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1. Introduction 
 

Small scale plates are the basic structures used in several 

applications such as nano-electro-mechanical systems, nano-

probes, atomic force microscope (AFM), nanoactuators and 

nanosensors. At nano scale, the physical and mechanical 

properties of small scale structures render evident size 

effects, which are quite different from their bulk counterparts.  

As the size dependent behaviors have been 

experimentally observed in small-scale structures, exploring 

the size effects on the mechanical characteristics of such 

nanostructures has motivated the scientific community in 

recent years (Ebrahimi and Barati 2016a, b, c, d, e, f, g, h, i, j, 

k, l, m, n). Since the models based on classical continuum 

mechanics are not capable of describing such size dependent 

behaviors in nano-scale elements, several nonclassical 

continuum theories such as the nonlocal, strain gradient and 

couple stress theories that contain additional material length 

scale parameters have been developed to capture the size 

effect (Ebrahimi and Barati 2017). Also, thermal buckling 

and free vibration analysis of nanobeams subjected to 

temperature distribution have been exactly investigated by 

Ebrahimi and Salari (2015a, b, c) and Ebrahimi et al. (2015a, 

b). Ebrahimi and Barati (2016o, p, q) investigated buckling 

behavior of smart piezoelectrically actuated higher-order 

size-dependent graded nanoscale beams and plates in thermal 

environment. 

The flexoelectr ici ty is  related to  a  par t icular 

electromechanical coupling phenomenon between 

polarization and strain gradients (Jiang et al. 2013). In fact,  
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imposing a strain gradient to dielectrics can induce an 

electrical polarization by breaking the inversion symmetry. It 

is well known that the flexoelectricity provides an inherent 

size effect as the dimensions of nanostructured materials 

decrease. Contrary to flexoelectricity, the piezoelasticity 

cannot introduce such size effect for a wide range of 

dielectrics applied in NEMs. Also, having a large ratio of 

surface area to volume in nanomaterials, surface effects have 

been believed to involve the size-dependency of material 

properties. According to the surface elasticity theory 

developed by Gurtin and Murdoch (1975), the size-

dependency of nanoscale structures due to the surface effects 

have been broadly researched by the modified continuum 

models from static and dynamic perspectives (Wang and 

Wang 2011, Ebrahimi and Boreiry 2015, Ebrahimi et al. 

2016, Hosseini et al. 2016). 

Recently, a number of researches are performed to 

incorporate the surface effects in analysis of piezoelectric 

nanostructure. Yan and Jiang (2011) investigated surface 

effects on vibration and buckling of piezoelectric nanobeams 

with surface effects. Also, Yan and Jiang (2012) explored 

vibrational and stability behaviors of piezoelectric nanoplates 

considering surface effects and in-plane constraints. A Two-

dimensional theory of surface piezoelasticity of plates is 

presented by Zhang et al. (2013). Also, Zhang et al. (2014a) 

researched wave propagation of piezoelectric nanoplates 

considering surface effects. Also, Zhang et al. (2014b) 

investigated the influence of surface piezoelasticity on the 

buckling behavior of piezoelectric nanofilms subjected to 

mechanical loadings. Recently, Li and Pan (2016) presented 

bending analysis of a sinusoidal piezoelectric nanoplate with 

surface effects. As a deficiency, the nonlocality of stress field 

is not considered in these papers. Recently, modeling of 

nanostructures by using the nonlocal elastic field theory of 

Eringen (1972, 1983) has received wide importance. The 
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prominence of nonlocal theory of elasticity has stimulated the 

researchers to investigate the behavior of the nanostructures 

much accurately (Li et al. 2016). This theory contains a 

nonlocal stress field parameter which introduces a stiffness-

softening influence on the nanostructures (Ebrahimi and 

Barati 2016a, b, Ebrahimi et al. 2016). 

To include the nonlocal effects in analysis of piezoelectric 

nanostructures, Ke and Wang (2012) investigated thermal 

vibration of piezoelectric nanoscale beams according to the 

nonlocal theory. 

