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Active vibration robust control for FGM beams with piezoelectric layers

Yalan Xu*, Zhousu Li and Kongming Guo

School of Electronic & Mechanical Engineering, Xidian University, Xi'an 710071, PR China
(Received September 29, 2017, Revised April 11, 2018, Accepted April 18, 2018)

Abstract. The dynamic output-feedback robust control method based on linear matrix inequality (LMI) method is presented
for suppressing vibration response of a functionally graded material (FGM) beam with piezoelectric actuator/sensor layers in this
paper. Based on the reduced model obtained by using direct mode truncation, the linear fractional state space representation of a
piezoelectric FGM beam with material properties varying through the thickness is developed by considering both the inherent
uncertainties in constitution material properties as well as material distribution and the model error due to mode truncation. The
dynamic output-feedback robust H-infinity control law is implemented to suppress the vibration response of the piezoelectric
FGM beam and the LMI method is utilized to convert control problem into convex optimization problem for efficient
computation. In numerical studies, the flexural vibration control of a cantilever piezoelectric FGM beam is considered to
investigate the accuracy and efficiency of the proposed control method. Compared with the efficient linear quadratic regulator
(LQR) widely employed in literatures, the proposed robust control method requires less control voltage applied to the
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piezoelectric actuator in the case of same control performance for the controlled closed-loop system.
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1. Introduction

As a special class of composite material, functionally
graded materials (FGMs) have received extensive attention,
which are fabricated from two or more phases of material
constituents with continuously gradual changing material
properties and possess resistant high temperature gradient
and strong mechanical performance (Koizumi 1993). A
great deal of research has already been reported on the
static and thermo-elastic analysis (Swaminathan and
Sangeetha 2017, Nie et al. 2013, Reddy et al. 2016),
buckling analysis (Shen and Wang 2016) and dynamic
analysis (Huang and Li 2010, Hemmatnezhad et al. 2013,
Wang et al. 2016, Lee and Lee 2017) of structures made of
FGMs over the past decades. On the other hand, the
introduction of piezoelectric materials may form the
intelligent FGM structures. In literatures, dynamic
characteristics and responses of FGM structures with
piezoelectric layers have been widely studied (Huang and
Shen 2006, Ray and Sachade 2006, Bodaghi et al. 2014,
Duc et al. 2015, Wu and Liu 2016).

With the further research on dynamics of FGM
structures with piezoelectric layers, more and more
attention has been focused on the investigation of the active
vibration control for FGM structures integrated with
piezoelectric actuators and sensors (Shirazi et al. 2011,
Jadhav and Bajoria 2013, Kiani et al. 2013, Dogan 2014,
Bruant and Proslier 2016, Selim ez al. 2016, 2017, Nguyen-
Quang et al. 2017), in which the constant-gain velocity
feedback algorithm is mostly used. Jadhav and Bajoria
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(2013) investigated the free and forced vibration analysis of
piezoelectric FGM plate, and the structural vibration is
suppressed by using a negative velocity feedback control
law. Kiani et al. (2013) have discussed dynamic analysis
and active control of shallow doubly curved piezoelectric
FGM panels in which the dynamic equation has been
developed by using the modified Sander’s shell theory, and
the vibration was suppressed by using the classical negative
velocity feedback control method. Dogan (2014) has
discussed the active control of the nonlinear vibration of the
functionally graded material plate under random excitation
by using a velocity feedback control technique. Selim et al.
(2016, 2017) have investigated the active vibration control
of FGM plates and carbon nanotube reinforced composite
(CNTRC) plates, respectively, in which a novel element-
free IMLS-Ritz model is developed for studying the free
vibration behavior and a constant velocity feedback
approach is adopted for the active vibration control of
structures.

