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1. Introduction 
 

During the past decades, both the finite element method 

(FEM) and the boundary element method (BEM) have been 

extensively studied to handle a wide range of engineering 

problems, each with its own advantages and disadvantages. 

However, the practical engineering problems are so 

complicated that in some cases it is desirable to combine 

FEM and BEM together to enhance their advantages and 

weaken their disadvantages. The coupling formulations of 

FEM and BEM naturally emerged in the process of the 

evolution of the numerical formulations. At the first time 

Zienkiewicz and Kelly (1977) proposed the coupling 

formulation of FEM and BEM. In the coupling method, the 

governing equations of FEM and BEM formulations were 

established for FEM sub-domain and BEM sub-domain 

respectively, based on which the unified governing equation 

for the whole domain was further established to realize the 

compatibility between FEM and BEM formulations. 

Subsequently, a lot of contributions to the conventional 

coupling formulations were made by authors of several 

literatures (Brebbia 1980, Li at al. 1986, Leung et al. 1995, 

Estorff and Prabucki 1990, Yu et al. 2001). It has been 

found that the conventional coupling formulation with the 

unified governing equation was applicable for static and 

elastodynamic problems, however, the numerical  
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implementation of the coupling in the whole domain was 

quite complex for some cases, due to the matrix operations 

between the symmetrical and sparsely populated FEM 

matrix and the fully populated BEM matrix, resulting in 

weakening the advantages in FEM and BEM formulations. 

Therefore, Prasad (1992) proposed the domain 

decomposition coupling formulation of FEM and BEM, in 

which it was not required to combine the FEM and BEM 

governing equations, and the discretization and solutions of 

the FEM and BEM sub-domains were independently 

conducted. Lin and Lawton (1996) published the domain 

decomposition coupling formulation, in which the iteration 

of nodal variables between FEM and BEM formulations on 

the common interface between FEM and BEM sub-domains 

were performed till the convergence to obtain the real 

values of the nodal variables on the common interface. 

After that the FEM and BEM sub-domains were 

independently solved in their own frames. Elleithy and Al-

Gahtani (2000) and Elleithy et al. (2001) proposed the over 

lapping domain decomposition coupling formulation for 

some special boundaries and summarized three kinds of 

domain decomposition coupling approaches. Later, Elleithy 

and Tanaka (2003, 2004) studied the convergence and the 

relaxation parameter for the over lapping domain 

decomposition coupling formulation in other three 

literatures. Cifuentes et al. (2015) successfully applied 

numerical simulation of the coupled dynamic response of a 

submerged floating tunnel with mooring lines to regular 

waves. Yan et al. (2006) proposed an improved domain 

decomposition coupling formulation, in which the FEM and 

BEM were not required to be discretized at the coincident 

nodes on the common interface between the FEM and BEM 

sub-domains, hence to release the freedom for the 

discretization of the sub-domains. Based on the time 
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domain BEM formulation (TD-BEM, with TD for time 

domain), Soares proposed a special domain decomposition 

coupling formulation of FEM and TD-BEM, in which 

different durations for each time step in BEM and FEM 

sub-domains were allowed in the analysis (Soares et al. 

2004, Soares 2008, Soares 2012, Soares et al. 2015). Lu et 

al. (2015) researched time-domain analyses of the layered 

soil by the modified scaled boundary finite element method. 

Therefore, the consistence of the coupling formulation was 

improved. Moreover, the coupling formulation was 

applicable in dynamic problems both for elastic and 

inelastic analysis. Later on, the study on relaxation 

parameter was carried out for inelastic dynamic analysis in 

the process of the coupling. Comparing the domain 

decomposition coupling formulation against the 

conventional coupling formulation of the unified equation 

in the whole domain, the domain decomposition coupling 

formulation has its obvious advantages. First, the order of 

the coefficients matrix is reduced, that is, the computational 

cost is lower. Second, the duration of time steps is more 

flexible, hence the computation is more versatile and 

consistent. Moreover, in the frame of the domain 

decomposition coupling formulation, the iterative coupling 

mechanism can be independently coded case by case for the 

common interface between the FEM and BEM sub-

domains, while the FEM and the BEM sub-domains can be 

independently modeled in their own formulations, even 

directly transplanting some standard modules. However, in 

the process of the treatment to the FEM governing equation 

under the frame of the domain decomposition coupling 

formulation, Wilson-θ and Newmark approaches were often 

employed to handle the time differential terms in the 

original FEM governing equation by means of the finite 

difference, supposing the linear variation for the nodal 

acceleration. The approximation in the treatment of the 

finite difference to the terms in the dynamic equation of 

motion, relevant to time, might undermine the modeling 

accuracy. Zhong and Williams (1994) proposed the precise 

integration FEM, in which the analytical solution of the 

equation of motion in terms of time was obtained by 

treating the second-ordered differential equations with the 

method of decreasing the order, and the integration in terms 

space was numerically solved by FEM. Therefore, the 

precise integration FEM is a semi-analytical solution, with 

better modeling accuracy comparing with the pure 

numerical solution. However, so far, the decomposition 

coupling formulation of the semi-analytical precise 

integration FEM and TD-BEM has not been reported. 
In current paper, a coupling formulation of the precise 

