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1. Introduction 
 

Concrete can be nano-engineered by incorporating 

nano-sized building blocks or objects (e.g., nanoparticles 

and nanotubes) to control material behaviour and add novel 

properties, or by grafting molecules onto cement particles, 

cement phases, aggregates, and additives (including nano-

sized additives) to provide surface functionality, which can 

be adjusted to promote specific interfacial interactions. The 

nanoparticle is the elementary building block in 

nanotechnology and is comprised of up to thousands of 

atoms combined into a cluster of 1-100 nm.  

Mechanical analysis of nanostructures has been reported 

by many researchers (Zemri 2015, Larbi Chaht 2015, 

Belkorissat 2015, Ahouel 2016, Bounouara 2016). For the 

nanocomposite structures, Wuite and Adali (2005) 

performed a stress-strain analysis of reinforced carbon 

nanotubes. They concluded that the presence of carbon 

nanotubes as a booster phase can increase the stability and 

rigidity of the system. Matsuna (2007) examined the 

stability of composite cylindrical shells with the help of 

third-order shear theory. Formica (2010) studied the 

vibrations of reinforced carbon nanotubes sheets and used 

the Mori-Tanaka model to match the composite-equivalent 

properties. Liew et al.  (2014) analyzed buckling 

nanocomposite layers. In this study, the mixing rule was 

used to obtain the equivalent properties of nanocomposites. 

A non-mesh method was also used to analyze and calculate 

the buckling load of a nanosized composite structure. In 

another similar work, Lei et al. (2014) analyzed the 

dynamic stability of panels reinforced with carbon 

nanotubes. They used the Mori-Tanaka model to simulate  
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nanocomposite properties and obtained the system 

instability with the help of Ritz’s method. The buckling 

analysis of polymer plates reinforced with carbon nanotubes 

was carried out by Kolahchi et al. (2013). In this work, the 

mixing rule was used to compute the equivalent properties 

of the composite. They used the square difference method 

to obtain the buckling load of the structure. In another work 

by Kolahchi et al. (2016), the dynamic buckling of 

reinforced carbon nanotube plates was investigated in a 

functionalized form. The plate properties were considered 

as temperature dependent and the elastic environment 

surrounding the structure was simulated using the 

orthotropic Pasternak model. 

In the field of mathematical modeling of concrete 

structures, very limited work has been done. Le et al. 

(2016) presented the experiment results for three large-scale 

concrete composite beams with a newly puzzle shape of 

crestbond. The RC specimens were produced by Saribiyik 

and Caglar (2016) taking into consideration the RC beams 

with insufficient shear and tensile reinforcement having 

been manufactured with the use of concrete with low 

strength. As a buckling example, reinforced concrete 

columns reinforced with carbon nanoparticles polymerized 

by Zamanian et al. (2017) along with Safari Bilouei et al. 

(2017). Jafarian Arani et al. (2016) studied buckling of 

reinforced concrete columns with carbon nanotubes, 

concluding that an increase in the volume of nanotubes 

resulted in increased buckling load. Analysis of the stresses 

of concrete pipes reinforced with iron oxide nanoparticles 

reinforced by iron oxide nanoparticles by Heidarzadeh et al. 

(2017). Arbabi et al. (2017) analyzed the buckling of 

reinforced concrete beams reinforced with zinc oxide 

nanoparticles under the electric field. 

In this paper, vibration of concrete beam reinforced by 

SiO2 nanoparticles is presented. The Euler-Bernoulli beam 

model is used for mathematical modeling. The structure is 

located in soil medium which is simulated by spring 
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Fig. 1 Schematic of concrete beam reinforced with 

agglomerated SiO2 nanoparticles 

 

 

element. Based on exacts solution, the frequency of the 

structure is calculated. The effects of different parameters 

such as volume percent of SiO2 nanoparticles, SiO2 

agglomeration, geometrical parameters and soil foundation 

on the frequency of concrete beam are shown. 
 

 

2. Mathematical modelling 
 

In Fig. 1, a concrete beam reinforced by agglomerated 

SiO2 nanoparticles is shown. The structure is located in soil 

medium with spring elements.  

There are many new theories for modeling of different 

structures. Some of the new theories have been used by 

Tounsi and co-authors (Bessaim 2013, Bouderba 2013, 

BelAbed 2014, Ait Amar Meziane 2014, Zidi 2014, Hamidi 

2015, Bourada 2015, Bousahla et al. 2016a, b, Beldjelili 

2016, Boukhari 2016, Draiche 2016, Bellifa 2015, Attia 

2015, Mahi 2015, Ait Yahia 2015, Bennoun 2016, El-Haina 

2017, Menasria 2017, Chikh 2017). Based on the Euler-

Bernoulli beam model, the displacement field of structure 

can be written as (Brush and Almorth 1975)  
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(1)  

where U(x) and W(x) are displacement components in the 

mid-plane. The strain-displacement relation can be written 

as 
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Based on Hook’s low, the stress-strain equation is 

(3)  ,11 xxx C  
 

where C11 is elastic constant which can be calculated by 

Mori-Tanaka model as 
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where the effective bulk modulus (K) and effective shear 

modulus (G) may be expressed as 
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(11) 

where two parameters ξ and ζ describe the agglomeration of 

nanoparticles and Cr is relates to the SiO2 volume fraction. 

