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1. Introduction 
 

The study of the dynamic interface stress field in the bi-

material elastic system consisting of the hollow cylinder 

and surrounding elastic or viscoelastic medium through 

which, as usual, underground structures are modelled and 

into which high-speed wheels move, has great significance 

not only in the theoretical sense, but also in the application 

sense. One of the main issues of systems subjected to the 

action of a moving load is to determine the velocity of this 

load, under a certain value of which, resonance type 

behavior of the system takes place and where the velocity 

which corresponds to this resonance is called the critical 

velocity. Another issue of the aforementioned system is to 

determine the stress-strain state on the interface surface 

between its constituents and the rules of attenuation of the 

perturbations of the stresses and displacements caused by 

the moving load with the distance from the point at which 

this load acts and with time. Investigations of these issues 

for the aforementioned bi-material system under action of a 

point located with respect to the cylinder’s axis and which  
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is non-axisymmetric in the circumferential direction of the 

distributed moving with constant velocity forces in the 

interior of the cylinder, are the subject of the present paper. 

For determination of the significance and place of the 

present investigations among others a brief review of 

corresponding investigations regarding layered elastic 

systems is considered below.  

Apparently, the first attempt in this field was made in 

the paper by Achenbach, Keshava and Hermann (1967) in 

which the dynamics of the moving load acting on the 

“plate+half-space” system is investigated. The motion of 

the plate is described within the scope of the Timoshenko 

plate theory, however, the motion of the half-space is 

described by employing the exact equations of 

elastodynamics and the plane strain state is considered.   

The investigations started in the paper by Achenbach, 

Keshava and Herman (1967) are developed in the papers by 

Dieterman and Metrikine (1997) and by Metrikine and 

Vrouwenvelder (2000) and others listed therein. Note that 

the paper by Dieterman and Metrikine (1997) studies the 

dynamics of the point-located time-harmonic varying 

moving load which acts on the infinite slab resting on a 

rigid foundation, and the 3D stress-strain state is 

considered. However, in the paper Metrikine and 

Vrouwenvelder (2000) it is assumed that the moving load 

acts on the beam which is embedded in the slab which also 

rests on the rigid foundation and the 2D stress-strain state is 

considered. The motion of the beam is written within the 

framework of the Euler-Bernoulli beam theory. Note that in 
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these works and other similar ones, the main attention is 

focused on determination of the critical velocity and on the 

displacement distribution caused by the moving load.  

The dynamics of the moving load acting on the layered 

system is also studied in the papers by Akbarov et al. 

(2007), Akbarov and Ilhan (2008), Akbarov and Ilhan 

(2009), Dincsoy et al. (2009), Babich et al. (1986), Babich 

et al. (1988), Babich et al. 2008a, b, Akbarov and 

Salmanova (2009), Akbarov et al. (2015) and others listed 

therein, which are also discussed in the monograph by 

Akbarov (2015). Note that in these papers it is assumed that 

the existence of initial stresses in the layers and their 

motion are described by utilizing the so-called three-

dimensional linearized equations of wave propagation in 

initially stressed elastic bodies. Moreover, note that in these 

works, not only the critical velocities of the moving load, 

but also the interface stresses caused by this moving load 

have been investigated. 

The dynamic response on the moving load acting on a 

Bernoulli-Euler beam supported with poroelasticity 

subgrade material is investigated in the paper by Shi and 

Selvadurai (2016) by employing the concept of the 

equivalent stiffness of the half-space. 

The 3D steady-state dynamic response of the multi-

layered transversely isotropic half-space generated by a 

point-located moving load with constant velocity acting on 

the face plane of this half-space is investigated in the paper 

by Zhenning et al. (2016), in which it is assumed that the 

packet of layers made of hysteretic viscoelastic transversely 

isotropic materials lies on a half-space which is also made 

from a hysteretic viscoelastic transversely isotropic 

material. 

This completes the review of the investigations related 

to the plane-layered systems. Here, we do not consider a 

review of the investigations related to the action of the 

moving load on beams, plates and other types of elements 

of construction. However, we note that the corresponding 

review is made in the paper by Quyang (2011). At the same 

time, we note that the more recent investigations in this 

field are made in the papers by Sarvestan et al. (2017), 

Song et al. (2016), Sudheesh et al. (2015), Kiani et al. 

(2015) and in other ones listed therein.  

Thus, after the foregoing discussions we consider a 

review of the investigations related to the dynamics of the 

moving load acting in the interior of the cylindrical bore 

(cavity) with infinite length within the infinite 

homogeneous and cylindrically layered medium. This 

review can begin with the paper by Parnes (1969) in which 

the dynamics of a line load applied along a transverse circle 

moving with constant velocity in the axial direction along 

the interior of a circular bore in an infinite homogeneous 

elastic medium, are investigated. It is assumed that the 

velocity of the moving load is greater than the shear wave’s 

velocities in the elastic medium, i.e., the supersonic regime 

is considered and although the theoretical analyses are 

made for the 3D problem, the numerical results on the stress 

and displacements are presented only for the axisymmetric 

case, i.e., for the corresponding 2D problem.  

The paper by Parnes (1980) studies the problem 

considered in the previous paper by this author for the case 

where in the interior of the cylindrical cavity a torsional 

moving load acts. Note that in the papers by Parnes (1969), 

Parnes (1980) the question related to the critical velocity is 

not considered. Rather, the question on the determination of 

the critical velocity of the moving load acting on infinite (as 

in the papers by Parnes (1969), Parnes (1980) or semi-

infinite mediums does not appear in the cases where these 

mediums are homogeneous. Thus, the question related to 

the determination of the critical velocity relates only to the 

moving load acting on the piece-wise inhomogeneous 

bodies including the piece-wise inhomogeneous infinite (for 

instance, for the system consisting of a hollow cylinder 

surrounded with elastic medium) or semi-infinite (for 

instance, for the system consisting of a covering layer and 

half-space) bodies. What is more, the critical velocity in 

these infinite and semi-infinite bodies appears only in the 

cases where the modulus of elasticity of the covering layer 

material is greater than that of the surrounding infinite 

medium or of the stratified semi-infinite medium. In 

connection with this, it is necessary to take into 

consideration these discussions under investigations of the 

problem related to the dynamics of the moving load acting 

on the piece-wise inhomogeneous infinite cylindrically 

layered systems which are considered in the papers by 

Chonan (1981), Pozhuev (1980), Abdulkadirov (1981), 

Hasheminejad and Komeili (2009) and others listed therein.  

The dynamic response of a cylindrical shell imperfectly 

bonded to a surrounding infinite elastic continuum under 

action of axisymmetric ring pressure which moves with 

constant velocity in the axial direction along the interior of 

the shell is studied in the paper by Chonan (1981). The 

motion of the shell is described by thick shell theories and 

the motion of the surrounding elastic medium is described 

by the exact equations of linear elastodynamics. It is 

assumed that the shell and the surrounding elastic medium 

are joined together by a thin elastic bond. Numerical results 

on the critical speed of the moving load and on the radial 

displacement of the shell for the subcritical moving load are 

presented and discussed.  

The paper by Pozhuev (1980) studies the moving load 

problem for the system consisting of a thin cylindrical shell 

and surrounding transversally isotropic infinite medium. A 

thin shell theory is employed for describing the motion of 

the cylindrical shell, however, the motion of the continuum 

is described with the exact equations of motion of 

elastodynamics for transversally isotropic bodies. In this 

paper a few numerical results regarding displacements and 

a radial normal stress are presented, but there are no 

numerical results related to the critical velocity of the 

moving load. 

The critical velocity of the moving ring load acting on 

the system “hollow cylinder+surrounding elastic medium” 

is also studied in the paper by Abdulkadirov (1981). 

However, this study is made through the investigation of 

low-frequency resonance axisymmetric longitudinal waves 

propagated in this system and under “resonance waves”, the 

cases for which the relation dc/dk=0 occurs, are understood, 

where c is the wave propagation velocity and k is the 

wavenumber. The velocity of these “resonance waves” is 

taken as the critical velocity of the corresponding moving 
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load. Investigations are made by utilizing the exact 

equations of elastodynamics in the axisymmetric case and 

some numerical examples of “resonance waves” are 

presented and discussed.  