Wang and Wang (2012) researched the electromechanical 

coupling behavior of a piezoelectric nanowire incorporating 

both surface and nonlocal effects. Also, Liu et al. (2013) 

presented vibration analysis of piezoelectric nanoplates 

exposed to thermo-electro-mechanical loads based on the 

nonlocal theory. Asemi et al. (2014) explored the Influence of 

initial stress on vibrational behavior of double-piezoelectric-

nanoplate systems under different boundary conditions. Zang 

et al. (2014) investigated axial wave propagation of 

piezoelectric nanoplates considering surface and nonlocal 

effects. Liu et al. (2014) studied buckling and post-buckling 

behaviors of piezoelectric Timoshenko nanobeams under 

thermo-electro-mechanical loadings. Ke et al. (2015) 

reported vibration response of a nonlocal piezoelectric 

nanoplate considering various boundary conditions. Liu et al. 

(2015) presented large amplitude vibration of nonlocal 

piezoelectric nanoplates under electro-mechanical coupling. 

Asemi et al. (2015) researched the nanoscale mass detection 

using vibrating piezoelectric ultrathin films subjected to 

thermo-electro-mechanical loads. Ansari et al. (2016) 

presented thermo-electrical vibrational analysis of post-

buckled piezoelectric nanosize beams according to the 

nonlocal elasticity theory. Ebrahimi and Barati (2016c, d) 

investigated dynamic behavior of non-homogenous 

piezoelectric nanobeams under magnetic field. Wang et al. 

(2016) investigated vibration response of piezoelectric 

circular nanoplates considering surface and nonlocal effects. 

Ebrahimi and Barati (2016e) presented buckling analysis of 

nonlocal third-order shear deformable piezoelectric 

nanobeams embedded in elastic medium. Ebrahimi and 

Barati (2016f) studied buckling behavior of smart higher 

order piezoelectric functionally graded nanosize beams 

subjected to the electro-magnetic field. Liu et al. (2016) 

studied nonlinear vibration of piezoelectric nanoplates using 

nonlocal Mindlin plate theory. 
A number of papers have been recently published to 

consider flexoelectric effect in analysis of piezoelectric 
nanostructures. Zhang et al.  (2014) examined the 
flexoelectric effect on the electroelastic and vibration 
responses of piezoelectric nanoplates. Liang et al. (2014) 
showed the influences of surface and flexoelectricity on a 
piezoelectric nanobeam. Zhang and Jiang (2014) investigated 
bending behavior of piezoelectric nanoplates due to surface 
effects and flexoelectricity. Yang et al. (2015) examined 
electromechanical behavior of piezoelectric nanoplates with 
flexoelectricity under simply-supported boundary conditions. 
Liang et al. (2015) presented buckling and vibration 
behaviors of piezoelectric nanowires due to flexoelectricity. It 
is clear that buckling analysis of flexoelectric nanoplates is 
very rare in the literature. Only in one paper, Liang et al. 
(2016) examined buckling and vibration of flexoelectric  

 
Fig. 1 Geometry and coordinates of flexoelectric nanoplate 

 
 

nanofilms under simply-supported boundary conditions. But, 
they did not consider the effects of surface piezoelasticity, 
nonlocality and other kinds of boundary conditions in their 
model.  

In fact, literature survey indicates that none of previous 

papers on flexoelectric nanoplates have not considered 

nonlocal effects in their analysis. It is reported that the 

mechanical behavior of piezoelectric nanoplates is 

significantly influenced by the presence of nonlocality. 

Therefore, there is a strong scientific need to investigate 

buckling behavior of flexoelectric nanoplates incorporating 

both surface piezoelasticity and nonlocal effects. 

This paper deals with thermo-mechanical buckling 

behavior of flexoelectric nanoplates under uniform and linear 

temperature distributions. Flexoelectric nanoplates can 

tolerate higher buckling loads compared with conventional 

piezoelectric nanoplates, especially at lower thicknesses. 

Both nonlocal and surface effects are considered in the 

analysis of flexoelectric nanoplates for the first time. 

Hamilton’s principle is employed to derive the governing 

equations and the related boundary conditions which are 

solved applying a Galerkin-based solution. Comparison study 

is also performed to verify the present formulation with those 

of previous data. Numerical results are presented to 

investigate the influences of the flexoelectricity, nonlocal 

parameter, surface elasticity, temperature rise, plate thickness 

and various boundary conditions on the critical buckling load 

of thermally affected flexoelectric nanoplate. 