integration FEM and the TD-BEM is proposed. In the 
formulation, the semi-analytical scheme is incorporated to 
improve the modeling accuracy in the standard domain 
decomposition coupling formulation. Meanwhile, it has 
been noticed that in the standard domain decomposition 
coupling formulation, it is required that the FEM and BEM 
nodes on the common interface between the two sub-
domains share the coincident positions. However, when the 
FEM and BEM sub-domains are independently discretized 
under their own formulations, the FEM and BEM nodes on 
the common interface might not be positioned on the same 
positions. In current coupling formulation, the nodal  

 

Fig. 1 Domain decomposition 

 

 

information on different positions between FEM and BEM 

sub-domains are transferred by the force converting and 

displacement converting matrices. Therefore, it is not 

required the coincident positions for the FEM and BEM 

nodes on the common interface, i.e., besides being more 

accurate, the current coupling formulation on the other hand 

is more versatile and manipulated. A cantilever bar 

subjected to two independent loads, one for a Heaviside-

type force the other one for a harmonic load, is considered 

to verify the coupling method in this paper. 

 

 

2. Force and displacement converting matrices 
 

In classical domain decomposition coupling 

formulation, the domain of the original problem is divided 

into FEM and BEM sub-domains, which are independently 

discretized. The force and displacement on the artificial 

common interface between FEM and BEM sub-domains are 

unknown. The solution of the unknowns on the common 

interface between the two sub-domains has the first priority 

in the frame of the coupling formulation. Upon those 

interfacial unknowns are solved, the problems for the 

corresponding sub-domains become the independent FEM 

and BEM problems. 

As shown in Fig. 1, the stressed elastic and continuous 

body is divided into FEM sub-domain ΩF and BEM sub-

domain ΩB. The common interface between FEM and BEM 

sub-domain is ΓI. The BEM and FEM sub-domains are 

discretized using one dimensional linear boundary elements 

and two dimensional plane elements respectively. 

Upon discretization of the boundary integral equation 

for the BEM sub-domain, the following BEM governing 

equation is obtained      

B BHu Gp
 

(1) 

where H and G are the coefficient matrices of nodal 

displacement and nodal traction, and uB, pB are the vectors 

of nodal displacement and nodal traction for the BEM sub-

domain, with u and p standing for the corresponding 

vectors, and the subscript B meaning the BEM sub-domain. 

Similarly, the FEM governing equation can also be 

obtained, as 

F FKu f
 

(2) 

where K is the global stiffness matrix, and uF, fF are the 

vectors of nodal displacement and the equivalent nodal 

force for the FEM sub-domain, with u and f standing for the 

B

I

F
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corresponding vectors, and the subscript F meaning the 

FEM sub-domain. 

Separating the nodal variables in the governing 

equations of BEM and FEM systems in Eqs. (1) and (2) by 

the nodal variables of the common boundary and the 

remaining domain, where the common boundary is not 

included, Eqs. (1) and (2) become the following sub-

structured forms, in Eqs. (3) and (4) respectively, as 

11 12

21 22

F F

F F

I I

F F

K K u f

K K u f

    
    

          

      

    
 (3) 

11 12 11 12

21 22 21 22

B B

B B

I I

B B

H H u G G p

H H G Gu p

      
      

         

      

    

      

        
 (4) 

where the superscripts F, I and B stand for the external 

FEM sub-domain (where the common boundary is not 

included), the interface between FEM and BEM sub-

domains and the external boundary in the BEM sub-domain 

(where the common boundary is not included), respectively. 

In order to incorporate the FEM and BEM sub-domains in 

the coupling system, the forces and the displacements of the 

nodes on the interface from FEM and BEM formulations 

are required to satisfy certain conditions. In the case where 

the FEM nodes on the interface are coincident with the 

BEM nodes, the equivalent forces of nodes from the FEM 

sub-domain and tractions of the nodes from the BEM sub-

domain are required to satisfy the equilibrium equation, and 

the corresponding displacements are required to satisfy the 

compatibility condition (Yan et al. 2006).  