The paper by Hasheminejad and Komeili (2009) studies 

the effect of imperfect bonding on the axisymmetric 

elastodynamic response of the system consisting of an 

isotropic hollow cylinder and surrounding poroelastic soil 

due to a moving ring load. Numerical examples on the 

critical velocity of the moving load are also considered. 

The paper by Zhou et al. (2008) studies the critical 

velocity of the moving internal pressure acting in the 

cylindrical layered system with finite thickness. Two types 

of approaches are used, the first of which is based on first 

order refined sandwich shell theories, while the second 

approach is based on the exact equations of linear 

elastodynamics for orthotropic bodies with effective 

mechanical constants. Numerical results on the critical 

velocity obtained within these approaches are compared, 

from which it follows that, as can be predicted, they are 

sufficiently close to each other for the low wavenumber 

cases, however, the difference between these results 

increases with the wavenumber and becomes so great that it 

appears necessary to determine which approach is more 

accurate. However, for this determination it is necessary to 

investigate these problems by employing the exact field 

equations of elastodynamics within the scope of the 

piecewise homogeneous body model, which is also used in 

the paper by Akbarov and Mehdiyev (2017) under 

investigation of the axisymmetric time-harmonic forced 

vibration of the “hollow cylinder+surrounding elastic 

medium” system. Note that the approach based on the exact 

equations of elastodynamics within the scope of the piece-

wise homogeneous body model is also employed in the 

present paper.  

Recently in the paper by Ozisik et al. (2018) the 

problem related to the dynamics of the axisymmetric 

moving ring load acting on the interior of the cylinder 

surrounded with the elastic medium has been studied. This 

study is also made within the scope of the exact equations 

and relations of the elastodynamics and the main attention 

is focused on the influence of the imperfectness of the 

contact conditions between the constituents of the system 

on the critical velocity of the moving load. Moreover, in the 

paper by Akbarov and Mehdiyev (2018a) it is studied the 

influence of the homogeneous initial stresses appearing as a 

result of the uniaxial stretching or compression of the 

system “hollow cylinder+surrounding elastic medium” on 

the critical velocity of the moving ring load and on the 

interface stress state in this system.  
Note that the all foregoing investigations carried out 

within the scope of the exact equations and relations of the 
elastodynamics relate to the axisymmetric stress state case. 
In the paper Akbarov and Mehdiyev (2018b) it is made the 
first attempt to study the 3D non-axisymmetric problem for 
the system “hollow cylinder+surrounding elastic medium” 
under action the time-harmonic forces distributed in a 
certain part of the interior of the cylinder. As a result of this 
study, it is established that the non-axisymmetricity of the 
external time-harmonic force cause to increase of the 
absolute values of the interface stresses in the system under 

consideration with respect to those obtained in the 
corresponding axisymmetric case. It should be also 
indicated that the corresponding dynamic problems for the 
hydro-elastic system are investigated in the papers by 
Akbarov and Ismailov (2014), Akbarov and Ismailov 
(2015), Akbarov and Ismailov (2016a), Akbarov and 
Ismailov (2016b), Akbarov and Ismailov (2017), Akbarov 
and Panakhli (2015), Akbarov and Panakhli (2017) and 
others listed therein.  

Finally, we note the papers Forrest and Hunt (2006), 

Sheng, Jones and Thompson (2006), Hung et al. (2013), 

Hussein et al. (2014), Yuan et al. (2017) and others listed 

therein, in which numerical and analytical solution methods 

have been developed for studying the dynamical response 

of tunnel (modelled as a hollow elastic cylinder)+soil 

(modelled as surrounding elastic or viscoelastic medium) 

systems generated by the moving load acting on the interior 

of the tunnels. However, the focus in these investigations is 

on the displacement distribution of the soils caused by the 

moving load and the analyses related to the critical velocity 

and to the response of the interface stresses to the moving 

load are almost completely absent.  

It should be noted that the results of the study of the 

aforementioned response of the interface stresses to the 

moving load and of the study of the critical velocity of this 

load have great significance for estimation of the adhesion 

strength of the “hollow cylinder+surrounding elastic 

medium” system.  

The other aspect of related investigations is the 

modelling of the external moving load which as usual is 

modelled as an axisymmetric ring load. However, this 

model is not more realistic in many practical cases and so 

the non-axisymmetric loading model of the moving load is 

more suitable even though this model complicates 

significantly the solution procedure of the corresponding 

boundary-value problems. This is because in the non-

axisymmetric moving load case it is necessary to solve the 

corresponding 3D problem in the cylindrical coordinate 

system. However, despite the complications of the solution 

procedure, the model based on the non-axisymmetric 

moving load case allows us to answer the following:  

• whether the values of the critical speed of the moving 

load depend on the non-axisymmetricity of this load or 

whether the critical velocity determined for the 

corresponding axisymmetric moving load case occurs also 

for the non-axisymmetric moving load case; 

• what area of the interior surface of the hollow cylinder 

is more suitable in the sense of the maximum interface 

stresses for distribution of the moving load with a constant 

vertical (normal) component; 

• how the interface stress distributions depend on the 

non-axisymmetricity of the moving load and how the 

problem parameters act on these distributions etc. 

Namely, the study of the foregoing issues is the subject 

of the present paper.  

 

  

2. Formulation of the problem and governing field 
equations 
 

Consider a system consisting of a hollow circular  
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Fig. 1(a) The sketch of the considered system and (b) the 

sketch of the distribution of the non-axisymmetric normal 

forces 

 

 

cylinder with thickness h and with external radius R and of 

an infinite surrounding elastic medium, a sketch of which is 

shown in Fig. 1 and associate the cylindrical system of 

coordinates Orzθ with the axis of the cylinder. Assume that 

in the interior of the cylinder there is a point located with 

respect to the cylinder axis and that non-uniformly 

distributed in the circumferential direction moving normal 

forces act and these forces move with constant velocity V in 

the Oz axis direction Fig. 1. In the present paper, within this 

framework we attempt to investigate the non-axisymmetric 

dynamic response of the system to these moving forces. 

Below, the values related to the cylinder will be denoted 

by the upper index (2), however, the values related to the 

surrounding elastic medium will be denoted by the upper 

index (1). 

We assume that the materials of the constituents are 

homogeneous and isotropic. Now we write the 

corresponding 3D field equations and boundary and contact 

conditions. 

Equations of motion 
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Elasticity relations 
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(2) 

In Eqs. (1)-(2) a conventional notation is used. 

According to the foregoing discussions and to Fig. 1(b), 

the following boundary conditions can be written. 
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where Pα is determined from the following relation. 
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i.e., the vertical component of the summation of the 

external forces does not depend on the angle α Fig. 1(b) and 

this summation is constant. 

We assume that perfect contact conditions are satisfied, 

i.e., it is assumed that 

(2) (1)
rr rr

r R r R
 

= =
= , 

(2) (1)
r r

r R r R
  

= =
=  

(2) (1)
rz rz

r R r R
 

= =
= , 

(2) (1)
r r

r R r R
u u

= =
=  

(2) (1)

r R r R
u u 

= =
= , 

(2) (1)
z z

r R r R
u u

= =
=  

(5) 

Moreover, we assume that 
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(6) 

i.e., the subsonic regime is considered. According to 

assumption Eq. (6), it can be concluded that the following 

decay conditions must be satisfied 
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This completes the formulation of the problem. 

 

 

3. Method of solution 
 

For solution of the boundary value problem Eqs. (1)-(7), 

according to Guz (1999), we use the following 

representation 
2
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(8) 
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Here the functions Ψ(m) and X(m) are the solutions of the 

equations 
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(9) 

We introduce a moving cylindrical coordinate system 

O’r’z’θ’ which is connected with the reference cylindrical 

coordinate system Orzθ through the following relations 

'r r= , ' = , 'z z Vt= −  (10) 

Replacing the operators ∂2/∂t2 and ∂4/∂t4 with the 

operators V2/∂2/∂z’2 and V4/∂4/∂z’4, respectively, the 

foregoing equations and relations rewritten in the moving 

coordinate system, are obtained. Further, the exponential 

Fourier transform 
i '( ') 'sz

Ff f z e dz
+

−
=   with respect to 

the moving  coordinate z’ (where s is a transformation 

parameter) is applied to all the equations and relations 

rewritten with the moving coordinates. 

Below, all mathematical operations will be made with 

the use of the moving coordinates and their upper primes 

will be omitted. 

