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1. Introduction 
 

Topology optimization (Sigmund and Maute 2013) is 

effective to find optimal material distribution and establish 

reasonable initial structure configuration. The problem of 

topology optimization was solved using analytical method 

in Michell (1904). The homogenization method was 

proposed by Bendsoe and Kikuchi (1988). Zhou and 

Rozvany (1991) introduced solid isotropic material with 

penalization (SIMP) method. Level set method was studied 

in Osher and Sethian (1988). Eschenauer (1994) proposed 

the bubble method. Xie and Steven (1993) presented the 

evolutionary structural optimization (ESO). In recent years, 

structural topology optimization has also been emphasized 

in the theory, algorithm and engineering application 

(Eschenauer 2001, Rozvany 2001, Bendsoe 2003, Sigmund 

2013, Deaton 2014). However, some numerical instabilities 

were found in previous studies, such as checkerboard 

phenomenon, mesh-dependency phenomenon and fuzzy 

boundaries. In addition, most researches just highlighted 

isotropic material. 

In the field of civil engineering, steel and concrete are 

widely used. At present, the research of steel and concrete 

topology optimization method is mainly based on the theory 

of the strut and tie model (Kumar 1978, Rozvany 1996, 

Liang 2000, 2005, Liu and Qiao 2011, Valério 2013, Matteo 

Bruggi 2009, 2016). Strut and tie model is to calculate the 

stress of the structure itself. The tension zone is equivalent 

to the tie rod, and the compression zone is equivalent to the 

compression bar. Moreover, the joints between the  
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compression bar and the tie rod are connected by a node, 

thus the structure is discretized into a system composed of 

struts, tie bars and joints. 

At present, most topology optimization is based on 

structural optimization of isotropic material or single 

material. In order to make the topology optimization 

method more adaptable and reliable in practical 

engineering, it is necessary to study the structural topology 

optimization method of steel and concrete composite 

materials. Steel has superior tensile and compressive 

properties, while concrete has strong compressive and weak 

compressive properties. In the past, the truss-like model has 

been used for topology optimization based on single 

material (Zhou 2016, Qiao 2016, 2017). In this paper, the 

truss-like model is expanded and the method of the 

reinforced concrete composite material model is 

established. It is extremely useful to optimize the composite 

materials of steel and concrete, and the results of topology 

optimization are compared with the results of strut and tie 

model. 

 

 

2. Composite material model of plane two phase 

orthogonal arrangement steel and concrete 
 

2.1 Mechanical model 
 

The truss-like topology optimization method is proposed 

by Zhou (2005, 2008, 2011), which is based on the single 

material model in previous study. Now it is expanded to two 

kinds of materials. It is assumed that there are two phase 

orthotropic steel materials at any point in the design 

domain. The direction of the principal axis of the steel 

material is the direction of the two groups of orthogonal 

steel. The t1, t2 are defined as the densities of the two steel 

materials. The elastic modulus of two-phase steel is Es. The 
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stress and strain of two groups of steel materials are σ1, σ2 

and ε1, ε2, respectively. The relationship of Stress-strain is, 

si i iE t = , i=1,2 (1) 

The elastic matrix of steel material along the principal 

axis can be written as 

s

1 2 s 1 2( , ,0) diag[ 0]t t E t t= D  (2) 

The diag[.] is a diagonal matrix. The angle between the 

two phase steel material and the coordinate axis X and Y 

are α and α+π/2 respectively, then the elastic matrix in the 

axis direction is, 

s T s

1 2 1 2( , , ) ( ) ( , ,0) ( )t t t t  =D T D T  (3) 

T(α) is a strain coordinate transpose matrix, 
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Take Eq. (4) into Eq. (3), 
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Given the concrete filled with steel materials, the elastic 

matrix of concrete should be considered in the study of 

reinforced concrete composite optimization layout. Finally, 

the elastic matrix of the steel composite structure is 

obtained, 

c s=D D + D  (9) 

c
D ,

s
D  are the elastic matrices of concrete and steel. 

