 

and   𝑡 = 𝑘𝑕  respectively. Figs. 5-6 Show external 

excitations and their BP coefficients. In the following, BP 

coefficients for original responses are calculated according 

to Eq. (20) and based on this input-output BP coefficients 

data the process of identification is done. 

To evaluate the accuracy of Eq. (17) in the BP 

coefficients estimation, all parameters of the equation, 

including mass, damping and stiffness set with the original  
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(a) Excitation 1 

 
(b) BP coefficients of excitation 1 

Fig. 5 External excitations time history 

 

 
(a) Excitation 2 

 
(b) BP coefficients of excitation 2 

Fig. 6 External excitations time history 

 

 

values according to Table 2 and the obtained coefficients 

are compared with the Eq. (20). The sum of squared error 

(SSE) and the root mean square error (RMSE) are used as 

the evaluation criterions and the results are listed in Table 3. 

As the results show, error values are acceptable and with 

fewer sampling time (∆𝑡 = 𝑕) RMSE values are reduced 

and the accuracy of the estimation increases. The reason is 

that, according to Eq. (8) the better BP approximation can 

be obtained if a smaller width of block pulse (∆t = h) is 

chosen. Therefore, small rate of h makes more accurate 

approximation of the BP operational matrix 𝑃𝑘 according 

to the Eq. (10) and this increases the accuracy of estimation. 

Table 3 Error values in estimation of BP coefficients of 

responses based on original parameters 

story 
Excitation 1 Excitation 2 

SSE RMSE SSE RMSE 

First 0.0776 0.0125 0.0109 0.0023 

Second 0.1092 0.0148 0.0152 0.0028 

Third 0.1313 0.0162 0.0178 0.0030 

Fourth 0.6124 0.0350 0.1653 0.0091 

 

Table 4 Parameters and operators of GA 

Parameters Values 

Maximal generation 50 

Population size 30 

Fitness scaling function Rank 

Selection function Stochastic uniform 

Crossover function Arithmetic 

Mutation function Constraint dependent 

Search Ranges {

mi ,1,10-

ki ,500,1500-

ci ,1,10-
 

 

 
(a) Excitation 1-the fourth story 

 
(b) Excitation 2-the first story 

Fig. 7 Fitness values of the costs 

 

 

Now the cost function according to Eq. (19) can be 

formed. As previously mentioned, Genetic algorithm has 

been used from MATLAB optimization toolbox to 

minimize the fitness (cost) functions. Table 4 shows settings 

and assigned values for the parameters of the algorithm. 

The general parameters and operators of GA which is 

suitable for the optimization problem, are considered and 

adapted by inspection to give better performance. Although  
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Table 5 Identified mass, stiffness and damping values 

Parameter Story Excitation 1 Error (%) 

Mass 

 kN s2m 1) 

m1 

m2 

m3 

m4 

5.481 

4.958 

4.476 

3.964 

0.34 

0.84 

0.53 

0.90 

Stiffness 

 kN m 1) 

k1 

k2 

k3 

k4 

1196.596 

995.216 

796.637 

594.971 

0.28 

0.49 

0.42 

0.84 

Damping 

 kN s m 1) 

c1 

c2 

c3 

c4 

6.975 

5.965 

4.972 

3.949 

0.36 

0.58 

0.56 

1.27 

 

Table 6 Identified mass, stiffness and damping values 

Parameter Story Excitation 2 Error (%) 

Mass 

 kN s2m 1) 

m1 

m2 

m3 

m4 

5.492 

4.995 

4.497 

3.991 

0.14 

0.10 

0.067 

0.22 

Stiffness 

 kN m 1) 

k1 

k2 

k3 

k4 

1198.253 

998.665 

798.450 

597.282 

0.14 

0.13 

0.19 

0.45 

Damping 

 kN s m 1) 

c1 

c2 

c3 

c4 

6.984 

5.997 

4.993 

4.007 

0.23 

0.05 

0.14 

0.17 

 

 

the sensitivity analysis could be performed but it was not 

taken into account for the parameters GA.  

After minimization process, identified parameters 

including mass, damping and stiffness and the percent of 

relative errors are summarized in Table 5 and Table 6. It is 

worth noting that the error for each parameter is calculated 

as 

𝐸𝑟𝑟𝑜𝑟 = 

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 − 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
 

(21) 

Also in Figs. 7-8 the best and mean values of fitness 

functions are shown in each generation and estimated BP 

coefficients of responses are compared with the theoretical 

(original) values, respectively.  

The results indicate that the identified physical 

parameters obtained from BPFs and GA have excellent 

consistency with those of the finite element model. As the 

results show, excitation 2 error is lower than that of 

excitation 1 and the proposed method has high accuracy in 

identifying structural parameters based on noise free data. 