Thus, according to the symmetry and asymmetry of the 

sought values with respect to the plane z=0, their originals 

can be presented through their Fourier transforms by the 

following relations. 
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Substituting the expressions in Eq. (11) into the 

foregoing equations and the rewritten relations in the 

moving coordinate system, it is obtained the following 
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 



 
− − = 

 
 

( )( )
( ) ( )

2 2 ( )
1 1 ( ) ( ) ( )

3

( 2 )

m m
m

m m m
s s

 
  

  

+ − − + −
 +

)
( ) 2

( )2 2 2 4 4
1 ( ) ( ) ( )

( )
( ) ( ) 0

( 2 )

m
m

Fm m m
s s V s V




  


 − − + =

+ 

 

(12) 

According to the nature of the problem under 

consideration, the Fourier transform of the functions ( )m
F  

and 
( )m
F can be presented in the Fourier series form as 

follows. 

( ) ( )

1

( , , ) ( , )sin
m m

F Fn
n

r s r s n   


=

=

( ) ( ) ( )
0

1

1
( , , ) ( , ) ( , )cos

2

m m m
F FnF

n

r s r s r s n    


=

= +  

(13) 

Substituting expressions Eq. (13) into the equations in 

Eq. (12), the equations given below are obtained for the 

unknown functions ( )
( , )

m
Fn r s  and ( )

( , )
m

Fn r s . 

( )( ) ( )2
1 1( ) 0

m m
n Fn  − =

( )( )( ) ( ) ( )2 2
1 12 3( ) ( ) 0

m m m
n n Fn    − − =

2 2

1 2 2

d d

dd
n

n

r rr r
 = + −  

(14) 

where 

( ) 2
( ) 2 2
1 ( )

( ) 1
m

m

m

V
s






 
= − 

 
 

 (15) 

(m) 2
2( )  and (m) 2

2( )  in Eq. (14) are determined as 

solutions of the following equation. 

( ) ( ) 4 2 ( ) 2 ( ) 2 ( ) ( )( ) ( ) ( 2 )m m m m m ms V     − − − +


( )
( ) ( ) ( ) 2

( ) 2 ( )

( ) ( ) ( ) ( )

( )

2 2

m m m
m m

m m m m
V

  
 

   

+
+ − − + +

+ + 

( )
( ) 2

4 ( ) 2 ( )

( ) ( )
1 0

2

m
m m

m m

V
s V


 

 

 −
− − − = 

 + 

 

(16) 

Thus, according to the conditions Eqs. (6)-(7), the 

solution to the equations in Eq. (14) is found as follows. 

For the hollow cylinder 

(2) (2) (2) (2) (2)
1 1 1 1( ) ( )n nFn n nA I r B K r  = +

(2) (2) (2) (2) (2)
2 2 3 3( ) ( )n nFn n nA I r A I r  = + +

(2) (2) (2) (2)
2 2 3 3( ) ( )n nn nB K r B K r +  

(17) 

For the surrounding elastic medium 
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(1) (1) (1)
1 1( )nFn nB K r =

(1) (1) (1) (1) (1)
2 2 3 3( ) ( )n nFn n nB K r B K r  = +  

(18) 

In Eqs. (17)-(18), In(x) and Kn(x) are the modified Bessel 

functions of the n−th order of the first and second kinds, 

respectively. Moreover, in Eqs. (17)-(18), 
(1)
1nB , 

(1)
2nB , 

(1)
3nB , (2)

1nA , (2)
2nA , (2)

3nA , (2)
1nB , (2)

2nB  and 
(2)
3nB  are 

unknown constants which will be determined from the 

boundary Eq. (3) and contact Eq. (5) conditions.  

Thus, substituting expressions Eqs. (17)-(18) and Eq. 

(13) into the equations in Eq. (8) and Eq. (2), we obtain the 

following expressions for the stresses and displacements 

which enter into the boundary and contact conditions given 

in Eq. (3) and Eq. (5). 

For the surrounding elastic medium 
(1)

(1) (1)
120 13020 30(1)

( , )
( ) ( )rrF r s

B b r B b r



= + +  

(1) (1) (1)
11 12 131 2 3

1

( ) ( ) ( ) cos( )n n nn n n
n

B b r B b r B b r n


=

 + +
   

(1)
(1)

211(1)
1

( , )
( )r F

nn
n

r s
B b r





=

= +
  

(1) (1)
22 232 3( ) ( ) sin( )n nn nB b r B b r n+


 

(1)
(1) (1)

320 33020 30(1)

( , )
( ) ( )rzF r s

B b r B b r



= + +  

(1) (1) (1)
31 32 331 2 3

1

( ) ( ) ( ) cos( )n n nn n n
n

B b r B b r B b r n


=

 + +
   

(1) (1) (1)
420 43020 30( , ) ( ) ( )rFu r s B b r B b r= + +  

(1) (1) (1)
41 42 431 2 3

1

( ) ( ) ( ) cos( )n n nn n n
n

B b r B b r B b r n


=

 + +
   

(1) (1) (1) (1)
51 52 531 2 3

1

( , ) ( ) ( ) ( ) sin( )n n nF n n n
n

u r s B b r B b r B b r n 


=

 = + +
   

(1) (1) (1)
620 63020 30( , ) ( ) ( )zFu r s B b r B b r= + +  

(1) (1) (1)
61 62 631 2 3

1

( ) ( ) ( ) cos( )n n nn n n
n

B b r B b r B b r n


=

 + +
   

(19) 

For the hollow cylinder 

(2)
(2) (2)

120 13020 30(2)

( , )
( ) ( )rrF r s

A d r A d r



= + +  

(2) (2) (2)
120 130 1120 30 1

1

( ) ( ) ( )nn
n

B c r B c r A d r


=

+ +
  

(2) (2) (2)
12 13 112 3 1( ) ( ) ( )n n nn n nA d r A d r B c r+ + + +  

(2) (2)
12 132 3( ) ( ) cos( )n nn nB c r B c r n+


 

(15) 

(2)
(2) (2)

21 221 2(2)
1

( , )
( ) ( )r F

n nn n
n

r s
A d r A d r





=

= +
  

(2)
233 ( )nnA d r+ +

(2) (2)
21 221 2( ) ( )n nn nB c r B c r+ +  

(2)
233 ( ) cos( )nnB c r n


 

(2)
(2) (2)

320 33020 30(2)

( , )
( ) ( )rzF r s

A d r A d r



= + +  

(2) (2) (2)
320 330 3120 30 1

1

( ) ( ) ( )nn
n

B c r B c r A d r


=

+ + +
  

(2) (2) (2)
32 33 312 3 1( ) ( ) ( )n n nn n nA d r A d r B c r+ + + +  

(2) (2)
32 332 3( ) ( ) cos( )n nn nB c r B c r n+


 

(2) (2) (2)
420 43020 30( , ) ( ) ( )rFu r s A d r A d r= + +  

(2) (2) (2)
420 430 4120 30 1

1

( ) ( ) ( )nn
n

B c r B c r A d r


=

+ +
  

(2) (2) (2)
42 43 412 3 1( ) ( ) ( )n n nn n nA d r A d r B c r+ + + +  

(2) (2)
42 432 3( ) ( ) cos( )n nn nB c r B c r n+


 

(2) (2) (2)
51 521 2

1

( , ) ( ) ( )n nF n n
n

u r s A d r A d r



=

= + +
  

(2) (2) (2)
53 51 523 1 2( ) ( ) ( )n n nn n nA d r B c r B c r+ + +  

(2)
533 ( ) cos( )nnB c r n


 

(2) (2) (2)
620 63020 30( , ) ( ) ( )zFu r s A d r A d r= + +  

(2) (2) (2)
620 630 6120 30 1

1

( ) ( ) ( )nn
n

B c r B c r A d r


=

+ + +
  

(2) (2) (2)
62 63 612 3 1( ) ( ) ( )n n nn n nA d r A d r B c r+ + +  

(2) (2)
62 632 3( ) ( ) cos( )n nn nB c r B c r n+


 

The explicit expressions of the functions bk1n(r), bk2n(r), 

bk3n(r), dk1n(r), dk2n(r), dk3n(r), ck1n(r), 2 ( )k nc r  and ck3n(r) 

which enter into equations Eqs. (19)-(20) are given in 

Appendix A through the formulas (A1) and (A2).  