 

2.2 Finite element method, stiffness matrix 
 

2.2.1 Elastic matrix at any position within the element 
The design variables are the density tj and the direction 

angle aj of the steel material at the node position. By using 

the method of shape function interpolation, the elastic 

matrix of any point in the element is, 

s s

1 2( , ) ( , ) ( , , )
e

e j j j j

j S

N t t    


=D D  
(10) 

The e is the unit number, ,jN ( )   is the form function, 

Se is the node set of unit e. The Eq. (5) of elastic matrix of 

steel material is substituted into the Eq. (10), then, 

2 5
s

s
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( , ) ( , ) ( )
e

e j bj br r j r

j S b r

E N t s g    
 = =

=   D A  (11) 

 
2.2.2 The stiffness matrix of steel and concrete 

composite material 
The steel concrete composite material is composed of 

two kinds of materials: steel and concrete. When the steel 

material is smaller in the design domain, and the influence 

of the superposition of the concrete and steel is ignored, the 

total stiffness matrix can be calculated by the following 

formula, 

T c s T c T s c s( ) d d d
e e e

e e e e e e e
V V V

V V V= + = + = +  k B D D B B D B B D B k k  
(12) 

c

eD
 

and s

eD  are respectively the elastic matrix of 

concrete and steel material of unit e, c

ek  and s

ek  are 

respectively the elastic matrix of concrete and steel material 

of unit e. The Eq. (11) can calculate the stiffness matrix of 

steel material, then 

2 5 2 5
s T

s

1 1 1 1

( ) d ( )
e

e e

e bj r bj j r bj br r j ejr
V

j S b r j S b r
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 = =  = =

= =   k B A B H
 
(13) 

Hejr is a constant matrix, which is independent of the 

design variables, and it is independent of the unit under the 

same design domain and rule cell grid. The Eq. is, 

T

s d
e

ejr j r
V

E N V= H B A B  (14) 

As a constant matrix, Ar can be calculated by the Eq. 

(7). ( )r jg a can be calculated by Eq. (6). 

The whole stiffness of structural steel material can be 

calculated by the Eq. (13), 

2 5
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e e j S b r

t s g 
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By exchanging of the cumulative sequence of nodes and 

units, it can be obtained, 

2 5
s s

1 1 1

( )
j

J

e bj br r j ejr

e j e S b r

t s g 
=  = =
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Sj is a collection of cells connected to the node j. 

Finally, the overall stiffness matrix of steel concrete 

composite structure is 

c s= +K K K  (17) 

 
2.3 The calculation of principal stress and principal 

stress angle of steel and concrete composite materials 
 

The structural displacement can be solved by following 

equation. 

=F KU  (18) 
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Fig. 2.1 Composite microelement of steel and concrete 

 

 

Respectively the stress of the steel and concrete is, 

s

s =σ D ε  (19) 

c

c =σ D ε  (20) 

In the initial layout, the direction of the principal stress 

of the steel and concrete material is not consistent. As 

shown in Fig. 2.1, in order to find the principal stress and 

the principal stress angle of the composite material, a micro 

element is analyzed. The axial direction of the steel material 

is x' and y', and the angle between the x axis and the y axis 

is α and α+π/2 respectively, and the corresponding steel 

density is 'xt , 
'yt . 

Each iteration is to arrange the steel material with the 

allowable stress of the steel material, in order to obtain the 

distribution density of steel along the x axis and the y axis, 

the stress of steel of x' and y' axes is orthogonally 

decomposed along X and Y axes, 

' 'cos sins s s

p x p x p yt A' t A' t A'    = +  

' 'sin coss s s

p y p x p yt A' t A' t A'    = +  

Among them, the allowable stress of steel is 
s

p , The 

cross section area of each element in the structure along the 

principal stress direction is A', further there, 

' 'cos sinx x yt t t = +  (21) 

' 'sin cosy x yt t t = +  (22) 

Combined with the concrete stress, it can obtain the 

average stress of two kinds of materials on the axes. Based 

on the mean stress, the principal stress and principal stress 

angle of the composite material are calculated. Among 

them, σsx, σsy and γsxy are the three components of the steel 

stress σs, respectively. 