The equilibrium equation is expressed by the nodal 

forces, as 

0I I

F Bf Mp   (5) 

where M is the converting matrix, expressed by 
TM N Nd


  , and N is the interpolation function for 

node on the interface approached from BEM sub-domain, 

which is coincident with the position of the node 

approached from FEM sub-domain. 

The compatibility condition is expressed by the nodal 

displacements, as 

I I

B Fu u
 

(6) 

From Eqs. (5) and (6), it can be seen that it is required 

that the position of the FEM node is coincident with the 

BEM node on the interface between FEM and BEM sub-

domains. The position requirement bounds the 

discretization of the two sub-domains. Moreover, the corner 

treatment is complicated, so that the nonconforming 

boundary element is necessary for the discretization. For 

details of nonconforming boundary element, literature 

(Song and Nie 2009) is referred. Therefore, the coupling 

system allowing the different node positions between FEM 

and BEM sub-domain is more flexible and meaningful than 

the coupling system of the coincident nodes.   

In current paper, the force and displacement converting  

 

Fig. 2 The relationship between forces of FEM and BEM 

sub-domains 

 

 

matrices are used to transfer data between FEM and BEM 

nodes on the interface, to realize the renewal of the nodal 

variables in the process of the iterations for the case where 

the FEM and BEM nodes are located at different positions. 

The traction of the FEM node on the interface can be 

obtained from the traction of the BEM node on the interface 

by means of interpolation, as 

IF I

B B Bp N p  (7) 

where 
IF

Bp  is traction vector of node on the interface 

approached from BEM sub-domain, which is coincident 

with the position of the node approached from FEM sub-

domain, and NB is the matrix of interpolation functions for 

the boundary element.  

In the following context, the mechanism of the 

information transmission between FEM and BEM variables 

for the nodes on the interface is illustrated by a conceptual 

coupling example, where the eight-node isoparametric finite 

elements are coupled with linear nonconforming boundary 

elements. By the way, in the example, the difference 

between N and NB is also illustrated.  

In a supposing case, where the eight-node isoparametric 

finite element and linear nonconforming boundary element 

are employed to discretize the FEM and BEM sub-domains 

respectively, the relationship between the nodal traction and 

nodal equivalent force on the common interface between 

FEM and BEM sub-domains is shown in Fig. 2. p1 and p2 

are the nodal tractions in BEM sub-domain, while f1, f2 and 

f3 are the nodal equivalent forces in FEM sub-domain. 

Applying the principle of virtual work to solve the force 

transmission for the nodes on the interface between FEM 

and BEM systems, it is required that the nodes of the two 

systems are coincident. Therefore, the two BEM nodes with 

the tractions p1 and p2 are transferred to three artificial BEM 

nodes with tractions 
1

Fp ， 
2

Fp  and 
3

Fp  on the interface, 

which are coincident with the corresponding positions of 

the three nodes approached from FEM sub-domain.  

In the example, in order to discretize the two internal 

BEM nodes with the tractions p1 and p2 to the boundary, the 

following interpolation or extrapolation function is used 

      
1 1

2 2
  BN  

 
   
 

 (8) 

where ξ is the coordinate value in natural coordinate 

system. 

Discretizing the three BEM nodes with the tractions 

1

Fp ， 2

Fp  and 
3

Fp , which are coincident with the three 

corresponding FEM nodes, to the boundary, the following 

319



 

Weidong Lei, Chun Liu, Xiaofei Qin and Rui Chen 

 

interpolation or extrapolation function is used 

2( 1) ( 1)
            1       

2 2
N

   


 
  







 (9) 

By interpolating the displacements of the FEM nodes on 

the interface, the displacements of the FEM nodes, 

coincident with the positions of the corresponding BEM 

nodes, can be obtained, as 

IB I

F F Fu N u  (10) 

where NF is for the FEM interpolation function. 

In the case where the FEM nodes on the interface are 

not coincident with the BEM nodes, the equivalent forces in 

FEM system and the tractions in BEM system satisfy the 

following equilibrium condition 

0I IF

F Bf Mp   (11) 

Displacement coordination condition for the BEM nodes 

is expressed, as 

I IB

B Fu u  (12) 

By considering Eqs. (7) and (11), one has 

I I

F B Bf MN p   (13) 

Therefore, the converting matrix for transforming nodal 

tractions in BEM system to nodal equivalent forces in FEM 

system is as follows 

_ BTr F MN   (14) 

By considering Eqs. (10) and (12), one has 

I I

B F Fu N u  (15) 

Therefore, the converting matrix for transforming nodal 

displacements in FEM system to BEM system is as follows 

_ FTr U N  (16) 