Analysis of the Fourier transformation of the boundary 

Eq. (3) and contact Eq. (5) conditions shows that the second 

and third conditions in Eq. (3), and all the contact 

conditions in Eq. (5) remain valid as for the corresponding 

Fourier transforms. However, the first condition in Eq. (3) 

is transformed to the following one. 

   ( )
(2)

for / 2 / 2

0 for , / 2, / 2rrF
r R h

P   


    = −

− −  
= 

 − + − −

 (21) 

According to the well-known expansion procedure for 

the Fourier transform, the condition Eq. (21) can be 

presented in a series form as given below. 
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(2)

1

2sin( / 2) 1
cos( )

2rrF
r R h

n

P P n
n

 
 

 
 



= −
=

= − −   (22) 

Thus, using the expressions in Eq. (20), we obtain the 

following equations for the unknown constants (2)
20A , (2)

30A

, (2)
20B , (2)

30B , 
(1)
20B ,

(1)
30B , 

(1)
1nB , 

(1)
2nB , 

(1)
3nB  (2)

1nA , 

(2)
2nA , (2)

3nA , (2)
1nB , (2)

2nB  and (2)
3nB  ( 1)n  from the 

boundary condition Eq. (22), the second and third boundary 

conditions in Eq. (3) and from the contact conditions in Eq. 

(5). 

For the unknown constants (2)
20A , (2)

30A , (2)
20B , (2)

30B ,

(1)
20B  and 

(1)
30B  

( (2) (2) (2)(2)
120 130 12020 30 20( ) ( ) ( )A d r A d r B c r + +  

)(2)
13030 ( )

2r R h

B c r P


= −

+ = −  

( (2) (2) (2)(2)
320 330 32020 30 20( ) ( ) ( )A d r A d r B c r + + +  

)(2)
33030 ( ) 0

r R h
B c r

= −
=  

( (2) (2) (2)(2)
120 130 12020 30 20( ) ( ) ( )A d r A d r B c r + + +  

) ( )(2) (1) (1)(1)
130 120 13030 20 30( ) ( ) ( )

r R r R
B c r B b r B b r

= =
+ = +  

( (2) (2) (2)(2)
320 330 32020 30 20( ) ( ) ( )A d r A d r B c r + + +  

) ( )(2) (1) (1)(1)
330 320 33030 20 30( ) ( ) ( )

r R r R
B c r B b r B b r

= =
= +  

( (2) (2) (2)
420 430 42020 30 20( ) ( ) ( )A d r A d r B c r+ + +  

) ( )(2) (1) (1)
430 420 43030 20 30( ) ( ) ( )

r R r R
B c r B b r B b r

= =
= +  

( (2) (2) (2)
620 630 62020 30 20( ) ( ) ( )A d r A d r B c r+ + +  

) ( )(2) (1) (1)
630 620 63030 20 30( ) ( ) ( )

r R r R
B c r B b r B b r

= =
= +  

(23) 

For the unknown constants
(1)
1nB , 

(1)
2nB , 

(1)
3nB  (2)

1nA , 

(2)
2nA , (2)

3nA , (2)
1nB , (2)

2nB  and (2)
3nB  ( 1n  ) 

( (2) (2) (2)(2)
11 12 131 2 3( ) ( ) ( )n n nn n nA d r A d r A d r + + +

)(2) (2) (2)
11 12 131 2 3( ) ( ) ( )n n nn n n

r R h
B c r B c r B c r

= −
+ +  

2sin( / 2)
P

n





= −  

( (2) (2) (2)(2)
21 22 231 2 3( ) ( ) ( )n n nn n nA d r A d r A d r + + +  

)(2) (2) (2)
21 22 231 2 3( ) ( ) ( ) 0n n nn n n

r R h
B c r B c r B c r

= −
+ + =  

( (2) (2) (2)(2)
31 32 331 2 3( ) ( ) ( )n n nn n nA d r A d r A d r + + +  

(24) 

)(2) (2) (2)
31 32 331 2 3( ) ( ) ( ) 0n n nn n n

r R h
B c r B c r B c r

= −
+ + =  

( (2) (2) (2)(2)
1 2 31 2 3( ) ( ) ( )k n k n k nn n nA d r A d r A d r + + +  

)(2) (2) (2)
1 2 31 2 3( ) ( ) ( )k n k n k nn n n

r R
B c r B c r B c r

=
+ + =  

( )(1) (1) (1)(1)
1 2 31 2 3( ) ( ) ( )k n k n k nn n n

r R
B b r B b r B b r

=
+ +  

1,2,3k =  

( (2) (2) (2)
1 2 31 2 3( ) ( ) ( )k n k n k nn n nA d r A d r A d r+ + +  

)(2) (2) (2)
1 2 31 2 3( ) ( ) ( )k n k n k nn n n

r R
B c r B c r B c r

=
+ + =  

( )(1) (1) (1)
1 2 31 2 3( ) ( ) ( )k n k n k nn n n

r R
B b r B b r B b r

=
+ +  

4,5,6k =  

After finding the aforementioned unknown constants 

from equations Eqs. (23)-(24), the Fourier transformation of 

the sought values is determined completely. The originals of 

these values are determined through calculation of the 

integrals given in Eq. (11) and this calculation is made 

numerically by employing the algorithm which is used and 

developed in many investigations of the first author of the 

present paper and his students and is detailed in the 

monograph by Akbarov (2015).  

Note the method developed above can be called as 

analytic-numerical method which is employed for the 

solution to the 3D dynamic problem for the inhomogeneous 

medium. However, in the cases where the analytical 

solution to the mentioned dynamical problems is 

impossible, these problems can be solved through 

numerical methods such as detailed in the monograph by 

Atluri and Shen (2002) and in the paper by Useche and 

Alvarez (2016) and others listed therein. 
 

 

4. Numerical results and discussions 
 

In the present section, first we consider the algorithm for 

determination of the critical velocity and the algorithm for 

numerical calculation of the integrals in Eq. (11) for 

determination of the interface stresses. Further, we analyze 

numerical results on the critical velocity of the moving load 

and on the response of the interface stresses to the problem 

parameters, such as the velocity of the moving load, 

mechanical and geometrical parameters of the constituents 

of the system under consideration etc. 
 

4.1 Algorithm for determination of the critical velocity 
 

As noted above, the unknowns (2)
20A , (2)

30A , (2)
20B , (2)

30B ,

(1)
20B  and 

(1)
30B  are determined from the complete system 

of equations in Eq. (23) and below the determinant of the 

matrix the elements of which are the coefficients of the 

unknowns in these equations, is denoted through 
(1) (2)

0 ( , / , / , , ).D R h R s V   
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Moreover, it can be noted that, according to the solution 

procedure discussed in the previous section, the unknowns 
(1)
1nB , 

(1)
2nB , 

(1)
3nB , (2)

1nA , (2)
2nA , (2)

3nA , (2)
1nB , (2)

2nB  

and (2)
3nB  for each selected n are determined from the 

complete system of equations in Eq. (24) and below the 

determinant of the matrix, the elements of which are the 

coefficients of the unknowns in these equations, is denoted 

through 
(1) (2)( , / , / , , )nD R h R s V  .  

If the Fourier transformation parameter s is taken as the 

wavenumber and the load moving velocity V as the wave 

propagation velocity, then the equation 

(1) (2)
0 ( , / , / , , ) 0D R h R s V  =  (25) 

coincides with the dispersion equation of the longitudinal 

axisymmetric wave, and the equation 

(1) (2)( , / , / , , ) 0nD R h R s V  =  (26) 

coincides with the dispersion equation of the flexural 

waves for the n−th harmonic in the system under 

consideration. The solutions to the equations Eqs. (25)-(26) 

can be denoted through V0=V0(s) and Vn=Vn(s), respectively, 

which are obtained for each fixed value of the problem 

parameters.  

We introduce the following notation 

(1)
(1) (1)0

120 13020 30(1)

( , )
( ) ( )rrF R s

B b R B b R



= +  (27) 

(1)
(1) (1) (1)

11 12 131 2 3(1)

( , )
( ) ( ) ( )

nrrF
n n nn n n

R s
B b R B b R B b R




= + +  (28) 

through which, according to the first expression in Eq. (19), 

the Fourier transform ( , , )rrF R s  = (1)
( , , )rrF R s  =

(2)
( , , )rrF R s   of the interface normal stress 

( , , )rr R z  = (1) ( , , )rr R z  = (2) ( , , )rr R z   can be 

presented as follows. 