 

 

2. Nonlocal elasticity theory for the piezoelectric 
materials with flexoelectric effect 
 

Suppose a nanoplate made of PZT-5H
 

piezoelectric 

material, as shown in Fig. 1. According to the nonlocal 

elasticity model (Eringen 1972) which contains wide range 

interactions between points in a continuum solid, the stress 

state at a point inside a body is introduced as a function of 

the strains of all neighbor points. The influence of 

flexoelectricity due to the elastic polarization Pi induced by 

strain gradient, and the elastic stress created by electric field 

gradient, can be expressed by (Li and Pan 2016) 

2 2
0( )

k
ij ij ijkl kl kij k klij ijkl kl

l

E
e a C e E f C T

x
   


−  = − + − 


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where σij, εij, Ek denote the stress, strain and electric field 

components, respectively; Cijkl, ekij and kik are elastic, 

piezoelectric and dielectric constant, respectively. Also, χij 

is the relative dielectric susceptibility and fijkl is the 

flexoelectric coefficient. αkl, ΔT and pi are thermal 

expansion coefficient, temperature change and pyroelectric 

constant, respectively. 

Also, e0a 
is nonlocal parameter which is introduced to 

describe the size-dependency of nanostructures. The effect 

of flexoelectricity is involved using the following 

expression of the electric enthalpy energy density was as 

follows 

1 1 1
( )

2 2 2

ij k
kl k l ijkl ij kl kij k ij klij k ij

l l

E
H a E E c e E f E

x x


   

 
= − + − − −
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(2) 

Finally, the constitutive relations incorporating nonlocal 

and flexoelectricity effects can be expressed by 
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in which τijl denotes the moment stress tensor due to the 

converse flexoelectric effect, Di is the electric displacement 

vector and Qij denotes the electric quadrupole density due to 

flexoelectricity, respectively. The size-dependent 

phenomena in piezoelectric nanostructures due to 

flexoelectricity involved in Eq. (3) is reported in analysis of 

nanowires, nanobeams and nanoplates. Taking into account 

the surface effects, i.e., the residual surface stress, the 

surface elasticity, and the surface piezoelectricity, the 

surface internal energy density Us can be defined by the 

surface strain and the surface polarization as 

1 1

2 2

s s s s s s s s s s
sU a E E c e E             =  − + −  (4) 

in which   denotes the surface residual stress tensor, 

sa  and 
sc  denote the surface permittivity and surface 

elastic constants. Also, 
se and 

sE are the surface 

piezoelectric tensor and surface electric field. Finally, the 

nonlocal surface constitutive relations can be written as 
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where 
s
  and 

sD  are the surface Cauchy stress and 

surface electric displacement. 

 

 

3. Theoretical formulation 
 

Here, the classical plate theory is employed for 

modeling of a piezoelectric nanoplate with surface, 

nonlocal and flexoelectric effects. The displacement field at 

any point of the nanoplate can be written as 

( )1 , ,x y
w

u z u
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
−  (6a) 
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w

u z v
y
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


−  (6b) 

3( , , )u x y z w=  (6c) 

where u and v are displacements of the mid-surface and w is 

the bending displacement, respectively. Nonzero strains and 

strain-gradients of the present plate model are expressed as 
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(7) 

Through extended Hamilton’s principle, the governing 

equations can be derived as follows 

0
( ) 0

t

S W dt  + =
 

(8) 

where S and W are strain energy and external forces 

work. The strain energy can be written as 
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Substituting Eqs. (15) and (16) into Eq.(18) yields 
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(9b) 

in which the variables introduced in arriving at the last 

expression are defined as follows 
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The work done by applied forces can be written in the 

form 
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0 0 0
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where 
0 0 0, ,x y xyN N N are in-plane applied loads. The 

following Euler-Lagrange equations are obtained by 

inserting Eqs. (9b) and (11) in Eq. (8) when the coefficients 

of δu, δv, δw are equal to zero 
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and the associated boundary conditions 
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where 0 0 00, 0T

x y xyN N N NN+= = = . For a 

piezoelectric nanoplate with the flexoelectric effect, the 

nonlocal constitutive relations for the bulk may be written 

as 
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where φ is the electrostatic potential and zE
z


= −


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Also, the nonlocal constitutive relations for the surface 

layer can be expressed by 
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Under the open circuit condition, the electric 

displacement on the surface is zero. Therefore, one can 

obtain the electric field an electric field gradient as 
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Finally, the electric field gradient can be written as 
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Using Eqs. (24) and (25) the nonlocal constitutive 

relations for the bulk and surface can be expressed by the 

following form 
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k x k y k x k y

f f fw w

k x k y

 
   

−  = + − −
   

 
− −

 