 
4.1 Noise effect 
 
In real structure, measured responses are always corrupted 

by noise components from environmental factors. To simulate 

the proposed method with practice, the original responses of 

structure are contaminated by white noise effects. Therefore, a 

random noise of standard normal distribution with zero mean 

and a specified standard deviation is created and added to 

 
(a) Excitation 1-the fourth story 

 
(b) Excitation 2-the first story 

Fig. 8 Original and estimated BP coefficients of responses 

 

 
(a) The first generation 

 
(b) The final generation 

Fig. 9 Minimization process of BP coefficient to estimate 

the physical parameters of the second story based on 

excitation1 and 10% noise polluted output data 

 

 

theoretical displacement responses. The noise level is 

considered as a ratio of the standard deviations (SD) between 

noise and a simulated response (Khanmirza et al. 2011). For  
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Table 7 Identified mass, stiffness and damping values of the 

four-story shear building under excitation 1 and noisy 

output 

Parameters 
 Identified parameters 

 5% Error (%) 10% Error (%) 

Mass 

 kN s2m 1) 

m1 5.178 5.85 4.975 9354 

m2 4.553 8.94 4.311 13.78 

m3 4.026 10.53 3.896 13.42 

m4 3.501 12.47 3.287 17.82 

Stiffness 

 kN m 1) 

k1 1128.519 5.95 1090.562 9.12 

k2 892.724 10.73 872.699 12.73 

k3 725.680 9.29 677.135 15.36 

k4 543.421 9.43 520.547 13.24 

Damping 

 kN s m 1) 

c1 6.346 9.34 5.884 15.94 

c2 5.308 11.53 4.862 18.96 

c2 4.241 15.18 3.975 20.50 

c4 3.319 17.02 4.979 24.47 

 

Table 8 Identified mass, stiffness and damping values of the 

four-story shear building under excitation 2 and noisy 

output 

Parameters 
 Identified parameters 

 5% Error (%) 10% Error (%) 

Mass 

 kN s2m 1) 

m1 5.363 2.49 5.261 4.35 

m2 4.921 1.58 4.683 6.34 

m3 4.445 1.22 4.042 10.18 

m4 3.761 5.98 3.679 8.02 

Stiffness 

 kN m 1) 

k1 1175.458 2.04 1144.085 4.66 

k2 985.413 1.46 907.615 9.24 

k3 765.032 4.37 733.129 8.36 

k4 577.980 3.67 534.063 10.99 

Damping 

 kN s m 1) 

c1 6.599 5.73 6.422 8.25 

c2 5.729 4.52 5.543 7.62 

c2 4.513 9.74 4.347 13.05 

c4 4.225 5.62 3.385 15.37 

 

 

example, a noise level of %8 Considers that the SD of the 

measurement noise is %8 that of the displacement responses. 

For this point, white noise is added with 

*�̅�+𝑡 = *𝑥+𝑡 + 𝐸𝑝𝑁𝑛𝑜𝑖𝑠𝑒 𝜎,*𝑥+𝑡-         (22) 

Where 𝐸𝑝 demonstrates the percentage noise level, 𝑁𝑛𝑜𝑖𝑠𝑒  

indicates standard distribution vector with zero mean and 

unit standard deviation and 𝜎,*𝑞+𝑡- indicates the standard 

deviation of the computed displacement response. To assess 

the effect of noise, the noises equal to 5% and 10% of the 

variance of the N/S ratio are randomly generated and added 

to the noise-free structural responses and minimization 

process is applied. Then, the cost functions according to Eq. 

(19) are formed and the minimization processes are done 

until BP coefficients obtained from the Eq. (17) converging 

to noise polluted original coefficients. After minimization 

process, identified parameters including mass, damping and 

stiffness and the relative errors are provided in Table 7 and 
Table 8. Also Figs. 9-10 show minimization process for 

both excitation based on 10% noise polluted output data.  

 
(a) The first generation 

 
(b) The final generation 

Fig 10 Minimization process of BP coefficient to estimate 

the physical parameters of the second story based on 

excitation 2 and 10% noise polluted output data 

 

Table 9 The modal characteristics 

 Original    

 First mode Second mode Third mode Fourth mode 

Frequencies 5.219 13.134 19.894 25.012 

Modal 

shapes 
{

1.00

2.05

3.01

3.68

} {

1.00

1.25

0.22

 1.44

} {

1.00

0.02

 1.25

0.77

} {

1.00

 1.24

0.81

 0.25

} 

 

 

As the results show in Tables 7 and 8, the relative errors in 

mass, stiffness and damping identification process in low-level 

noise (less than 5%) are insignificant. As expected in the case 

of 10% noise level, the relative errors appear remarkable 

compared to the case of 5% and the maximum relative error is 

reached about 25%. 