For the conceptual coupling example, the force and the 

displacement converting matrices can be quantitatively 

expressed. As shown in Fig. 2, the force is often 

transformed from BEM system to FEM system. Then, p1 

and p2 are known, therefore, the traction of arbitrary point 

on the linear nonconforming boundary element is 

1 2

1 1
( ) ( )
2 2

p p p      (17) 

By giving -1, 0 and 1 to ξ respectively, one has 

1 1 2

2 1 2

3 1 2

3 1

2 2

1 1

2 2

1 3

2 2

F

F

F

p p p

p p p

p p p


 




 



  


 (18) 

 

Fig. 3 The interpolated displacements for arbitrary point 

within eight-node isoparametric finite element 

 

 

or, in matrix format, as 

1

1

2

2

3

3 1

2 2

1 1

2 2

1

2
  

3

2

F

F

F

            
p

p
p             

p
p

         

 
 

   
             
 

 
  

 (19) 

Then, the matrix of the interpolation functions BN in 

Eq. (7) is 

3 1

2 2

1 1

2 2

1
  

3

2 2

B

            

N             

         

 
 

 
 
 
 
 
  

 (20) 

For plane problems, the converting matrix is expressed, 

as 

 
1

2 1 2 3

3

4 2 1

2 1 2
30

1 2 4

T

L L

N             
L

M N Ndl N N   N   N dl         6     

             N

   
   

  
   
     

   (21) 

Recalling Eq. (14), the quantitative force converting 

matrix from BEM system to FEM system for the conceptual 

coupling example is as follows 

             

        

       

3 1

_ 4

   

4
12

1 3

L
Tr F

 
 

  
 
  

 (22) 

In the conceptual coupling example, the displacement of 

arbitrary point in the eight-node isoparametric finite 

element, as shown in Fig. 3, can be expressed by the 

displacements of the nodes. 

The displacement for point a in Fig. 3 is 
8

1
i i

i
a N uu



 , 

and ξ in the interpolation function Ni is either 1 or 1/2. Then 

one has 
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Fig. 4 The relationship between displacements of FEM and 

BEM sub-domains 

 

 

2 3 6

1 3 3

8 8 4
au u u u     (23) 

Similarly, for point b in Fig. 3, one has 

2 3 6

3 1 3

8 8 4
bu u u u    (24) 

The relationship between nodal displacements for FEM 

and BEM systems are shown in Fig. 4. v1 and v2 are the 

nodal displacements in BEM system, and u1, u2 and u3 are 

the nodal displacements in FEM system. 
Bu1

 and 
Bu2

 are 

the displacements of the nodes in FEM system, which are 

coincident with the positions of the nodes in the BEM 

system. 

The displacement is often transformed from FEM 

system to BEM system. When u1, u2 and u3 are known, 

according to Eqs. (23) and (24), one has 

1

1

2

2
3

3 3 1
               

8 4 8

1 3 3
              

8 4 8

B

B

u
u

u
u

u

       
     

          

 (25) 

Because displacements of the node in FEM system the 

node in BEM system are the same, one has 

1 1

2 2

B

B

v u

v u

  
   
    

 (26) 

Therefore, the quantitative displacement converting 

matrix from FEM system to BEM system for the conceptual 

coupling example is as follows 

  3       6    1 1
_

1      6       3 8
Tr U

 
  

 
 (27) 

 
 
3. Coupling of precise integration FEM and TD-BEM 
 

The equation of motion can be solved by both the direct 

numerical integration method and the mode combination 

method. In the direct integration method, the numerical 

integration is directly conducted before the integration of 

the equation of motion, without transformation operation in 

the equation set. By contrast, in the mode combination 

method, the decoupling needs to be done in the equation set 

by using the orthogonality between the stiffness and the 

mass matrices. The mode combination method is not 

applicable for the inelasticity. The conventional direct 

numerical integration method includes central difference 

method, Wilson-θ method and Newmark method. In the 

three direct integration methods, the difference 

discretization is conducted in the computation, and the 

linear acceleration is assumed for the nodes, undermining 

the modeling accuracy.  

By adopting the treatment of the order reduction to the 

second-ordered differential equation, in the precise 

integration method, the analytical expression of the 

equation of motion in terms of time variable is obtained, 

while the discretization in space is performed by employing 

finite elements. Therefore, this semi-analytical method is of 

higher modeling accuracy comparing with the numerical 

solution.  

Treating the displacement of the particle of the elastic 

body as an unknown, the equation of motion is expressed, 

as 

( )Mx Cx Kx f t    (28) 

where M, C and K respectively represent for the mass 

matrix, the damping matrix, stiffness matrix, and 

,     and  x x x  for the displacement, the velocity and the 

acceleration of the particle.
 