 

(30) 

2
2 2 0 31 31 31 32 31 31

0 11 12 11 2

33 33 33

2 2 2

31 32 31 31 31 32
12 2 2 2

33 33 33

( ) ( ) ( ) ( )

( ) ( )

s s s
s s s s s

xx xx xx

s s s
s

e e e e e eu v w
e a c c c z

k x k y k x

e e e f e fw w w
c z

k y k x k y

  
  

−  = + + + + − +
  

  
− + − +

  

 

(31) 

2
2 2 0 32 31 32 32 32 31

0 21 22 21 2

33 33 33

2 2 2

32 32 32 31 32 32
22 2 2 2

33 33 33

( ) ( ) ( ) ( )

( ) ( )

s s s
s s s s s

yy yy yy

s s s
s

e e e e e eu v w
e a c c c z

k x k y k x

e e e f e fw w w
c z

k y k x k y

  
  

−  = + + + + − +
  

  
− + − +

  

 

(32) 

2
2 2

0 66( ) ( 2 )s s s

xy xy

u v w
e a c z

y x x y
 

  
−  = + −

   
 (33) 
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Therefore, by integrating Eqs. (26)-(30) over the plate’s 

cross-section area, the force and moment stress resultants 

can be rewritten in the following form 

2 2
2

11 12 11 122 2

T

xx xx xx

u v w w
N N A A B B N

x y x y


   
−  = + − − −

   

 
(34) 

2 2
2

21 22 21 222 2

T

yy yy yy

u v w w
N N A A B B N

x y x y


   
−  = + − − −

   

 (35) 

2

66 ( )xy xy

u v
N N A

y x


 
−  = +

 
 (36) 

2 2
2

11 122 2xx xx

w w
M M C C

x y


 
−  = − −

 
 (37) 

2 2
2

21 222 2yy yy

w w
M M C C

x y


 
−  = − −

 
 (38) 

2
2

66xy xy

w
M M C

x y



−  = −

 
 (39) 

2 2
2

11 12 11 122 2xxz xxz

u v w w
P P B B D D

x y x y


   
−  = + − −

   
 (40) 

2 2
2

21 22 21 222 2yyz yyz

u v w w
P P B B D D

x y x y


   
−  = + − −

   
 (41) 

where 
2

0( )e a =  and 
11 1

T T

xx yyN N c h T= =  . The 

cross sectional rigidities are defined as 

2 2

31 32 31 32
11 11 22 22 12 21 12 66 66

33 33 33

31 31 32 32 32 31 31 32
11 22 12 21

33 33 33

2 23 3

31 32
11 11 22 22 12 21

33 33

( ) , ( ) , ( ) ,

2
( ) , ( ) , ( ) ,

2 2 2

( ) , ( ) , (
12 12

e e e e
A c bh A c bh A A c bh A c bh

k k k

e f e f e f e f
B bh B bh B B bh

k k k

e eh h
C c b C c b C C c

k k

= + = + = = + =

−
= = = =

= + = + = =
3 3

31 32
12 66 66

33

2 2

31 32 31 32
11 22 12 21

33 33 33

) , 2 ,
12 12

( ) , ( ) , ( )

e e h h
b C c b

k

f f f f
D bh D bh D D bh

k k k

+ =

= = = =

 

(42) 

And the force and moment stress resultants due to 

surface piezoelasticity may be expressed as 

2 2
2

11 12 11 122 2

s s s s s s

xx xx

u v w w
N N A A B B

x y x y


   
−  = + − −

   
 (41) 

2 2
2

21 22 21 222 2

s s s s s s

yy yy

u v w w
N N A A B B

x y x y


   
−  = + − −

   
 (42) 

2
2

66 66( )s s s sw

xy xy

u v w
N N A A

y x x y


  
−  = + −

   
 (43) 

2 2
2

11 12 11 122 2

s s s s s s

xx xx

u v w w
M M F F C C

x y x y


   
−  = + − −

   
 (44) 

2 2
2

21 22 21 222 2

s s s s s s

yy yy

u v w w
M M F F C C

x y x y


   
−  = + − −

   
 (45) 