Besides, the optimal control was applied to the active
control of FGM structures in order to improve the control
performance. Bruant and Proslier (2013) have investigated
active vibration control of a piezoelectric FGM beam by
using the linear quadratic regulator (LQR) control law. As a
kind of static state-feedback optimal control scheme, the
knowledge of the state variables is needed in the vibration
control. However, it is not easy to capture complete
variables by using sensors and a state observer is essential
in LQR method which may require numerous computations
(Rittenschober and Schlacher 2012). In order to avoid using
the state observer and improve the control performance, an
attempt to seek a dynamic output-feedback controller
(Valter et al. 2015, Chang et al. 2016, Wei and Park 2017)
will be made in this paper.
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Fig. 1 Configuration of piezoelectric FGM beam

Owing to the reason that the design of model-based
dynamic controller requires the accurate modeling of the
open-loop system, the uncertainties in FGM structures
should be considered in the stage of control design in order
to guarantee the robustness of the closed-loop system. First,
the uncertainties in constitution material properties and
volume fraction index for FGMS are inevitable due to the
complexity in the manufacturing and fabrication process of
FGMs, which will be reflected on the uncertainties in
structural dynamic characteristics and dynamic responses.
In literatures, the influences of the uncertainties in material
properties and volume fraction index for FGMS on the
system dynamics have been widely reported (Lal 2007,
Shaker 2008, Shegokar and Lal 2014, Mahammad and
Singh 2015, Xu et al. 2015, 2016). Furthermore, modeling
uncertainty may result from the model reduction which is
required for obtaining the implementable relatively low-
order controller. In model-reduction approaches, the direct
mode truncation is commonly used to obtain a relatively
low-order model including dominating low-frequency
modes. In the active control, un-modeled high-frequency
modes may lead to the instability of the closed -loop system
(Xu et al. 2015). To the best of the author's knowledge, few
studies have investigated robust control methods of FGM
structures with considering uncertainties mentioned above.
In this paper, based on the linear fractional state space
model of piezoelectric FGM beams considering the
uncertainties in both modal parameters and modeling, a
dynamic output- feedback robust controller is designed by
using linear matrix inequality (LMI) method (Reza and
Esfanjani 2016, Li and Adeli 2016, Berardengo 2017) in
order to suppress the vibration response due to the
disturbance, and the corresponding comparative studies are
conducted.

2. Configuration of piezoelectric FGM beam

An FGM beam with bonded piezoelectric layers as
sensors and actuators having the length |, width b, thickness
h of host FGM beam and thickness #4./h; of piezoelectric
actuator/sensor with co-ordinate system (oxyz) as shown in
Fig. 1.

The top layer of the laminated beam is the piezoelectric
actuator layer and the bottom layer is the piezoelectric

sensor layer. The intermediate layer is an FGM beam made
of the combined metal and ceramics, its properties are
graded through the thickness direction according to the
following volume fraction power law distribution (Segokar
and Lal 2014)

o))

where Pr denotes the effective material property (e.g.,
elastic modulus, mass density) of the host FGM, Pr, Pg
denote the material properties of the top surface and bottom
surface material of host FGM beam, respectively. n
denotes the volume fraction index.

3. Dynamics modeling and model reduction
3.1 Theory formulation for host FGM beam

The displacement field described by the third-order
shear deformation theory (TSDT) of Reddy can be given as

t
u_{U(X,Z,t)}_ uo(x,t)+z¢x(x,t)—qz{@(x,t%%j @
= = X
W(X,t) WO(X,t)
where uO(x,t), WO(X,'[) are the axial and transverse
displacements of the mid-plane in the X,z directions,
respectively, ¢, is the cross-sectional rotation, and
_4

3h?
The strain field in the case of the small deformation can
be written as
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The stress field is given as
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where Eg(z) is the effective Young’s modulus, which is the
function of z for the FGM beam, and the Poisson’s ratio v is
assumed to be constant.

3.2 Piezoelectric constitute equation
For one-dimensional structures, the constitutive

relationship of piezoelectric material coupling elastic and
electric field is given by (Duc ef al. 2015)
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D, —ee+Z5E,, o6=Sfe—e'E, (5)

where D,, E, denote electric field and electric

displacement in the z direction, o, € are stress and strain

vector, respectively. e, SF, ESE.3 are the piezoelectric

constant matrix, material elastic constant matrix and
dielectric coefficient, respectively.

3.3 Finite element model

aWO
% 7

mid-plane and electric potential for a beam element can be
defined in terms of nodal variables as follows

The displacements (u, W, ® )at the

.
{uo Wo % «/&} =Ng®, @, }=Ny@°, (6)

where ¢°, <DE are the generalized nodal displacements and
the nodal electric potentials respectively. N, Njare the

shape function matrix. So, the displacement filed can be
written as

ul Ny |,

wl qu’

Nu:[l 0 —¢2° z—c123]N,
N,=[0 1 0 ON

()

The stress field can be expressed in terms of nodal
variables as follows

B
£=B,g°, B, {Bj,

Bg:[l 0 —¢2° z—clz3]2—')\(|,

87=[0 0 1-3c7° 1—30122}\1

(8)

The electric field can be expressed in terms of nodal
electric potentials.