After identifying the physical parameters of the 

structure, the mass and stiffness matrices can be formed 

according to Eqs. (13)-(14) and based on the natural 

frequencies and mode shapes of the structure are 

determined by solving eigenvalue problem as follows 

|,𝐾- − 𝜔𝒊
𝟐,𝑀-| {

Ø1𝑖
⋮
Ø𝑛𝑖

} = 0 (23) 

Where 𝜔 and *Ø+ are the natural frequencies and modal 

shapes, respectively. Table 9 shows the original values of 

these modal parameters for structural model. 

To compare the agreement between the identified and 

the original modal shapes, the modal assurance criterion  
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Table 10 Identified frequency values based on noise-free 

data 

Excitation 1 
First 

mode 

Second 

mode 

Third 

mode 

Fourth 

mode 

Frequencies 

Error (%) 

Mac 

5.228 

0.17 

1.000 

13.145 

0.08 

1.000 

19.889 

0.02 

1.000 

25.032 

0.08 

1.000 

Excitation 2 

Frequencies 

Error (%) 

Mac 

 

5.218 

0.02 

1.000 

 

13.125 

0.07 

1.000 

 

19.877 

0.08 

1.000 

 

25.003 

0.03 

1.000 

 

Table 11 Identified frequency values based on noisy data 

Excitation 1 

5% Noise level 

First 

mode 

Second 

mode 

Third 

mode 

Fourth 

mode 

Frequencies 

Error (%) 

MAC 

5.287 

1.303 

1.000 

13.222 

0.670 

0.999 

19.916 

0.110 

1.000 

24.836 

0.704 

0.998 

Excitation 2 

Frequencies 

Error (%) 

MAC 

 

 

5.245 

0.50 

1.000 

 

 

13.149 

0.11 

0.999 

 

 

19.821 

0.37 

1.000 

 

 

24.923 

0.36 

0.999 

 

 

(MAC) index is employed (pastor et al. 2012) 

𝑀𝐴𝐶 = (*Ø𝑖𝑜+, *Ø𝑖𝑙+) =
|*Ø𝑖𝑜+

𝑇*Ø𝑖𝑙+|
2

*Ø𝑖𝑜+
𝑇*Ø𝑖𝑜+*Ø𝑖𝑙+

𝑇*Ø𝑖𝑙+   
   (24) 

Where  *Ø𝑖𝑜+  and  *Ø𝑖𝑙+  are the i-th original and i-th 

identified mode shape, respectively. The value of MAC 

varies between 0 and 1. When this quantity is equal to 1, the 

two vectors *Ø𝑖𝑜+ and *Ø𝑖𝑙+ display exactly the similar 

mode shape and when the two mode shapes are orthogonal 

the MAC value is zero. Tables 10, 11 and 12 show 

identified frequencies and relative errors and MAC values 

for each mode. As the MAC criterion is to provide degree of 

consistency between estimated and original modal vectors, 

the high value of MAC near 1 indicate high degree of 

consistency. The results show in Table 12 the relative errors 

in identified frequencies based on 10% noise level are less 

than 2% in the general. 

 
 
5. Conclusions 
 

In this paper, a method based on substructural technique 

is proposed to identification of multistory shear building 

structures from their dynamic responses and excitation data. 

In this method simultaneously identification structural 

parameters contains mass, damping and stiffness can be 

done without any prior knowledge of structural dynamic 

parameters. By employing special properties of generalized 

block pulse operational matrices, BP coefficients of 

response for each degree of freedom were calculated. Using 

the original and estimated BP coefficients the cost functions 

were defined for each story and structural parameters 

obtained by minimizing cost functions with genetic 

algorithm. Finally natural frequencies was computed based 

on identified structural parameters. The feasibility and  

Table 12 Identified frequency values based on noisy data 

Excitation 1 

10% Noise level 

First 

mode 

Second 

mode 

Third 

mode 

Fourth 

mode 

Frequencies 

Error (%) 

MAC 

5.316 

1.86 

0.999 

13.274 

1.07 

0.999 

19.893 

0.00 

1.000 

24.894 

0.47 

0.999 

Excitation 2 

Frequencies 

Error (%) 

MAC 

 

 

5.240 

0.40 

0.999 

 

 

13.002 

1.005 

0.999 

 

 

19.770 

0. 62 

1.000 

 

 

24.732 

1.12 

0.998 

 

 

accuracy of the presented method have been verified by 

numerical studies on 4-story shear building using two 

different normally distributed random excitation with 

different sampling time. Noise free and noisy responses 

data are used as inputs of identification. The results of 

investigation indicated good consistency with those of the 

finite element models and high accuracy for shear building 

dynamical parameters identification based on noise-free 

data. The relative errors in low-level noise (less than 5%) 

were insignificant. when measurement noise level reaching 

up to 10% of the variance of the noise-to-signal ratio, the 

relative errors in identified frequencies become less than 

2% in the general.  
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