2
2

66 66( )s s sw s

xy xy

u v w
M M C C

y x x y


  
−  = + −

   
 (46) 

in which 

31 31 32 32 32 31
11 11 22 22 12 21 12

33 33 33

2
2 31 31 31 31

66 66 66 66 11 11

33 33

2

32 32 32 32
22 22 12 21

33 33

2( ) , 2( ) , 2( ) ,

2 , , ( ) 2( ) ,
2

( ) 2( ) ,
2

s s s
s s s s s s s

s s
s s sw s s s

s s
s s s s

e e e e e e
A c h A c h A A c h

k k k

e e e fbh
A c h A c bh B c h

k k

e e e fbh
B c h B B

k k

= + = + = = +

= = = + +

= + + = =
2

32 31 31 32
12

33 33

2 2 2

31 31 32 32 32 31
11 11 22 22 12 21 12

33 33 33

3 2 3

31 31 31 31 32 32 32 32
11 11 22 22

33 33 33

( ) 2( ) ,
2

( ) , ( ) , ( ) ,
2 2 2

( ) ( ) , ( ) (
6 2 6

s s
s

s s s
s s s s s s s

s s s s
s s s s

e e e fbh
c h

k k

e e e e e ebh bh bh
F c F c F F c

k k k

e e e f e e e fh bh h
C c C c

k k k

+ +

= + = + = = +

= + + = + +
2

33

3 2 3 2

32 31 31 32
12 12 66 66 66 66

33 33

) ,
2

( ) ( ) , , .
6 2 3 2

s s
s s s s sw s

bh

k

e e e fh bh h bh
C c C c C c

k k
= + + = =

 

(49) 

The nonlocal governing equations of a piezoelectric 

nanoplate with surface and flexoelectric effects in terms of 

the displacement can be derived by substituting Eqs. (34)-

(48), into Eq. (12) as follows 

32 2 2

11 11 66 66 12 12 66 66 11 112 2 3

3

12 1 6 22

2

62
0

( ) ( ) ( ) ( )

( ) s

s s s s s b

s w

wu u v
A A A A A A A A B B

x y x y x

w
B B

x y

w
A

x y

  
+ + + + + + + − +

    


− + −

 


=



 

(50) 

32 2 2

66 66 22 22 21 21 66 66 22 222 2 3

3

21 21

3

66 22

( ) ( ) ( ) ( )

( ) 0

s

s

s s s s

s w

wu
A A A A A A A A B B

x y x y

v v

w
A

x

y

w
B

y
B

x y

  
+ + + + + + + − +

    


− + −






=



 

(51) 

3 3 3 3

11 12 66 21 66 223 311 12 12 222 2

4 4 4

11 11 11 12 12 66 66 12 22 22 224 4 2 4

2 2 2 2
0

02 2 2

( ( ( (

( ) 2( ) ( )

( )(

) 2 ) 2 )

(

)

) 2

s s sw s s s

T

w

s s s s

u v
B B B B

x x y x y y

w w w
C C D C C C C D C C D

x

u v
F F C F C F

x y y

w w w
b N N b

x y x


   
+ + + + + + +

     

  
− + + − + + + + − + +

   

   
− + + + +



+

 

+

2 2 2 2
0

2 2 2 2 2

2 2 2 2

0 2 2 2 2

) )( )( )

2 ( )( ) 0

( Tw w w
N N

y x y x y

w

b

w
b

x y x y



 

   
+ + +

    

   
+ +

   
− =

+

 

(52) 

 

 

4. Solution procedure 
 

In this section, an analytical solution of the governing 

equations for thermal bucking of a flexoelectric nanoplate 

with simply-supported (S), clamped (C) or free (F) edges or 

combinations of these boundary conditions is presented 

which they are given as: 

• Simply-supported (S) 

0xx xxv w N M= = = =    at x=0,a 

(53) 

0yy yyu w N M= = = =    at y=0,b 

• Clamped (C) 

0u v w= = =           at x=0,a and y=0,b (54) 

To satisfy above-mentioned boundary conditions, the 

displacement quantities are presented in the following form 

1 1

( )
( )m

mn n

m n

X x
u U Y y

x

 

= =


=


  (55) 
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1 1

( )
( ) n

mn m

m n

Y y
v V X x

y

 

= =


=


  (56) 

1 1

( ) ( )mn m n

m n

w W X x Y y
 

= =

=  (57) 

where (Umn, Vmn, Wmn) are the unknown coefficients. 

