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1. Introduction 
 

Predicting the behavior of cracked structures during 

impact and crash events has increased the importance of 

fracture mechanics considerably in engineer ing 

applications. Great efforts have been made to study the 

static fracture behavior of materials in recent years. 

Although most of the studies are related to static or quasi-

static conditions the response of the cracks under dynamic 

loading is more important. Dynamic loading, are mainly 

categorized in two groups including harmonic loading and 

impact loading. Impact loads applied on the cracked 

structures lead to catastrophic failure of the system. Great 

progress has been made in the analysis of cracks in bodies 

made up of FG materials. The dynamic response of a crack 

in an FGM layer between two dissimilar half planes under 

anti-plane shear impact load was solved bay Babaei and 

Lukasiewicz (1998). They showed that the dynamic stress 

intensity factors depend on the crack length and the material 

properties. The transient dynamic stress intensity factor for 

an interface crack between two dissimilar half-infinite 

isotropic viscoelastic bodies under impact load was 

determined by Wei et al. (2000). They analyzed the 

dynamic SIF during a small time-interval and the effects of 

the viscoelastic material parameters on the dynamic SIF. 

Chen and Worswick (2000) studied the transient response of 

two cracks in a half space under anti-plane shear impact 

load. The effect of the geometry ratio and the depth of the 

crack on DSIFs were studied. Shul and Lee (2001) 

considered the dynamic response of the subsurface interface 

crack in multi-layered orthotropic half-space subjected to an 

anti-plane shear impact loading. The effects of the  
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geometric constants and material properties were discussed. 

Shul and Lee (2002) considered the dynamic response of a 

subsurface eccentric crack in a functionally graded coating 

layer on the layered half-space under an anti-plane shear 

impact loading. The non-homogeneous parameter, 

geometric constants and the material properties were 

investigated on the normalized stress intensity factor. Zhang 

et al. (2003) solved the anti-plane transient problem of a 

finite crack in an infinite FGM and explored the effects of 

the material gradients of the FGM on the transient dynamic 

SIF and their dynamic overshoot corresponding with the 

static SIF. The transient in-plane problem was derived by 

Guo et al. (2005) for a coating-substrate structure with a 

cracked functionally graded interfacial layer subjected to an 

impact load. By using the integral transform techniques, the 

boundary value problem reduced to singular integral 

equations. The influences of the material nonhomogeneity 

constant and the geometric parameters on the DSIFs were 

discussed. Chen (2006) investigated the dynamic response 

of an electrically impermeable mode III crack in a 

transversely isotropic piezoelectric material subjected to the 

pure electric load. The stress intensity factor, the 

mechanical energy release rate and the total energy release 

rate were derived and expressed as a function of time for a 

given applied electric load. Yongdong et al. (2006) studied 

the anti-plane transient analysis for two functionally 

gradient  hal f -planes wi th a  weak/ infini tesimal -

discontinuous interface. The effects of the non-homogeneity 

parameters and the types of discontinuity were studied on 

the SIF mode-III. A periodic array of cracks in an infinite 

FGM under transient mechanical loading was investigated 

by Wang and Mai (2006). The effect of the material non-

homogeneity on the crack tip intensity factors  was 

discussed. Li et al. (2008) considered the dynamic SIF of 

two collinear mode-III cracks perpendicular to and on the 

two sides of a bi-FGM weak-discontinuous interface  
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Fig. 1 Schematic view of the medium with screw 

dislocation 

 

 

through studying the geometrical and physical parameters. 

Itou (2007) investigated the transient dynamic stress 

intensity factors around two rectangular cracks in a non-

homogeneous interfacial layer sandwiched between two 

dissimilar elastic half-spaces. By using the Laplace and 

Fourier transforms, the problem reduced to the solution of a 

pair of dual integral equations. Also, a homogeneous linear 

elastic body containing multiple collinear cracks under anti-

plane dynamic load was considered by Wu and Chen 

(2011). The dynamic stress intensity factor associated with 

the crack tips was calculated by a numerical inverse 

Laplace scheme. Vafa et al. (2015) used the Volterra-type 

screw dislocation technique and the Stehfest inversion 

method to simulate the dynamic response of the FG layers 

weakened by multiple cracks parallel to the boundary under 

anti-plane shear impact load. 

According to the reviewed literature, there is not a 

promising investigation regarding the transient response of 

the several cracks in the interface of two FG layers. In this 

study, the mode-III fracture problem of multiple interface 

cracks between two FG layers under mechanical impacts is 

analyzed. The energy dissipation in the medium is showed 

by viscous damping. Using the distributed dislocation and 

integral transform techniques in conjunction with the 

Stehfest inversion method, the integral equations are 

derived in the form of Cauchy singular types, and are 

solved numerically for the dislocation density on the cracks 

faces. These solutions are employed to calculate the 

dynamic stress intensity factors for multiple interfacial 

cracks. Finally, the effects of the material properties, 

viscous damping, cracks length and cracks interaction on 

the dynamic stress intensity factors of the cracks are studied 

using different examples to demonstrate the advantage of 

this method. 
 