Let x, y axial cross-sectional area is respectively Ax and 

Ay. On the x side, on the same side, the proportion of steel 

and concrete area is respectively tx and 1−tx. The x axial 

force of the micro element is, 

c s(1 )x x x x x x x x xF A t A t A  = = − +  (23) 

Divide out Ax, the average axial stress of x axis can be 

obtained, 

c s(1 )x x x x xt t  = − +  (24) 

In the same way, 

c s c s[ (1 ) (1 ) ] / 2xy xy x xy x xy y xy yt t t t    = − + + − +  (25) 

c s(1 )y y y y yt t  = − +  (26) 

It can be found that the formulas for calculating the 

average principal stress and the principal stress angle of the 

planar micro element by material mechanics, 

2
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2.4 Derivation of steel material distribution standards 
 

The full stress criterion method is used to deduce the 

material distribution criterion. For stress constrained 

minimum volume problem, a mathematical model is 

adopted, 

p

find ,

min

s.t.

bj j

l

bj

t t

V



 





, 

1,2

1,2, ,

1,2, ,

b

j J

l L

=

=

=

 (29) 

Where, t is the lower limit of density, because there is 

no singular problem of stiffness matrix due to the 

arrangement of steel material under the concrete, the 

minimum can be 0. l and L are load case and the total 

number of working conditions respectively. 

For steel and concrete composite materials, the 

distribution of steel materials with elastic state in the design 

domain is arranged as follows: 

1) The strain in the elastic state of steel and concrete is 

synchronous, strain corresponding to allowable stress are to 

meet the ultimate strain of the elastic state. 

2) Under compression, the compressive stress is not 

greater than the allowable compressive stress of concrete, 

and is assumed by concrete; otherwise, the steel and 

concrete can bear together. 

3) The tension under tensile stress is not greater than the 

allowable tensile stress of concrete tension, from concrete 

to bear; otherwise, can be made of steel and concrete to 

bear. 

The allowable stress of concrete is 
c

py , and the 

allowable stress of tension is 
c

pt . The allowable stress of 

steel under tension and compression is 
s

p . The density of  
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steel is t = [tx ty]. The mean principal stress  x y
 =σ  

can be obtained by formula (11). The orthogonal section 

area of each element in the structure is A= [Ax  Ay] in the 

direction of the average principal stress, then  

c s

p p

c c

p p

c c

p p

Under compression, 

Under tension,

(1 )

,

,

y

 − +

=

= t

A σ A t σ Atσ

σ σ

σ σ

 (30) 

 

 

 

Further, the formula for calculating the density of steel 

materials can be obtained, 

cc

s s

p c p c

yx

x yt t
  

   

 −−
   =   − −  

t  (31) 

The arrangement direction of the steel material is the 

same as that of the principal stress. 

 

l0=5 m l0=5 m l0=3.6 m 

   

 

P=300 kN 

 

P=300 kN 

 

P=150 kN 

 

P=800 kN 

 

P=1200 kN 

 

P=300 kN 

Fig. 3.1 Several common beam 

 

 

(a) structure facade(mm) (b) optimal topology 

  
(c) optimal topology (d) optimal strut-and-tie 

Fig. 3.2 Deep beam with large hole 
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3. Numerical examples 
 

3.1 Several beams 
 

The beam section is b×h = 250×1000 mm. Concrete 

material parameters: concrete strength grade is C30, elastic 

modulus Ec = 7.15 GPa, Poisson’s ratio Pr = 0.2, allowable 

tensile stress 
c

pt  = 1.43 Mpa, allowable tensile stress 

c

py  = 14.3MPa. Steel material parameters: the allowable 

values of tensile and compressive strength are 
s

p  = 360  

 

 

MPa, elastic modulus, poisson’s ratio Psr = 0.2658. 

The red line distribution represents the distribution of 

the steel material, and the direction is the direction of the 

steel material layout. 

 

3.2 Deep beam with large hole 
 

The red line distribution represents the distribution of 

the steel material, and the direction is the direction of the 

steel material layout.(a), (c) and (d) are form Liang (2000). 