Inserting Eqs. (55)-(57) into Eqs. (50)-(52) respectively, 

leads to  

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

0

mn

mn

mn

k k k

k k k

k k

U

k

V

W

    
    

=   
   

   

 (58) 

where  

( )

( )
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 



 

 
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=

=

+ + + + + +

+ + + −

+ + +

+ + +=

+=
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( )

( )
( ) ( )

1 11 12 12 12 66 8
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) 2
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2
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(
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b N N b N N

C
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 

   

    

+ + + −

+ + − + + + + + +

− + + + + + + + +
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in which 

'' ''''

1 3 5
0 0

'' '' '' ''''

9 11 13
0 0

' ' '' ''' '

6 8 12
0 0

' ''' '' ' '

2 4 10
0 0

( , , ) ( , , )
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( , , ) ( , , )

( , , ) ( , , )

a b
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a b
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a b
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m n m n m n m n

X Y X Y X Y X Y dxdy

X Y X Y X Y X Y dxdy

X Y X Y X Y X Y dxdy

X Y X Y X Y X Y dxdy

  

  

  

  

=

=

=

=

 

 

 

 

 

By finding determinant of the coefficients of above 

matrix and setting it to zero, we can find critical buckling 

temperatures. The function Xm for different boundary 

conditions is defined by 

SS: 

𝑋𝑚(𝑥) = sin(𝜆𝑚𝑥) 

𝜆𝑚 =
𝑛𝜋

𝑎
 

(59) 

CC: 

𝑋𝑚(𝑥) = sin(𝜆𝑚𝑥) − sinh(𝜆𝑚𝑥)
− 𝜉𝑚(cos(𝜆𝑚𝑥)
− cosh(𝜆𝑚𝑥)) 

 

𝜉𝑚 =
sin(𝜆𝑚𝑥) − sinh(𝜆𝑚𝑥)

cos(𝜆𝑚𝑥) − cosh(𝜆𝑚𝑥)
 

 

𝜆1 = 4.730, 𝜆2 = 7.853, 𝜆3 = 10.996, 𝜆4

= 14.137, 𝜆𝑚≥5

=
(𝑚 + 0.5)𝜋

𝑎
 

(60) 

CS: 

𝑋𝑚(𝑥) = sin(𝜆𝑚𝑥) − sinh(𝜆𝑚𝑥)
− 𝜉𝑚(cos(𝜆𝑚𝑥)
− cosh(𝜆𝑚𝑥)) 

 

𝜉𝑚 =
sin(𝜆𝑚𝑥) + sinh(𝜆𝑚𝑥)

cos(𝜆𝑚𝑥) + cosh(𝜆𝑚𝑥)
 

 

𝜆1 = 3.927, 𝜆2 = 7.069, 𝜆3 = 10.210, 𝜆4

= 13.352,   𝜆𝑚≥5

=
(𝑚 + 0.25)𝜋

𝑎
 

(61) 

The function Yn can be obtained by replacing x, m and a, 

respectively by y, n and b. 

 

 

5. Types of thermal loadings 
 

Temperature rise in structure may led to thermal buckling 

phenomena. Different temperature distributions can be find in 

the literature: 

 
5.1 Uniform temperature rise 

 

Assume the case that the temperature of the nanoplate 

uniformly raised through-the-thickness as  

.)( TzT =  (62) 

Therefore, the pre-buckling force NT is 

11 1

TN c h T=   (63) 

  

5.2 Linear temperature rise 
 

Now let us consider the temperature rise varies linearly 

across the nanoplate thickness as 

0

1
( ) ( )

2

z
T z T T

h
= +  +  (64) 

The pre-buckling force NT is 

11 1

1

2

TN c h T=   (65) 

Also, for better presentation of the results the following 

dimensionless quantity is adopted 

2
0 3

11

a
N ,N D c h

D
= =  (66) 

 

 

6. Numerical results and discussions 
 

Thermal buckling of nonlocal flexoelectric nanoplates 

under uniform and linear temperature rise incorporating 

surface effect is examined. It is considered that the 

flexoelectric nanoplate is made of PZT-5H where the elastic  
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Fig. 2 Comparison of buckling load ratio of flexoelectric 

nanoplates without surface and nonlocal effects 

 

 

properties are considered as c11=102 Gpa, c12=31 Gpa, 

c66=35.5 Gpa and the piezoelectric and dielectric 

coefficients are assumed as e31=17.05 C/m2 and 

k33=1.76×10-8 C/(Vm). The flexoelectric coefficient is also 

considered as f31=10-7 (Yang et al. 2015). The surface 

elastic and piezoelectric constants for PZT-5H can be 

considered as: 11

sc =102 N/m, 12

sc =31 N/m, 66

sc =35.5 

N/m and 31

se =11 C/m. Comparison is performed with those 

of a flexoelectric nanoplate presented by Liang et al. 