( , , )rrF R s  =
(1)

0( , )rrF R s + (1)

1

( , )cos( )nrrF
n

R s n 


=

  (29) 

Thus, after the foregoing preparation, denoting the 

critical velocity through Vcr, we can formulate the criterion 

for determination of this velocity as follows 

(1) ( , , )rr R z  →  as crV V→  (30) 

Note that it can also be written in criterion Eq. (30) any 

quantities related to the stress-strain state in the constituents 

instead of the interface stress (1) ( , , )rr R z  . Here, for 

concretization of the discussion this criterion is formulated 

through the stress (1) ( , , )rr R z  . 

Now, considering the dispersion curves of the 

axisymmetric and flexural waves, the equations of which 

can be presented as V0=V0(s) and Vn=Vn(s), respectively we 

can make the following remarks.  

If there exists the case where dV0(s)/ds=0 then the 

velocity corresponding to this case can be taken as the 

critical velocity (denote this critical velocity by V0cr) under 

which 

(1)
00
( , )cos( )rrF R s sz ds

+
→ 

(1) ( , , )rr R z  →   as 0crV V→  

(31) 

takes place. If there exists the case where dVn(s)/ds=0 then 

the velocity corresponding to this case can also be taken as 

the critical velocity (denoted by Vncr) under which 

(1)

0
( , )cos( )nrrF R s sz ds

+
→   

(1) ( , , )rr R s  →  as ncrV V→  

(32) 

takes place.  

Numerical results show that, as usual, the case Eq. (32) 

occurs only under n=1 and therefore the following relation 

can be written instead of Eq. (32). 

(1)
10
( , )cos( )rrF R s sz ds

+
→   

(1) ( , , )rr R z  → , as 1crV V→  

(33) 

The critical velocity V1cr determined from the criterion 

Eq. (33) appears as a result of the non-axisymmetric nature 

of the moving load, however, the critical velocity V0cr 

determined from the criterion Eq. (31) relates to the 

corresponding axisymmetric moving load. Consequently, 

comparison of the values of the critical velocities V0cr and 

V1cr can resolve “whether the values of the critical speed of 

the moving load depend on the non-axisymmetricity of this 

load or whether the critical velocity determined for the 

corresponding axisymmetric moving load case also occurs 

for the non-axisymmetric moving load case”. Consequently, 

if V0cr<V1cr then the minimum critical velocity of the non-

axisymmetric moving load is the same as in the 

corresponding axisymmetric moving load, however, if 

V1cr<V0cr then the non-axisymmetricity of the moving load 

causes the minimum critical velocity to decrease. Note that 

the criteria Eq. (31) and Eq. (33) can also be employed 

without consideration of the dispersion curves obtained 

from the solution of the equations Eqs. (25)-(26). Thus, the 

aforementioned critical velocities can also be determined by 

direct calculation of the values (1) ( , , )rr R z   through the 

corresponding integrals in Eq. (11) for various values of the 

moving load velocity V. For determination of the critical 

velocity, the latter approach is more general than that based 

on the dispersion curves and can be employed not only for 

the cases where the constituents of the system are purely 

elastic, but also for the cases where these materials are 

time-dependent.  

This completes the consideration of the algorithm for 

calculation of the critical velocity. 
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4.2 Algorithm for calculation of the integrals in (Eq. 
(11)) 
 

Here, this algorithm is explained with respect to the 

calculation of the values of the interface normal stress σrr(R, 

θ, z), the Fourier transformation of which is determined 

through the expression Eq. (29). According to the integrals 

in Eq. (11) and according to the equation Eq. (29), we can 

write the following approximate expression for this stress. 

0

( , , ) ( , , )cos( )drr rrFR z R s sz s   
+

=   

(1)
0

0

( , )cos( )drrF R s sz s
+

 +  

(1)

1 0

( , )cos( )d cos( )
N

nrrF
n

R s sz s n 
+

=

 
 
 
 

   

(34) 

In relation Eq. (34) the infinite Fourier series is replaced 

by the corresponding finite one and the number of terms in 

this finite series, i.e., the number N in Eq. (34) is 

determined from the convergence requirement of the 

numerical results.  

The integrals in Eq. (34) and as well as in Eq. (11) are 

called the wavenumber integrals and, according to the 

dispersion equations Eqs. (25)-(26), the integrated functions 

have singular points with respect to s and if the order of this 

singularity is equal to one, then the integrals have a 

meaning in Cauchy’s principal value sense. However, in the 

cases where the order of the singularity is equal to two, then 

these cases cause resonance type behaviour. As, under 

calculation of the integrals, we consider the cases where 

0<V<min(V0cr;V1cr) and therefore, the order of all the 

singular points is one for this interval of the moving load 

velocity and only in the cases where V=V0cr or V=V1cr does 

the order of this singularity become two.  

Thus, as a result of the existence of the noted 

singularities, calculation of the wavenumber integrals 

requires a special algorithm which is detailed in the works 

by Akbarov (2015), Jensen et al. (2011) and others listed 

therein. It should be noted that among these algorithms a 

more suitable and convenient one is the algorithm based on 

the use of the Sommerfeld contour and for employing this 

algorithm, according to Cauchy’s theorem, the contour 

 0,+ is “deformed” into the contour C (Fig. 2), which is 

called the Sommerfeld contour in the complex plane 

1 2is s s= +  and in this way the real roots of the equations 

Eqs. (25)-(26) are avoided.  

Despite this avoidance, the values of the integrals 

calculated by the Sommerfeld contour algorithm have a 

jump in the near vicinity of the second order singular 

points. Such cases, which appear with respect to the 

concrete problems as examples, are also detailed in the 

monograph by Akbarov (2015). Hence, this method also 

allows for determination of the critical velocity through 

direct calculation of the stress 
(1) ( , , )rr R s   which enters 

into the criteria Eqs. (32)-(33), and determines the critical  

 

Fig. 2 The sketch of the Sommerfeld contour 

 

 

velocities without using the solution to the dispersion 

equations Eqs. (25)-(26). 

Thus, according to the foregoing discussions, the 

integrals in Eq. (34) can be presented as follows. 

( , , ) ( , , )cos( )drr rrFC
R z R s sz s   =   

(1)
0( , )cos( )drrFC

R s sz s= +  

( )(1)

1

( , )cos( )d cos( )
N

nrrFC
n

R s sz s n 
=

   

(35) 

Using the configuration of the contour C given in Fig. 2 

we can write the following relation for the integrals in Eq. 

(35). 

( )cos( )d
C

f s sz s  

1 1 1 2 2

0 0

( i )cos(( i ) )d (i )df s s s z s f s s




+

= + + +   
(36) 

Assuming that ε<<1, the last integral in Eq. (36) can be 

neglected and we can use the following expressions for 

calculation of the stress σrr(R,θ,z). 

1 1 1

0

( , , ) ( , , i )cos(( i ) )drr rrFR z R s s z s     
+

 + +  

(1)
0 1 1 1

0

( , i )cos(( i ) )drrF R s s z s  
+

= + + +  

(1)
1 1 1

1 0

( , i )cos(( i ) )d cos( )
N

nrrF
n

R s s z s n   
+

=

 
 + +
 
 

   

(37) 

Under calculation procedure, the improper integrals 

10
( )df s

+
•  in Eq. (37) are replaced with the 

corresponding definite integrals 10

*
1

( )d
S

f s
+

•  and the 

values of 
*
1S  are defined from the corresponding 

convergence requirement.  

Moreover, under calculation of these definite integrals, 

the interval 
*
10,S 

 
 is divided into a certain number 

(denote this number through N1) of shorter intervals and 

within each of these shorter intervals, the integrals are 

calculated by the use of the Gauss algorithm with ten 
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integration points. The values of the integrated functions at 

these integrated points are determined through the solution 

of the Eqs. (23)-(24). All these procedures are performed 

automatically in the PC by use of the corresponding 

programs constructed by the authors of the paper in 

MATLAB.  

Finally, note that the testing of the algorithms described 

above has been made in many investigations by the authors 

(see, for instance, the works by Akbarov (2015) and by 

Akbarov and Mehdiyev (2017) and others listed therein) 

and therefore this testing is not illustrated again here. At the 

same time, it must be noted that the all numerical results 

which will be discussed below are obtained in the case 

where N1=200, 
*
1 9S =  and ε=0.001. However, examples 

on the convergence of the numerical results with respect to 

the number N in Eq. (37) (i.e., with respect to the terms in 

the finite Fourier series) will be given below.  