 

2. Solution of dislocation  
 

First, we consider two functionally graded layers, where 

the energy dissipation in the medium is modeled by viscous 

damping. The subscripts 1 and 2 correspond to the lower 

and upper FGM layers with thickness h1 and h2, 

respectively (Fig. 1). The single dislocation is situated at the 

origin of Cartesian coordinates along the interface of two 

layers. 

The anti-plane displacement is assumed independent of 

z, as follows 

),,(,0,0 tyxwwvu 
 (1) 

where [u, v, w] denote the components of the displacement 

along x, y and z axis, respectively. The constitutive 

equations governing the anti-plane deformation of the FGM 

layers are given by 
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where τzx, τzy are the anti-plane stress components and 

Gzx(y), Gzy(y) are the shear modules of elasticity of the 

FGM, respectively. In this case, the governing equations 

with structural energy dissipation, is written as 
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where ρ(y) and γ(y) are the mass density and the viscous 

damping coefficient per unit volume of the FGM, 

respectively. Substituting Eqs. (2) into Eq. (3) leads to 
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It is supposed that the material properties of FGM layers 

change exponentially along the y-axis. To make the analysis 

tractable, we use  
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(5) 

where γ0 is constant and [Gzx0, Gzy0, ρ0] are material 

properties at y=0. Also, δi, i=1,2 is the nonhomogeneity 

parameter of the FGM. By imposing Eq. (5) into Eq. (4), 

one may conclude that, 
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where 
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The conditions representing the screw dislocation and 

the traction-free conditions on the outer boundary of the 

layers are expressed as 
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(8) 

where bmz(t) stands for the dislocation Burgers vector and 

H(.) is the Heaviside step function. Imposing the Laplace 

and complex Fourier transforms to Eq. (6) by assuming that 

the FGM layers are initially at rest, one may obtain the 

ordinary differential equations as follows 
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where 
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(10) 

The general solutions of Eq. (9) for each layer, is 

derived as 
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The unknown coefficients in Eq. (11) are determined by 

applying the boundary conditions (8). The transformed out-

of-plane displacement w1(x, y, t) in the Laplace and Fourier 

domain introduced as 
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where  

mssck  222
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By using the inverse complex Fourier transforms, Eqs. 

(12) may be written as 
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(14) 

The component of the stress in the Laplace domain is 

obtained from the constitutive equations and Eq. (14) as 

follows 
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(15) 

In order to clearly describe the singular behavior of the 

stress component, the asymptotic behavior of the integrands 

in Eq. (15) must be considered. Hence, Eq. (15) may be 

recast to more suitable forms as below 
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where  
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Ignoring the details of the derivations, the stress 

component is obtained as Cauchy singularity at the 

dislocation position, which is a well-known characteristic of 

the stress fields caused by Volterra-type dislocations. 
 

 

3. Two FGM layers weakened by multiple interface 
cracks 

In this section, the fundamental concept of the 

distributed dislocation technique and the calculation of the 

numerical inversion Laplace transform are introduced. The 

distributed dislocation technique has been used by several 

investigators for the analyses of cracked bodies under 

mechanical loading (Weertman 2015). The dislocation 

method in previous section is extended to deal with two 

FGM layers weakened by N interface cracks. The 

configuration of the cracks is expressed in a parametric 

form as 
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where (xi, yi) are the coordinates of the center of the cracks 

and li is the half-length of the cracks. By employing the 

superposition principle, the components of the stress on a 

given crack surface are obtained. The system of singular 

integral equations on the face of i-th crack is written in the 

following form employed in the numerical procedure. 
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where Bmzj(p, s) is the Laplace transform of the dislocation 

density on the face of j-th crack. Form Eq. (16), the kernel 

of integral Eq. (19) is given by 
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(20) 

The crack opening displacement across the j-th crack is 

represented using the definition of dislocation as 
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The displacement fields must be a single-valued 

parameter; and so, the following closure conditions for 

embedded cracks is employed 
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The numerical inversion of Laplace transform is carried 

out via Stehfest’s method (2007). We introduce a time-

dependent function f(t) as 
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where, F(.) is the Laplace transform of f(t), M is a chosen 

even number, and the coefficients 
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and [.] signifies the integral part of the quantity. From Eq. 

(23), the calculation of f(t) at a fixed time t depends on the 

computation of F(s) at M points 
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Fig. 3 The variations of the normalized stress intensity 

factor of an interface crack versus t/t0 

 

 

Fig. 4 The variations of the normalized stress intensity 

factor of an interface crack versus t/t0 

 

 

Applying the procedure to Eqs. (19) and (22) results in 
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The stress fields at a tip of an embedded crack behave 

like 
r1

, where r is the distance from the crack tip. 