(2016). To this end, effect of nonlocality, surface elasticity, 

surface piezoelasticity and elastic foundation are omitted. In 

Fig. 2 the buckling load ratio (N0 with flexoelectric/N0 without 

flexoelectric) is presented as a function of nanoplate thickness. 

The results are in an excellent agreement with those of 

Liang et al. (2016) for a simply-supported flexoelectric 

nanoplate. 

Fig. 3 shows the variation of buckling load of NL and 

NL-SE piezoelectric nanoplates under uniform temperature 

change versus thickness (h) with and without flexoelectric 

effect when a=1000 nm, ΔT=50. In this figure, SSSS and 

CCCC flexoelectric nanoplates are assumed. It is concluded 

that neglecting the surface effect leads to lower buckling 

loads. In fact, inclusion of surface effect enhances the 

stiffness of flexoelectric nanoplates and buckling loads 

increases. Also, buckling loads reduce with increase of 

nanoplate thickness. But, this reduction in buckling loads 

with respect to thickness depends on the flexoelectricity 

effect. It means that effect of flexoelectricity becomes less 

important at large thicknesses. In fact, at smaller 

thicknesses the strain gradients increase and the effect of 

flexoelectricity becomes more prominent. So, 

flexoelectricity presents an inherent size effect and can be 

neglected in analysis of large scale plates. It can be deduced 

that the buckling loads predicted by the nonlocal 

flexoelectric plate model are consistently larger than those 

of the conventional nonlocal plate model without 

considering flexoelectricity. 

Effect of flexoelectricity on buckling load of 

piezoelectric nanoplates under uniform and linear 

temperature changes at a=1000 nm and ΔT=300 is 

presented in Fig. 4. As previously mentioned, neglecting 

flexoelectricity effects leads to lower buckling loads for all 

values of nanoplate thickness. Also, for all values of 

nanoplate’s thickness, the magnitude of buckling load  

 
(a) SSSS 

 
(b) CCCC 

Fig. 3 Variation of buckling load of NL and NL-SE 

piezoelectric nanoplates under uniform temperature change 

with and without flexoelectric effect (a=1000 nm, ΔT=50) 

 

 

depends on the type of thermal loading. It is known that 

nanoplate under uniform temperature rise (UTR) is more 

flexible than linear temperature rise (LTR). So, LTR gives 

larger buckling loads for a piezoelectric nanoplate with and 

without flexoelectric effect. Such observations are valid for 

both SSSS and CCCC nanoplates. 

Effect of temperature change (ΔT) on buckling load of 

flexoelectric nanoplates under uniform temperature change 

with respect to thickness of plate is plotted in Fig. 5 for 

SSSS and CCCC boundary conditions. It is seen that as the 

value of thickness increase, buckling load significantly 

reduces. But, larger values of thickness have no sensible 

effect on dimensionless buckling loads of flexoelectric 

nanoplate. Also, it should be stated that effect of 

temperature change is neglected in all previous papers on 

flexoelectric nanoplates. It is seen that temperature change  
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(a) SSSS 

 
(b) CCCC 

Fig. 4 Effect of flexoelectricity on buckling load of 

piezoelectric nanoplates under uniform and linear 

temperature changes (a=1000 nm, ΔT=300) 

 

 

significantly affects the buckling loads of flexoelectric 

nanoplates for every value of thickness.  

In fact, increase of temperature reduces the stiffness of 

flexoelectric nanoplate and leads to lower buckling loads. 

But, effect of temperature change is more prominent at 

lower thicknesses. In other words, thinner flexoelectric 

nanoplates are more affected by the temperature rise. 