This completes the consideration of the algorithm for 

calculation of the integrals in Eq. (11). 

 

4.3 Numerical results related to the critical velocity 
 

Numerical results are obtained for the following 

selected material properties of the constituents of the 

system under consideration. 

Case 1. 
(1) (2) 0.35E E = , 

(1) (2) 0.1  = , 

(1) (2) 0.25 = =  

(38) 

Case 2. 
(1) (2) 0.05E E = , 

(1) (2) 0.01  = , 

(1) (2) 0.25 = =  

(39) 

Case 3. 
(1) (2) 0.5E E = , 

(1) (2) 0.5  = , 

(1) (2) 0.3 = =  

(40) 

Case 4. 
(1) (2) 0.02E E = , 

(1) (2) 0.01  = , 

(1) (2) 0.25 = =  

(41) 

Case 5. 
(1) (2) 0.01E E = , 

(1) (2) 0.01  = , 

(1) (2) 0.25 = =  

(42) 

The values of the critical velocities obtained in the 

foregoing cases under various values of the ratio /h R  are 

given in Table 1. Note that Case 2 is also considered in the 

paper by Abdulkadirov (1981) and the critical velocity
(2)

0 2crV c  is determined only for the case where 

/ 0.5h R = . The value of 
(2)

0 2crV c  determined in the 

paper by Abdulkadirov (1981) is also given in the 

corresponding box in Table 1 from which follows that in the 

indicated particular case, the present result coincides with 

the corresponding result obtained in the paper by 

Abdulkadirov (1981) with very high accuracy. Moreover, 

Case 3 is also considered in the paper Babich et al. (1986) 

under determination of the critical velocity of the moving  

Table 1 The values of the dimensionless critical velocities 
(2)

0 2crV c  (upper number) and (2)
1 2crV c (lower 

number) for various values of the ratio h/R and for cases 

indicated in Eqs. (38)-(42) 

h/R 
Cases 

Case 1 Case 2 Case 3 Case 4 Case 5 

0.5 
0.9355

0.9405
 

0.8261 (*)

0.7773
 

0.9396

0.9432
 

0.8052

0.6250
 

0.7977

0.5178
 

0.4 
0.9108

0.9196
 

0.7670

0.7540
 

0.9184

0.9296
 

0.7400

0.6524
 

0.7303

0.5439
 

0.3 
0.8865

0.8886
 

0.6977

0.6950
 

0.8918

0.9042
 

0.6615

0.6536
 

0.6483

0.5800
 

0.2 
0.8642

0.8683
 

0.6176

0.6196
 

0.8743

0.8785
 

0.5663

0.5652
 

0.5470

0.5443
 

0.1 
0.8437

0.8453
 

0.5291

0.5316
 

0.8547

0.8565
 

0.4490

0.4504
 

0.4157

0.4163
 

0.05 
0.8360

0.8365
 

0.4885

0.4898
 

0.8470

0.8475
 

0.3838

0.3849
 

0.3341

0.3349
 

0.01 
0.8315

−
 

0.4683

0.4684
 

0.8423 (**)

0.8423
 0.3442

0.3443
 

0.2738

0.2739
 

(*): 0.826 by Abdulkadirov (1981) 

(**): 0.832 by Babich et al. (1986) 

 
 

load acting on the stratified half-plane. According to the 

well-known mechanical consideration, in Case 3 the results 

obtained in the present case and related to (2)
0 2crV c  must 

approach the corresponding results obtained in the paper by 

Babich, Glukhov and Guz (1986) which are also given in 

the corresponding box in Table 1 as h/R→0. Analysis of the 

results obtained in Case 3 and given in Table 1, proves the 

foregoing prediction. Consequently, the two aforementioned 

comparisons of the present results with the known ones 

obtained by other researchers illustrate the validity and 

reliability of the calculation algorithm and PC programs 

used. 

It follows from Table 1 that the values of (2)
0 2crV c  

and (2)
1 2crV c  decrease with decreasing of the ratio h / R 

and the values of (2)
0 2crV c  and (2)

1 2crV c approach to 

each other as / 0h R → . This can be explained as follows. 

As noted above, the critical velocity (2)
0 2crV c  

approaches the critical velocity obtained for the 

corresponding plane strain state as / 0h R → .  At the same 

t ime,  according to  the  well -known mechanica l 

consideration, the critical velocity (2)
1 2crV c approaches 

the critical velocity obtained for the corresponding 3D 

problem on the point-located moving load acting on the 

“plate+half-space” system. In the paper Akbarov et al. 

(2015), it is established that the critical velocity obtained in 

the noted 3D case coincides with the critical velocity 

obtained for the corresponding plane-strain state. Namely, 

with this fact the approaching of the critical velocities  
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(a) in Case 1 (Eq. (38)) 

 
(b) in Case 2 (Eq. (39)) 

Fig. 2 The sketch of the Sommerfeld contour 
 

 

(2)
0 2crV c  and (2)

1 2crV c  to each other as h/R→0, is 

explained. This fact can also be taken as validation of the 

obtained numerical results. 

Using the comparison of the values of the critical 

velocity (2)
0cr 2V c  with the corresponding ones of the 

critical velocity (2)
1cr 2V c , we can make concrete 

conclusions on the influence of the non axisymmetricity of 

the moving load on the critical velocity. For a clearer 

illustration of this comparison, we use the graphs given in 

Fig. 3, which show dependencies among (2)
0cr 2V c , 

(2)
1cr 2V c  and h/R in Case 1 Fig. 3(a), Case 2 Fig. 3(b) 

Case 3 Fig. 3(c), Case 4 Fig. 3(d) and Case 5 Fig. 3(e). In 

Fig. 3 the graphs indicated by the number 1 (by the number 

2) relate to the dependence between (2)
0cr 2V c  and h/R 

(between (2)
1cr 2V c  and h/R). 

Thus, it follows from the analysis of Fig. 3 that for the 

considered change range of the ratio h/R in all the cases 

shown in Eqs. (38)-(42), the values of (2)
0cr 2V c   

 
(a) in Case 3 (Eq. (40)) 

 
(b) in Case 4 (Eq. (41)) 

 
(c) in Case 5 (Eq. (42)) 

Fig. 3 Dependence between the critical velocity and the 

ratio h/R 

 

 

increase monotonically with increasing of the ratio h / R 

and this conclusion occurs also for (2)
1 2crV c  in Case 1, 

in Case 2 and in Case 3. However, in Case 4 and in Case 5, 
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the dependence between (2)
1 2crV c  and h/R has a non-

monotonic character. Moreover, it follows from Fig. 3 that 

in Case 1 and in Case 3, the inequality V0cr<V1cr takes place. 

However, in Case 2, in Case 4 and in Case 5, this inequality 

occurs before a certain value of the ratio h/R (denote it 

by(h/R)*), however, in the cases where h/R>(h/R)* the 

inequality V1cr<V0cr occurs.  

Comparison of the results obtained in Case 2, in Case 4 

and in Case 5 with each other shows that the values of 

(h/R)* decrease with decreasing of the ratio E(1)/E(2), i.e., 

with increasing of the modulus of elasticity E(2) of the 

cylinder material under a fixed value of the modulus of 

elasticity E(1) of the surrounding elastic medium.  

Moreover, in Case 2, in Case 4 and in Case 5 the values 

of (V0cr−V1cr) increase with h/R under h/R>(h/R)*. 

This completes the analysis of the numerical results 

related to the critical velocity and, according to this 

analysis, the following main conclusion can be made: the 

non axisymmetricity of the moving load acting in the 

interior of the hollow cylinder surrounded with elastic 

medium can decrease significantly the values of the critical 

velocity of this load. Moreover, these results show that the 

non axisymmetricity of the moving load can change the 

critical velocity of the moving load not only in the 

quantitative sense but also in the qualitative sense: the 

examples for which are the dependencies between the 

critical velocity and the ratio h/R obtained in Case 2, in 

Case 4 and in Case 5. 