In addition, χr, βr, δr, ηr may be calculated as 
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where kr, lr, nr, pr, mr are the Hills elastic modulus for the 

nanoparticles (Mori and Tanaka 1973); Km and Gm are the 
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bulk and shear moduli of the matrix which can be written as 
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where Em and υm are Young’s modulus and the Poisson’s 

ratio of concrete beam, respectively. Furthermore, β, α can 

be obtained from 
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The strain energy of the nanocomposite concrete beam 

can be expressed as 
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Submitting Eqs. (2) and (3) into (21) yields 
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where the resultant force (Nx) and bending moment Mx, are 

defined as 
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The kinetic energy of the structure can be written as 

(25)  
2 2 2

1 2 3
0

( ) ( ) ( ) ,
2

L

A
K u u u dV


     

 

The external work due to the soil foundation can be 

expressed as  
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where kw is spring constant of soil foundation. Using 

Hamilton’s principle as follows 
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The motion equations of the structure can be derived as 

follows 

 

Fig. 2 The effect of nanoparticles agglomeration on the 

frequency of the concrete beam 

 

 

Fig. 3 The effect of mode numbers on the frequency of the 

concrete beam 
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3. Exact solution 
 

Considering the simply supported boundary condition, 

we have 
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where m is the mode number and ω is the frequency of the 

structure. Using above relations, the motion equations can 

be written as 
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Fig. 4 The effect of length to thickness ratio on the 

frequency of the concrete beam 

 

 

Fig. 5 The effect of length on the frequency of the concrete 

beam 

 

 

Where [d]=[u0w0]
T
; [K] is stiffness matrix and [M] is the 

mass matrix. 

 

 

4. Numerical results 
 

In this section, a concrete beam with Yong modulus of 

Em=20 Gpa and Poison’s ratio of vm=0.3 is considered 

which has length to thickness ration of L/h=10. 

For showing the convergence of Fig. 2 shows the 

frequency of the concrete beam versus the SiO2 

nanoparticles volume percent for two cases of with and 

without agglomeration effects. It can be seen that with 

considering agglomeration of nanoparticles, the frequency 

decreases due to increase in the stiffness of the structure. In 

addition, with increasing the SiO2 nanoparticles volume 

percent, the frequency is enhanced since the stiffness of the 

structure is improved.  

Fig. 3 illustrates the influence of mode numbers on the 

frequency versus the volume percent of SiO2 nanoparticles. 

As can be seen, with increasing the mode numbers, the 

frequency is increased. 

The effects of length to thickness ratio and length of the 

concrete beam on the frequency versus the volume percent 

of SiO2 nanoparticles are depicted in Figs. 4 and 5, 

respectively. It can be found that with increasing the length 

and length to thickness ratio of the concrete beam, the  

 

Fig. 5 The effect of soil medium on the frequency of the 

concrete beam  

 

 

frequency is decreased. It is since with increasing the length 

and length to thickness ratio of the concrete beam, the 

stiffness decreases.  

The effect of soil foundation on the frequency of the 

concrete beam versus the volume percent of SiO2 

nanoparticles is sown in Fig. 6. It can be seen that with 

considering soil medium, the frequency increases due to 

increase in the stiffness of the structure.  

 

 

6. Conclusions 
 

In this paper, vibration analysis of concrete beam 

reinforced by SiO2 nanoparticles was presented. The 

structure was simulated by Euler-Bernoulli beam model and 

the effect of nanoparticles agglomeration was considered by 

Mori-Tanaka model. Using exact solution, the frequency of 

the structure was obtained and the effects of SiO2 

nanoparticles volume percent and agglomeration, 

geometrical parameters of the beam, soil medium and mode 

numbers were assumed. Results show that with considering 

agglomeration of nanoparticles, the frequency decreases 

due to increase in the stiffness of the structure. In addition, 

with increasing the SiO2 nanoparticles volume percent, the 

frequency was enhanced since the stiffness of the structure 

was improved. It can be found that with increasing the 

length and length to thickness ratio of the concrete beam, 

the frequency was decreased. Furthermore, with 

considering soil medium, the frequency increases due to 

increase in the stiffness of the structure. 
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