Fig. 6 illustrates the influence of nonlocal parameter and 

temperature change on buckling load of flexoelectric 

nanoplates under uniform temperature change with surface 

effects at a=100 nm, h=10 nm. It is observable that a 

nonlocal flexoelectric nanoplate has lower critical buckling 

loads compared with local flexoelectric nanoplate (µ=0 

nm2), regardless of the type of boundary conditions. So, 

inclusion of nonlocal stress field parameter reduces the 

buckling loads of a flexoelectric nanoplate. In fact, nonlocal  

 
(a) SSSS 

 
(b) CCCC 

Fig. 5 Effect of temperature change on buckling load of 

flexoelectric nanoplates under uniform temperature change 

(a=1000 nm) 

 

 

parameter introduces a stiffness-softening impact. So, by 

neglecting the nonlocal parameter, buckling loads of 

flexoelectric nanoplate are overestimated. Also, it is clear 

that buckling behavior of flexoelectric nanoplates relies on 

the temperature change for every value of nonlocal 

parameter. At a fixed nonlocal parameter, a rise in 

temperature leads to lower buckling loads. 

Effects of thermal loading and plate aspect ratio (a/b) on 

buckling load of flexoelectric nanoplates under uniform and 

linear temperature changes with surface effect are depicted 

in Fig. 7 at a=1000 nm, h=10 nm, µ=2 nm2. Regardless of 

the type of thermal loading, buckling load of flexoelectric 

nanoplate increases with the rise of plate aspect ratio. Also, 

it is found that effect of aspect ratio on CCCC flexoelectric 

nanoplates is more prominent than SSSS one. All these 

observations are dependent on the type of thermal loading  
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(a) SSSS 

 
(b) CCCC 

Fig. 6 Effect of nonlocal parameter and temperature change 

on buckling load of flexoelectric nanoplates under uniform 

temperature change with surface effect (a=100 nm, h=10 

nm) 

 

 

and also, temperature change value. In other words, 

increase of temperature shows a reducing impact on 

buckling loads for every value of aspect ratio. Moreover, for 

both CCCC and SSSS flexoelectric nanoplates, LTR gives 

larger buckling loads than UTR at a fixed temperature 

change and plate aspect ratio. 

Another investigation on the effect of aspect ratio on 

buckling loads of flexoelectric nanoplates under various 

boundary conditions (SSSS, CSSS, CSCS and CCCC) is 

illustrated in Fig. 8. It is assumed in this figure that h=10 

nm and µ=2 nm2. As previously mentioned, increase of 

plate aspect ratio leads to higher buckling loads. But, this 

increment in buckling load due to aspect ratio depends on 

the type of boundary condition. By increasing the number 

of clamped edges, the flexoelectric becomes more rigid and  

 
(a) SSSS 

 
(b) CCCC 

Fig. 7 Effect of thermal loading and plate aspect ratio on 

buckling load of flexoelectric nanoplates under uniform and 

linear temperature changes with surface effect (a=1000 nm, 

h=10 nm, µ=2 nm2) 

 
 

buckling loads will rise. Although, buckling loads of CSSS 

and CSCS flexoelectric nanoplates are close at lower aspect 

ratios. But, the difference in buckling loads of CSSS and 

CSCS nanoplate becomes more significant at larger aspect 

ratios. 
 

 

7. Conclusions 
 

In this research, critical buckling characteristics of a 

flexoelectric nanoplate under uniform and linear thermal 

loadings are investigated based on nonlocal elasticity theory 

considering surface effects. This non-classical nanoplate 

model contains flexoelectric effect to capture coupling of 

strain gradients and electrical polarizations. Moreover, the  
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Fig. 8 Effect of boundary condition and plate aspect ratio on 

buckling load of flexoelectric nanoplates under linear 

temperature change with surface effect (a=1000 nm, h=10 

nm, µ=2 nm2) 

 

 

nonlocal elasticity theory is employed to study the nonlocal 

and long-range interactions between the particles. The 

present model can degenerate into the classical model if the 

nonlocal parameter, flexoelectric and surface effects are 

omitted. Hamilton’s principle is employed to derive the 

governing equations and the related boundary conditions 

which are solved applying a Galerkin-based solution. From 

the results analyzed above, it is found that inclusion of 

nonlocal parameter leads to lower buckling loads by 

reducing the bending stiffness of NL-SE flexoelectric 

nanoplates, while ignoring the surface effect leads to 

reduction in buckling loads. Besides, the non-dimensional 

buckling loads are found to be decreased by increasing the 

thickness value, however effect of flexoelectricity on 

buckling loads is more prominent at lower thicknesses. 

Increase of temperature reduces the stiffness of flexoelectric 

nanoplate and leads to lower buckling loads. But, effect of 

temperature change is more prominent at lower thicknesses. 

However, a flexoelectric under linear temperature rise has 

larger buckling loads compared with a flexoelectric 

nanoplate under uniform temperature rise. 
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