By introducing the transformation / 2y Mx Cx  , 

order of the equation of motion is deduced by one, and the 

analytical expression in terms of time is obtained . For more 

details, interested readers can refer to literatures (Zhong and 

Williams 1994, Wang and Zhou 2005). The general 

solution to non-homogenous equation for elastodynamic 

problem is obtained as follows 

( )

0
0

( ) ( )
t

Ht H tv t e v e r d      
(29) 

In Eq. (29), 
x

v
y

 
  
 

, 
0

( )
( )

   
 r

f




 
  
 

. teH is 

coefficient matrix. The matrix H is expressed as
-1 1

1 1

    

  

2

/ 4 / 2 

/M C M
H

CM C K CM



 

 
  

  

             

 
.
  

Therefore, the recursion relationship for two adjacent 

time steps can be expressed, as 

 ( 1) ( 1)

1 ( )
n t H n t

n n
n t

v Tv e r d


 
    




    (30) 

where T=eHΔt. 

The governing equation of elastodynamics for TD-BEM 

is 

n
n n n nH u G p B   (31) 

where Hn, Gn, un and pn stand for the displacement 

influencing coefficient matrix, the traction influencing 

coefficient matrix, the vector of nodal displacement and the 
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vector of nodal traction, with the superscript n for the nth 

time step. 

The governing equation, Eq. (30), for elastodynamics 

for FEM can be written, as 

1n n nu Tu R    (32) 

where 
n

nu v ，
( 1)

[( 1) ] ( )
n t

n H n t

n t
R e r d  

 
  


  . 

To describe the iterative process of coupling of the 

precise integration FEM and TD-BEM, notations of the 

vectors of displacement and force for the nodes on the 

common interface and the remaining FEM and BEM sub-

domains are defined, where u,
 
f and p are conventionally 

used to specify the displacement, the equivalent nodal force 

and the traction, and different superscripts and subscripts 

are also used for detailed specifications. 
n

Fu
 

and 
n

Ff  

respectively stand for the displacement and equivalent force 

at the nth time step for the nodes on the remaining FEM sub-

domain except the interface, where the superscript n and the 

subscript F respectively represent for the nth time step and 

the remaining FEM sub-domain except the interface. 

Similarly, 
n

Bu  and 
n

Bp  are the displacement and the 

traction at the nth time step for the nodes on the entire 

external boundary of the BEM sub-domain. 
n

FIu , 
n

FIf , 

n

BIu
 

and 
n

BIp  are for the displacement and the force at 

the nth time step for the nodes on the common interface, 

respectively approached from the FEM sub-domain 

(denoted by the subscript FI) and BEM sub-domain 

(denoted by the subscript BI). ( )

n

FI ku , ( )

n

FI kf , ( )

n

BI ku  and 

( )

n

BI kp
 

are for the displacement and the force at the kth 

iteration (donated by the subscript in the parentheses) at the 

nth time step for the nodes on the common interface.  

Taking the computation of the displacement and the 

force at the nth time step as an example to illustrate how the 

computation in Eqs. (31) and (32) is carried out. In this 

scenario, in the BEM frame, the displacement and the 

traction before the nth time step are known, so, Bn
 is also 

known. Therefore, the coefficient matrices Hn
 and Gn in Eq. 

(31) can be obtained. In the FEM frame in Eq. (32), when 

the exponent matrix T is known, the equivalent force at the 

nodes at the (n+1)th time step on the common interface can 

be obtained by linear interpolation, based on the 

corresponding equivalent force at the nth time step. When 
n

FIf
 

and 
1n

FIf 
are known, in the duration nΔt~(n+1)Δt, 

the value of r(τ)
 
can be obtained, and the corresponding 

integration Rn can be solved.   

The proposed iterative coupling method for the (n+1)th 

time step can be described as follows: 

(1) Based on the calculated displacement and force at 

the end of the nth time step, i.e., 
n

Fu , 
n

FIu , 
n

Bu , 
n

BIu , 

n

Ff , 
n

FIf , 
n

Bp  and 
n

BIp  are known, 

(2) According to Eq. (32), and supposing 
1

(0)

n n

FI FIf f  , 

all the nodal displacements 
1

(0)

n

Fu 

 
and

 

1

(0)

n

FIu 

 
can be 

calculated. 

(3) By using the displacement converting matrix Eq. 

(16), 
1

(0)

n

BIu 
 can be obtained.  

(4) Combining the boundary condition 
1n

Bp 
, 

1

(0)

n

BIp 

 
and 

1

(0)

n

Bu 

 
can be calculated according to the 

governing equation for BEM in Eq. (31)  

(5) 
1

(1)

n

FIf 

 
is obtained, based on 

1

(0)

n

BIp 

 
and the force 

converting matrix Eq. (14). 