Consequently, the dislocation densities are taken as 

 Njt
p

n
t

nl
pG

n
t

nl
pB

mzj

mzj ,...,2,1,,11,
1

)
2

,(

)
2

,(
2






 

(26) 

Substituting Eq. (26) into Eq. (25) and applying the 

numerical technique expanded by Erdogan et al. (1973) for 

the solution of singular integral equations, the resultant 

equations are solved. By using Eq. (23), the inverse Laplace 

transforms of the solution yields 
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The stress intensity factors for the embedded cracks in 

FG materials is represented by 
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(28) 

where L and R designate the left and right tips of the crack, 

respectively. Eqs. (27) are substituted into (28) to determine 

the stress intensity factors. The details of the derivation of 

stress intensity factors in Eq. (28) were presented by 

Bagheri et al. (2015). 

 

Fig. 5 The variations of the normalized stress intensity 

factor of an interface crack versus t/t0 

 

 

Fig. 6 The variations of the normalized stress intensity 

factor for two interface cracks versus t/t0 

 

 

Fig. 7 The variations of the normalized stress intensity 

factor for three equal length cracks versus t/t0 

 

 

4. Numerical solutions 
 

The preceding formulation provides the analysis of 

several cracks situated at the interface of two FG layers 

subjected to the anti-plane loading. The thickness of the 

layers are assumed as h1=h2=0.05(m), and the number of 

points for the inversion of Laplace transform by employing 

Stehfest’s method is M=10, and the deviser of the 

normalizing time is t0=Lc, where L is the half-crack length 

and 1/c is the shear wave velocity at the interface. 

To display the validity of the current paper, the cracks 

with length 2l under uniform shear traction τ0 are 

considered. The quantity of interest in the fracture problems 

is the dimensionless stress intensity factors (SIF), i.e., 

KM/K0. In this study, the dynamic SIFs are normalized by 

lK M 00 
 for constant loading. 

Figs. 2 and 3 display the effect of non-homogenous 

parameters and damping coefficient on the non-dimensional 

SIFs versus t/t0. These examples show the effect of 

dimensionless time on the dynamic stress intensity factor in 

a homogenous layer and also in the FG layer. It is 
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interesting to note that the normalized stress intensity factor 

KM/K0 increases quickly at first with time to reach its 

maximum value, and then gets approximately stable. 

Finally, the dynamic stress intensity factor approaches the 

corresponding static value. 

In comparison with FG layers, the SIF peak of the 

homogenous layer occurs in shorter time. The SIFs 

attenuate as the damping effects enhance. The SIF of a 

crack in homogenous layer is in good agreement with that 

presented by Vafa et al. (2015) for a crack in strip. As 

shown in Figs. 2 and 3, by growing the crack length, the 

dynamic stress intensity factor increases too. 

Furthermore, a central crack with L/h1=L/h2=0.2 is 

considered in an interface of two FG layers with δ1=5 under 

uniform traction τ0H(t). The effects of the damping 

coefficients and the non-homogeneous parameters of the 

upper FG layer on the dynamic stress intensity factors are 

plotted in Fig. 4. According to the results, by increasing the 

damping coefficients and FG constant parameters of the 

upper layer, the stress intensity factors decrease.  

The effect of the dimensionless time on the behavior of 

the crack tips is plotted in Fig. 5 for three thickness ratios 

h2/h1. The material properties of layers are δ1=5 and δ2=10. 

The crack with length 2L/h1=1.0 is situated at the interface 

of the layers. The parameter KM/K0M decreases significantly 

with increasing of the thickness ratio h2/h1. One may 

conclude that for these patterns, the parameter h2/h1 has a 

great influence on the dynamic stress intensity factor. 

In Fig. 6, two FGM layer weakened by two interface 

cracks is considered under anti-plane uniform traction 

τ0H(t). The effect of the damping coefficients on the 

dynamic stress intensity factors is illustrated (Fig. 6). The 

peak value of the normalized SIFs increases with 

decreasing of the damping coefficients. 

In the last example, three equal-length cracks with 

length 2L/h1=2L/h2=1.0 are studied. The variations of the 

dynamic stress intensity factors of the adjacent crack tips 

(i.e., L2 and R2) are too large, whereas for other crack tips 

(i.e., L1 and R3) are not significant. 

 

 

5. Conclusions 
 

Two FGM layers weakened by several interface cracks 
are studied under anti-plane shear impact loading. Using the 
Fourier and Laplace transform methods, the associated 
boundary value problem is reduced to a system of singular 
integral equations for the Volterra dislocation density. The 
results are verified by considering a single crack in a strip. 
The examples of the multiple interfacial cracks show that 
the dynamic stress intensity factor at the crack tips increases 
by growing the crack length, decreases by growing the 
damping coefficient, and decreases by increasing the 
thickness ratio. The results are in excellent agreement with 
the analytical solutions obtained in Vafa et al. (2015). 
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