 

3.3 10-storey frame structure 

  

(a) structure facade (b) F1=0 KN, F2=75 KN/m, optimal topology 

  

(c) F1=300 KN, F2=0 KN, optimal topology (d) F1=300 KN, F2=75 KN/m, optimal topology 

Fig. 3.3 10-storey frame structure 
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A frame is taken as a design domain. The total width is 

24 m, the total height is 30 m, and the height of the layer is 

3 m. Column cross section: 400×800 mm, beam cross 

section: 400×600 mm. Each beam is distributed vertical 

load 75 KN/m, each layer of horizontal load 300 KN. The 

rest of the parameters are the same as 3.1.
 
The red line 

distribution represents the distribution of the steel material, 

and the direction is the direction of the steel material layout. 

 

 

4. Discussions 
 

Comparison of figures in Fig. 3.2, some conclusions can 

be presented as follows. Other examples can be seen in the 

same situation. 

Most results of the strut-and-tie model using topology 

optimization are characterized by mesh dependence, 

checkerboard phenomenon, and fuzzy boundary, like Fig. 

3.2(c). These problems are solved by the topology 

optimization method of truss-like model in Fig. 3.2(b). 

Under the strut-and-tie model, the steel structure is 

modified by removing the unnecessary compressive 

material (concrete), and the steel structure is formed only in 

the tensile zone, like Fig. 3.2(c). Thus, the overall stiffness 

of the original structure is changed, and the actual internal 

force distribution is affected. The concrete is not changed in 

the original structure, but only the steel material is arranged 

along the principal stress beyond the allowable stress of 

concrete in Fig. 3.2(b). 

The strut-and-tie model is confined to concrete and 

affects the bearing capacity, but truss-like material model 

takes precedence over concrete when it is pressed, the 

bearing capacity is increased by placing steel material when 

the concrete exceeds the compressive capacity of concrete. 

It is the same arrangement of steel materials during 

tension. But the strut-and-tie model directly aggregates the 

tie bars, which is different from the actual steel concrete 

structure. Truss-like material model method is to disperse 

the steel material in the concrete and keep the original 

structure. 

Fig. 3.3 presents the results of the current research on 

the 10-storey frame structure, which clearly shows the 

layout of the steel bars of the beams and columns. In the 

same way, the current research can be applied to frame-

shear wall, shear wall and other structural systems 

composed of reinforced concrete materials. 

 
 

5. Conclusions 
 

In this paper, the truss-like topology optimization model 

of the single material is extended, and the topology 

optimization of reinforced concrete structure using 

composite truss-like material model is established. The 

results are compared with those of the similar field in the 

past. Several conclusions can be drawn: 

• Most of the optimized results by strut-and tie model 

have mesh dependence, checkerboard phenomenon, 

boundary blur and so on. The topology optimization method 

based on truss-like material model can solve these problems 

very well. 

• The strut-and-tie model of topology optimization just 

takes into account the difference between the allowable 

stress and strain of the tension and compression, or only the 

difference of the elastic modulus is taken into account. The 

topology optimization of two dissimilar materials 

combinations is not fundamentally considered in previous 

study. Two kinds of anisotropic materials of steel and 

concrete are used in this paper. 

• The strut-and-tie model removes the unnecessary 

compressive concrete material, and the tensile zone only 

has the steel material, which affects the overall stiffness and 

actual internal force distribution of the original structure. 

This paper is to disperse the steel material in the concrete 

and keep the original structure, and take precedence over 

concrete when it is pressed. It can also solve the problem of 

reinforcing bar arrangement under the structure system. 

At the same time, for the method described in this paper, 

there are the following expectations: 

• The final result of this paper is the distribution of the 

steel material, which is the preliminary arrangement. 

However, the distribution of the steel material is mainly 

horizontal and vertical arrangement in the actual 

engineering, which can be further studied. 

• The method of superposition of steel and concrete in 

the derivation is considered. The concrete is full of the 

design domain, and the concrete stiffness of the space 

occupied by the steel material should be deducted 

accurately. When the steel material is relatively small, it has 

little effect on the results. But there is a big error when the 

steel material is large (such as Steel Reinforced Concrete), 

which should be corrected in the future. 

• Based on elastic plane analysis, elasto-plastic analysis 

and space analysis are still to be studied. 

• The application of topology optimization to the 

structure system can be further deepened. 
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