(6) Checking if 
1

( )

n

FI kf 
and

 

1

( 1)

n

FI kf 

 satisfy the 

convergence condition 
1 1 1

( 1) ( ) ( 1)|| || / || ||n n n

FI k FI k FI kf f f   

    or not, where ε is 

the given tolerance. If the convergence is satisfied, treating 
1

( 1)

n

FI kf 

  
as the real nodal equivalent force at the common 

interface approached from FEM sub-domain, go back to the 

loop from step (2)-(5) to solve the problem, finalizing the 

computation for (n+1)th time step. If convergence has not 

been achieved, go to step (7). 

(7) Set 
1 1 1

( 1) ( ) ( 1)(1 )n n n

FI k FI k FI kf f f   

    , where
 

  is the relaxation parameter, and go to the loop from 

steps (2)-(6), until two results are closed enough. Then the 

computation goes to the next time step. 

It is noted that the key is step (1), that is the initial 

conditions of displacement and the force for the 

computation for the (n+1)th time step. Further back to n=0, 

the initial conditions are given, i.e., 
0

Fu , 
0

Bu , 
0

Ff  and 

0

Bp
 

are known, and generally the initial conditions on the 

common interface 
0

FIu  and 
0

BIu
 

are also known. The 

equivalent nodal force on the interface approached from 

FEM sub-domain and the nodal traction on the interface 

from BEM sub-domain are more complicated. In the case 

where the common interface is initially stressed, the 

equivalent nodal force and the nodal traction are unknown. 

Nevertheless, the trial initial equivalent nodal force and the 

traction can be given 0.  

 

 

4. Numerical examples 
 

In order to verify the proposed decomposition coupling 

formulation of the precise integration FEM and TD-BEM, 

besides the classical numerical example of the cantilever 

bar under Heaviside-type load is chosen as the verification 

example, like in literatures (Israil and Banerjee 1990, 

Mansur et al. 1998, Yu et al. 2001, Carrer and Mansur 

2015, Lei et al. 2018), the cantilever bar under harmonic 

load is additionally incorporated in the verification part, 

where the analytical solution is deliberately derived. 

 

4.1 Statement of the problem 
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Fig. 5 Geometry of a rod and distribution of the load 

 

 
(a) Heaviside-type load 

 
(b) Harmonic load 

Fig. 6 The external loads 

 

 

As shown in Fig. 5, the left end of the rod is fixed, while 

the right end is free. The geometries of the rod are: 

length=l=1 m, width b=0.1 m and thickness h=0.1 m. The 

load is normally imposed at the free end on the right along 

x-axis. The motion state of the rod is described by the 

horizontal displacement u. Two loads are independently 

applied to specify two numerical examples, one for a 

Heaviside-type force the other one for a harmonic load, as 

shown in Fig. 6(a) and (b) respectively.  

In the verification example, the material parameters of 

the rod are: the elastic modulus E=2000 Pa and the mass 

density ρ=2000 kg/m3. So, the velocity of the P wave is 

calculated as, C=1 m/s. The external pressure P (or the 

wave amplitude) is p=1000 Mpa, and circular frequency of 

the harmonic wave is ω=π.  

 

4.2 The analytical solution 
 

The axial displacement of the cantilever bar can be 

expressed by one dimensional wave equation, as 

2 2
2

2 2

u u
c

t x

 


 
 (33) 

where the wave velocity is /Ec  , and the 

corresponding initial condition is as follows 

0 0| | 0t t tu u  
 

(34) 

The corresponding boundary condition is 

0| 0

| /

x

x x l

u

u p E









 (35) 

The analytical solution of the axial displacement of the 

cantilever bar (Eringen and Suhubi 1975) is 

2 2
1

( 1) 8 (2 1) (2 1)
cos sin

(2 1) 2 2

n

n

p pl n c n
u x t x

E n E l l

 







  
 


  (36) 

According to Fourier series, a periodic load is 

composited by infinite harmonic loads with different 

frequencies. In the two numerical examples in current 

research, one for the Heaviside-type load F=p and the other 

for the harmonic load F=pcos(ωt), if the circular frequency 

ω approaches 0, one has F=p. To the authors’ best 

knowledge, the analytical solution of the axial displacement 

of the cantilever bar under harmonic load is not available, 

which is supposed to derive in current research. By 

considering the relationship between these two loads, it is 

obvious that the example of the Heaviside-type load is a 

special example of the harmonic load. While the axial 

displacement of the cantilever bar under the Heaviside-type 

load is given, it can be used to validate the proposed 

analytical solution under the condition, the circular 

frequency ω approaching 0. 