 

4.4 Numerical results related to the interface stresses 
 

Here, only the numerical results which relate to Case 4 

(Eq. (41)) are considered, and the corresponding results 

obtained for the other cases indicated in Eqs. (38)-(40) and 

Eq. (42) in the qualitative sense are similar with those 

obtained in Case 4. These results relate to the response of 

the interface normal stress ( , , )rr R z   and the shear 

stresses ( , , )rz R z   and ( , , )r R z   , where 

( , , )rr R z  = (1) ( , , )rr R z  = (2) ( , , )rr R z   

( , , )rz R z  = (1) ( , , )rz R z  = (2) ( , , )rz R z   

( , , )r R z  = (1)
( , , )r R z  =

(2)
( , , )r R z   

(43) 

to the load moving velocity (2)
2/c V c=  in the cases 

where  0 1min ; cr crV V V  , to the ratio h/R and to the 

angle α within which the external load is distributed 

uniformly. Moreover, we consider the distribution of these 

stresses with respect to the coordinates z and θ. At the same 

time, at the end of the subsection, for illustration of the 

influence of the ratio of the modulus of elasticity of the 

constituents on the foregoing interface stresses, some 

numerical results related to Case 2 and to Case 5 are also 

considered.  

The results illustrated in Fig. 4 show the convergence of 

the numerical results related to the stress σrr(R,θ,z) at {θ=0; 

z=0} obtained for various values of the dimensionless  

 
(a) h/R = 0.05 

 
(b) h/R=0.1 

 
(c) h/R = 0.2 

Fig. 4 Convergence of the normal stress values with respect 

to the number N in the Fourier series presentation of this 

stress  
 

 

moving velocity c (2)
2( V / c )=  in the cases where 

h/R=0.05 Fig. 4(a), 0.1 Fig. 4(b) and 0.2 Fig. 4(c) under 

α=π/12, with respect to the number N in the Fourier series 

presentation of the sought values such as in Eq. (35). It 

follows from these results that the aforementioned 

convergence improves with the ratio h/R and it is enough to 

take N=15 in the series presentation in order to obtain 

results with an accuracy which is not less than 10-4. 

Therefore, in the present investigation all the numerical 

results are obtained in the case where N=15 in the series 

presentation of the sought values. Below, other examples of 

the convergence of the numerical results with respect to the  
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(a) h/R = 0.05 

 
h/R = 0.1 

 
(c) h/R = 0.2 

 
(d) h/R=1/3 

Fig. 5 The influence of the angle α on the response of the 

normal stress to the load moving velocity 

 
(e) h/R=0.4 

Fig. 5 Continued 

 

 

number N will also be considered. 

The graphs given in Fig. 5 show the response of the 

normal stress σrr(R,θ,z) at {θ=0; z=0} to the dimensionless 

velocity of the moving load in the cases where h/R=0.05 

Fig. 5(a), 0.1 Fig. 5(b), 0.2 Fig. 5(c), 1/3 Fig. 5(d) and 0.4 

Fig. 5(e) for various values of the angle α Fig. 1(b). It 

follows from these graphs that in the all considered values 

of the ratio h/R, an increase in the angle α causes a decrease 

in the absolute values of the interface normal stress. 

Moreover, it follows from these graphs that the absolute 

values of the stress increase monotonically with the load 

moving velocity and the results obtained for various α 

approach each other with this velocity. This is because the 

values of the corresponding critical velocities do not depend 

on the angle α. Comparison of the results obtained for 

various h/R shows that the influence of the angle   on the 

values of the stress becomes more considerable with 

decreasing of the ratio h/R.  

For a clearer illustration of the influence of the ratio h/R 

on the values of the stress we consider the graphs of the 

dependence between σrr(R,0,0) and c constructed for 

various h/R under a fixed angle .  Fig. 6 shows such types 

of graphs which are obtained in the cases where α=π/36 Fig. 

6(a), α=π/12 Fig. 6(b) and α=π/6 Fig. 6(c). Thus, according 

to these graphs it can be concluded that an increase in the 

ratio h/R causes a significant decrease in the absolute values 

of the stress σrr(R,0,0).  

The distributions of the stress σrr at θ=0 with respect to 

the dimensionless coordinate z/h are given in Fig. 7 which 

are constructed in the cases where h/R=0.05 (Fig. 7(a), 

c=0.35), 0.1 (Fig. 7(b), c=0.40) and 0.2 (Fig. 7(c), c=0.40) 

under various values of the angle α. These results show that 

the values of the stress decay with the distance from the 

point z/h=0 at which the moving load acts. Moreover, these 

results also show that under h/R≤0.1 at a certain distance 

from the point at which the moving load acts both behind 

and ahead of this point, the interface normal stress becomes 

a stretched one. Note that this moment can play an 

important role in the adhesion strength of the “hollow 

cylinder+surrounding elastic medium” system. 

Moreover, the following statement should be noted. For 

this purpose, we recall that that the coordinate z with  
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(a) α=π/36 

 
(b) π/12 

 
(c) π/6 

Fig. 6 The influence of the ratio on the response of the 

normal stress to the load moving velocity 

 

 

respect to which the distribution of the interface normal 

stress is illustrated in Fig. 7, and others which will be given 

below for the interface shear stresses σrz and σrθ (43), is the 

coordinate in the moving coordinate system determined by 

the expressions in Eq. (10), i.e., the z/h in these figures is 

the z’/h. Consequently, for a more correct explanation of the  

 
(a) h/R=0.05 

 
(b) h/R=0.1 

 
(c) h/R=0.2 

Fig. 7 Distribution of the normal stress with respect to the 

dimensionless coordinate z/h  

 

 

results given in Fig. 7 and other corresponding ones given 

below, for the interface shear stresses we must take into 

consideration the (z−Vt)/h (where z is the coordinate in the 

reference coordinate system) instead of z/h. According to 

this consideration, if the time t(=t*) is fixed, then these 

figures illustrate the distribution of the stresses with respect 

to the spatial coordinate (z’=z−Vt*) which shows the 

distance in the cylinder's axis direction from the point at  
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(a) h/R=0.05 

 
(b) h/R=0.1 

 

(c) Convergence of the distribution with respect to the 

number N in the Fourier series presentation of this stress in 

the cases where α=π/12 

Fig. 8 Distribution of the normal stress with respect to the 

coordinate θ 

 

 

which the moving load acts. If the spatial coordinate z=z* is 

fixed in the reference coordinate system, then, according to 

(z’=z*−Vt), Fig. 7 and the other corresponding ones given  

 
(a) h/R=0.05 

 
(b) h/R=0.1 

 
(c) h/R=0.2 

Fig. 9 Distribution of the shear stress σrz with respect to the 

dimensionless coordinate z/h  

 

 

below illustrate the change of the stresses with respect to 

time at the fixed point mentioned. Consequently, the results 

given in Fig. 7 and the other corresponding ones given 

below (see, Figs. 9-10) illustrate not only the distribution of 

the interface stresses with respect to the spatial coordinate, 

but also the change of these stresses with respect to time. 

The distribution of the normal stress σrr at z/h=0 with 

respect to the circumferential coordinate θ for various 

angles α under c=0.25 is given in Figs. 8(a)-(b) for the cases 

where h/R=0.05 and 0.1 respectively. It follows from the 

analysis of the graphs given in Figs. 8(a) and 8(b) that in the 

cases where α=π/36 and α=π/12, the absolute maximum 

value of the normal stress appears at θ=0, however, in the 

cases where α=π/6 and α=π/4 the absolute maximum value  
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(a) h/R=0.05 

 
(b) h/R=0.1 

 
(c) h/R=0.2 

Fig. 10 Distribution of the shear stress σrθ with respect to 

the dimensionless coordinate  

 

 

of the stress appears at θ=θ*>0.  

The results given in Fig. 8(c) which are obtained for the 

cases where α=π/12 and h/R=0.1, respectively illustrate the 

convergence of the considered dependence with respect to 

the number N in the Fourier series presentation of the 

normal stress Eq. (37). It follows from these results that in 

the case where α=π/12, for each value of N in the near 

vicinity of the point θ=0, the dependence between the stress 

and θ is monotonic.  

Numerical results, which are not given here, show that 

the response of the shear stresses σrz and σrθ to the load 

moving velocity is similar in the qualitative sense with the 

results which are obtained for the normal stress σrr which 

are discussed above and therefore, we do not consider the  

 
(a) h/R=0.05 

 
(b) h/R=0.1 

 
(c) h/R=0.2 

Fig. 11 Distribution of the shear stress σrθ with respect to 

the coordinate θ 

 

 

results related to this response, here. Moreover, these 

numerical results show that the dependence between the 

shear stress σrz and θ is also similar in the qualitative sense 

with the results obtained for the corresponding dependence  
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(a) α=π/36 

 
(b) α=π/12 

 
(c) α=π/6 

 
(d) α=π/4 

Fig. 12 The influence of the ratio modulus of elasticity of 

the constituents on the interface normal stress  

between the normal stress σrr and θ, and therefore, this 

dependence for the shear stress σrz is not considered here. 