By introducing the notation 

cos( )
/

p t
v u Fx E u x

E


    , the wave equation 

Eq. (33) is written, as 

2 2
2

2 2
( , )

v v
c f x t

t x

 
 

 
 (37) 

The initial condition Eq. (34) is expressed, as 

where 

2 cos( )
( , )

p t
f x t x

E

 
 . 

0 0

0 0

| |

| | 0

t t

t t t t

p p
v u x x

E E

v u

 

 


   


  

 

(38) 

The boundary condition Eq. (35) is expressed, as 

0 0| | 0

cos( )
| | 0

x x

x x l x x l

v u

p t
v u

E



 

 

 



  


 (39) 

Supposing v(x,t)=w1(x,t)+w2(x,t), the initial equation Eq. 

(37) is changed into the follows, as 

2 2
21 1

2 2

1
1

1
1

(0, ) 0, ( , ) 0

( ,0) , ( ,0) 0

w w
c

t x

w
w t l t

x

wp
w x x x

E t

 


 



 




   

 (40) 

 

    

 

     

 

 

 

x

y

( )F t
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2 2
22 2

2 2

2
2

2
2

( , )

(0, ) 0, ( , ) 0

( ,0) 0, ( ,0) 0

w w
c f x t

t x

w
w t l t

x

w
w x x

t

 
 

 



 




  

 (41) 

Eq. (40) is a homogeneous partial differential equation, 

one can obtain the follows 

   1 2
1

2
( 1) cos sinn

n

p
w kct kx

k El





   (42) 

where 
2 1

2

n
k

l



 .

 
For the convenience in expression, replacing w2 with, 

and supposing w=wnsin(kx), after that, by solving Eq. (41), 

one has 

'' 2 2

1 1

2 2

1 1

( )sin( ) ( ) ( )sin( ) ( , )

( ) ( )sin( ) ( )sin( )

n n

n n

n n

n n

w t kx k c w t kx f x t

                       k c w t kx f t kx

 

 

 

 

  

  

 

 
 (43) 

In Eq. (43), by considering 

1

( , ) ( )sin( )n

n

f x t f t kx




 , 

one has 

21

20

2 2 cos( )
( ) ( , )sin( ) ( 1)

nl

n

p t
f t f x t kx dx

l k El

 

  
 

(44) 

By simplifying Eq. (43), one has 

'' 2 2 ( )n n nw c k w f t   (45) 

The corresponding initial condition is expressed, as 

'

(0) 0

(0) 0

n

n

w

w





 (46) 

Fourier transformation is performed to Eq. (45), one has 

'' 2 ' 2( ) ( ) (0) (0) ( )

( ) ( )

( ) ( )

n n n n n

n n

n n

w t p w p pw w p w p

w t w p

f t F p

    



 

 (47) 

Putting Eq. (47) into Eq. (45), one has 

2 2 2( ) ( ) ( )n n np w p c k w p F p   (48) 

By solving Eq. (48), one can obtain the following 

2 2 2

1
( ) ( )n nw p F p

p c k



 (49) 

According to Fourier transformation, one has 

2 2 2

1 1
sin( )kct

p c k kc



 (50) 

Eq. (49) can be changed into the following equation by 

means of Fourier transformation, as 

 
0

1 1
( ) sin ( ) ( )sin[ ( )]

t

n n nw t kct f t f kc t d
kc kc

       (51) 

where   is the notation for convolution. 

Putting Eq. (44) into Eq. (51), the following equation is 

obtained, as 

2
1

3 0
1

2
( 1) cos( )sin[ ( )]

t
n

n

p
w kc t d

k Elc


  






     (52) 

Therefore, the analytical solution to the axial 

displacement of the cantilever bar under the harmonic load 

is expressed, as 

2
1

2
1

3 0
1

      

cos( ) 2
( 1) cos( )sin( )

2
( 1   ) cos( )sin[ ( )]

n

n

t
n

n

p t p
u x kct kx

E k El

p
kc t d

k Elc




  










  

  



 

 

(53) 

The integral term in Eq. (53) can be expressed by the 

following expressions 

 

0

2 2 2

sin( )
,                      =-  

2

sin( )
cos( )sin[ ( )]                         =  and 0

2

cos( ) cos( )
 for other other values

     

t

t t
ck

t t
kc t d ck

ck kct t

k c





    











  

 




 ，

，

 (54) 

When ω=0, it is found that Eq. (53) is the same as Eq. 

(36), that is the derived analytical solution to the axial 

displacement of the cantilever bar under harmonic load at 

special condition of ω=0 is the same as that under the 

Heaviside-type load. It validates from a certain viewpoint 

that the derivation in current research is correct.  
 

4.3 Numerical treatment 
 

It has been widely recognized that the balance among 

the mesh size in FEM domain and the length of the 

boundary element in TD-BEM domain, the modeling 

accuracy, the compute time and stability is very important 

in both FEM and TD-BEM modeling. It has been found that 

the proper combined term mesh ratio lr of mesh size over 

wavelength in domain methods (such as FEM or DEM) and 

the dimensionless parameter β (β=cdΔt/l), where l is the 

element length) in TD-BEM method could guarantee an 

acceptable balance (Kuhlmeyer and Lysmer 1973, Cai 

2001, Carrer and Telles 1992, Carrer and Mansur 1999, 

Carrer et al. 2012, Lei et al. 2015, 2018). In the numerical 

modeling in this paper, references are made to those 

literatures to adopt the proper mesh ratio lr in FEM domain 

and the value of β in TD-BEM domain to guarantee the 

long term stability and accuracy. 

The domain of the cantilever bar is divided into two 

sub-domains. The sub-domain close to the fixed end is 

discretized with finite elements by employing plane four-

node elements, while the free end sub-domain is discretized 

with boundary elements by employing the linear 1/4 

symmetrical non-conforming boundary elements with 2 

nodes. The common interface is at the middle of the bar.  
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Fig. 7 Discretization of the cantilever bar 

 

 

Fig. 8 Comparison between the results in terms of the axial 

displacement from the proposed coupled formulation and 

the analytical solution for the case of Heaviside-type load 

 

 

The FEM sub-domain is discretized into 40 finite elements 

with 63 nodes, while the BEM sub-domain is discretized 

into 24 boundary elements with 48 nodes, as shown in Fig. 

7. 

The FEM and BEM sub-domains are independently 

numbered. In the FEM sub-domain, the nodes and the finite 

elements are numbered in the sequence of from bottom to 

top and from left to right. In the BEM sub-domain, the 

boundary elements and nodes are numbered anti clockwise. 

 

4.4 Comparison between numerical and analytical 
results 
 

Two representative nodes, the 21st boundary element 

node (1, -0.0375) at the free end and the 62nd finite element 

node (0.5, 0) at the middle of the bar, are chosen for the 

comparison. Fig. 8 shows the time histories from the 

coupled formulation of the axial displacements of the two 

chosen FEM and BEM nodes for the case of the Heaviside-

type load, and Fig. 9 shows those for the case of the 

harmonic load. For the comparison purpose, the analytical 

results from Eq. (36) for the two chosen nodes are included 

in Fig. 8, and those from Eq. (53) are included in Fig. 9. In 

the two figures, the sparse dots stand for the results from 

the coupled formulation, while the continuous lines stand 

for those from analytical solutions.  

From Figs. 8-9, it can be seen that the results from the 

coupling formulation of precise integration FEM and BEM 

well agree with those from the analytical solutions, for 

different points under different loads in a long term. It 

indicates that the proposed force and displacement 

converting matrices are correct, and it also indicates that the 

proposed coupling formulation of precise integration FEM 

and BEM is correct, accurate and consistent.  

 

 

5. Conclusions  
 

The main findings can be summarized as follows: 

 The iterative coupling formulation of the precise 

integration FEM and TD-BEM is proposed for dynamic 

 

Fig. 9 Comparison between the results in terms of the axial 

displacement from the proposed coupled formulation and 

the analytical solution for the case of harmonic load 

 

 

problems. The coupling formulation is verified to be 

correct by a cantilever bar under Heaviside-type and 

harmonic transient loads, with good modeling accuracy 

and consistence. 

 The force and displacement converting matrices are 

proposed to transfer the nodal information on different 

positions between FEM and BEM sub-domains. It is not 

required the coincident positions for the FEM and BEM 

nodes on the common interface between FEM and BEM 

sub-domains. Therefore, the coupling formulation is 

versatile and easily manipulated. 

 Based on the analytical expression of the equation of 

motion in time and the discretization in space by finite 

elements, the precise integration FEM formulation is a 

semi-analytical method, with good modeling accuracy 

comparing with pure numerical solution. Moreover, in 

the proposed coupling formulation of the precise 

integration FEM and TD-BEM, the finite difference 

treatment to the time differential terms in the original 

FEM governing equation is evaded, where the modeling 

error might be accumulated. Therefore the proposed 

coupling formulation of the precise integration FEM and 

BEM is accurate. 

 The analytical solution of a cantilever bar under 

harmonic transient load is derived. On one hand, the 

solution is used to verify the proposed coupling 

formulation of the precise integration FEM and TD-

BEM. On the other hand, the good agreement between 

the results from the proposed coupling formulation and 

the derived analytical solution indicates, to a certain 

degree, that the derivation procedure is correct.  
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