Thus, taking the foregoing discussions into 

consideration, we consider the graphs given in Fig. 9 which 

show the distribution of the shear stress σrz at θ=0 with 

respect to the dimensionless coordinate z/h for various 

values of the angle α under h/R=0.05 (Fig. 9(a), for c=0.35), 

0.1 (Fig. 9(b), for c=0.40) and 0.2 (Fig. 9(c), for c=0.40). It 

follows from Fig. 9 that the absolute values of the shear 

stress σrz decrease with the angle α and with the ratio h/R. 

Moreover, it follows from Fig. 9 that the location of the 

point at which the shear stress σrz has its absolute maximum 

depends significantly on α and h/R. 

The distribution of the shear stress σrθ with respect to z/h 

is illustrated with the graphs given in Fig. 10 constructed 

for various values of α under c=0.35 in the cases where 

h/R=0.05 (Fig. 10(a)), 0.1 (Fig. 10(b)) and 0.2 (Fig. 10(c)). 

Analysis of these results shows that the distribution of the 

shear stress σrθ with respect to z/h is similar to that obtained 

for the normal stress σrr. For instance, this analysis shows 

that the absolute values of the shear stress σrθ decreases as 

the normal stress σrr with the ratio h/R. 

However, the distribution of the shear stress σrθ with 

respect to θ at z/h=0 is not similar to that obtained for the 

normal stress σrr. This distribution for σrθ is illustrated with 

the graphs given in Fig. 11 which are constructed for 

various α under h/R=0.05 (Fig. 11(a)), 0.1 (Fig. 11(b)) and 

0.2 (Fig. 11(c)) in the case where c=0.35. It follows from 

these graphs that the absolute maximum value of the stress 

σrθ appears at θ=θ’>0 and the values of θ’ depend 

significantly on the angle α. Thus, the values of θ’ increase 

with α. The other properties of the distributions given in 

Fig. 11 are similar to those which relate to the distribution 

of the other stresses considered above. 

Finally, we consider the results given in Fig. 12 which 

illustrate the influence of the ratio of the modulus of 

elasticity of the constituents on the interface normal stress 

at {θ=0; z=0} in the cases where α=π/36 (Fig. 12(a)), π/12 

(Fig. 12(b)), π/6 (Fig. 12(c)) and π/4 (Fig. 12(d)). It follows 

from these results that an increase in the values of the 

modulus of elasticity of the cylinder material under a fixed 

value of the modulus of elasticity of the surrounding elastic 

medium or a decrease in the values of the modulus of 

elasticity of the surrounding elastic medium under constant 

value of the modulus of elasticity of the cylinder material 

causes a decrease in the absolute values of the interface 

stress. This result agrees well with the well-known 

mechanical and engineering considerations. Note that 

similar results are also obtained for the interface shear 

stresses. 

This completes the analysis of the numerical results 

related to the interface stresses’ distribution. 

 
 

5. Conclusions 
 

Thus, in the present paper, the non-axisymmetric 3D 

problem on the dynamics of the moving load acting in the 

interior of the hollow cylinder surrounded with elastic 

medium is studied by utilizing the exact equations of 

elastodynamics. It is assumed that in the interior of the 
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cylinder, a point located with respect to the cylinder axis, 

symmetric with respect to the vertical axis in the cross 

section of the cylinder and within a certain central angle α, 

that uniformly distributed normal and moving with constant 

velocity forces act. It is also assumed that the vertical 

component of the summation of these forces is constant and 

the value of this constant does not depend on the angle α, 

however, the horizontal component of the summation of 

these forces is equal to zero. The solution to the problem is 

based on employing the moving coordinate method, on the 

Fourier transform with respect to the spatial coordinate 

indicating the distance of the point on the cylinder axis 

from the point at which the moving load acts and on the 

Fourier series presentation of the Fourier transforms of the 

sought values. Each term of these series is determined 

analytically, however, the original terms are found 

numerically by employing the corresponding PC programs 

and algorithms. Numerical results are presented and under 

analyses of these results, the main attention is focused on 

whether the values of the critical speed of the moving load 

depends on the non-axisymmetricity of this load or whether 

the critical velocity determined for the corresponding 

axisymmetric moving load case occurs also for the non-

axisymmetric moving load case and how the problem 

parameters influence the interface stresses’ distribution as 

well as the response of these stresses to the moving load 

velocity. According to these analyses, the following 

concrete conclusions can be made: 

• The non axisymmetricity of the moving load can 

decrease significantly the values of the critical velocity and 

the magnitude of this decrease depends significantly on the 

ratio h/R (where h is the thickness of the cylinder and R is 

the external radius of the cross section of the cylinder) on 

the ratio E(1)/E(2) (where E(1)/(E(2))is the modulus of 

elasticity of the cylinder (surrounding material)); 

• In the relatively small values of the ratios h/R and 

E(1)/E(2) (for instance in Case 1 Eq. (38) and in Case 3 Eq. 

(41)) under 0.01≤h/R≤0.5 the non-axisymmetricity of the 

moving load does not influence the minimum critical 

velocity and this velocity coincides with the corresponding 

one obtained for the corresponding axisymmetric moving 

load;   

• The foregoing conclusion occurs also in the relatively 

small values of the ratio E(1)/E(2) (for instance, in Case 2 Eq. 

(39), Case 4 (41) and Case 5 Eq. (42)) before a certain 

value of h/R (denoted by h/R*), however, in the cases where 

h/R>(h/R)* the non-axisymmetricity of the moving load 

causes a decrease in the values of the minimum critical 

velocity and the values of (h/R)* decrease with decreasing 

of the ratio E(1)/E(2). 

• In the relatively small values of the ratio E(1)/E(2) (in 

Case 4 Eq. (41) and Case 5 Eq. (42)) as a result of the non-

axisymmetricity of the moving load, the dependence 

between the minimum critical velocity and h/R becomes 

non monotonic, however, in the relatively greater values of 

the ratio E(1)/E(2) this dependence is monotonic and an 

increase in the values of the ratio h/R causes an increase in 

the values of the critical velocity; 

• In all the considered cases, a decrease in the values of 

the ratio E(1)/E(2) causes a decrease in the dimensionless 

critical velocity (2)
2/crV c  , where Vcr is the critical 

velocity of the moving load and 
(2)
2c  is the shear wave 

propagation velocity in the cylinder material; 

• The critical velocities related to the corresponding 

axisymmetric moving load and to the non- axisymmetric 

moving load approach each other and the critical velocity 

regarding the corresponding plane-strain state with 

decreasing of the ratio h/R; 

• Absolute values of the interface stresses caused by the 

non-axisymmetric moving load increase monotonically with 

the velocity of this load; 

• The absolute values of the interface stress decrease 

monotonically with increasing of the central angle α (Fig. 

1(b)) within which the moving forces with constant vertical 

and zero horizontal components are distributed uniformly; 

• The critical velocities do not depend on the 

aforementioned central angle; 

• Among the interface stresses in the quantitative sense, 

the dominant role belongs to the normal stress; 

• The absolute values of the interface stresses increase 

with decreasing of the ratio h/R;  

• The character of the distribution of the normal 

interface stress in the circumferential direction depends on 

the value of the central angle, for instance, in the cases 

where α=π/36 and π/12 the absolute maximum of the stress 

appears at θ=0, however, in the case where π/6 and α=π/4 

this maximum appears at θ=θ*>0; 

• The values of θ=θ’ at which the circumferential 

interface shear stress σrθ has its absolute maximum increase 

with the angle α; 

• The decaying and the changing of the interface stresses 

with respect to the dimensionless moving coordinate z/h can 

also be taken as the decaying and the changing of these 

stresses with respect to time at a corresponding fixed 

interface point in the reference coordinate system; 

• An increase in the values of the modulus of elasticity 

of the cylinder material under a fixed value for the 

surrounding elastic medium or a decrease in the values of 

the surrounding elastic medium under a constant value for 

the cylinder material causes a decrease in the values of the 

interface stresses. 
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In this appendix, explicit expressions of the functions 
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