The kinetic energy for FGM beam with piezoelectric
layers can be expressed as

T =% J'pF(z)(u2 W2 v +% jpp(uz APV (10)
VE A

where pe(z) is the effective mass density, which is the

function of z for the FGM beam, and p, is the mass

density of piezoelectric material.
The strain energy for FGM beam with piezoelectric
layers can be expressed as

U =% [eTDeeav +% IST(SEs—eTB(D(DZ)jV

Ve A

+% ST(SEs—eTB(D(I)g)iV
v

Ss

(11)
.
+ % fcbg B, e~ 258,02 hv

The external work is given as
e eT e eT e ET e
weF 0[5, 0 m0lot o
AE

where &; is the absolute dielectric constant of

piezoelectric material.

Substituting Eq. (6)-Eq. (9) into Eq. (10)-Eq. (11) and
applying Hamilton’s principle, the following finite element
equation of free vibration for the eth element can be
obtained

g+ K KB ) - K031 KE0%()-Fi )

K1)+ KL 030 - [ 2B,y 13)
A @
K&P(0)+ KS2()=0

where the matrices M°, KE, Kj, Kg, K§,  KEgq,

o+ K&, K& are given by

Me= J'pF(z)(NuTNu + NWTNW)dv
Ve

+ jpp(NuTNu #N, TNV,
V, +Vs

KE = IBUTDFBUdV, KS = IBUTSEBUdV, (14)
Ve VEHVE
KE, = K& = IBuTeTB®dV,KES K& = J'BuTeTBq,dv,
A A
KE, = JBmTeTBde, KE, = JBmTeTdeV
Ve Ve
Further, we obtain the following dynamic vibration

equation in the case that there is no voltage applied to the
piezoelectric sensor layer

Meqe(t)+ Keqe(t)= F? (t)_ ceontrol(t)

e e e (15)
=G ff(t)_ Qcontrolq)a (t)
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where the matrices K¢, G%(t), Q% nolt) are given by

K® = KE+IKE +KEKS K + KEKE K,
T
e t):HAe N dxdy, (16)
-1
ngntrol(t): KraKaa .”Ae §0/hadxdy

For the sensor layer, the applied charge is zero and the
converse piezoelectric effect is assumed negligible. Thus,
the sensor voltage is obtained by (Pota and Alberts 1995)

Vse (t) = qutqe(t)' qut = 57:5 J-eBudV (17)

Assembling element equations and introducing the
proportional damping matrix C, we have
M('j(t)+ Cq(t)+ Kq (t) =G ff(t)_ Qcontroi®a (t)'

Vs (t) = Qoua®(t)

where C=aK+bM ,

(18)

a and b are Rayleigh coefficients.

3.4 Modal decoupling and model reduction

The jth modal frequency @; and normalized mode

j
shape ¢; are governed by

(K-wMp; =0, j=12,..n (19)

and making q(t)zun(t) by the normalized mode shape

matrix p=[p; @,
ﬁ(t)+ A(C, (x))ﬂ(t)+ X((D)I](t) = HTG ff(t)+ HTQcontroI(Da (t) (20)

where 'q(t) is the modal displacement vector, and & @

(pn], we have

are modal damping and modal frequency.
With mode truncation method, the dynamic equation of
structure can be written as

Zblk a ak
+26il_f f|, i=12...,m
1=1

where @, (t) is the k th applied voltage,

7, (t)+ 28 0, (t)+ o ¢
(21)

f, is the | th

disturbance, and b, by are the influence coefficients of

ik_a»
the k th actuating patch and the | th disturbance on the ith
mode, respectively.

With structural modes, the performance displacement
outputs of system and the measured voltage outputs of
sensor can be defined as

Yi(t)_

cj ymi(t) i=12...q,
(22)

g EMB

Vsi (t) =

clj 577]() i=12,...,p

I
N

i

where y;(t) is the ith performance output, vg(t) is the

i th measured voltage output, and c;; Cjj s are the

ij_y
influence coefficients of the jth mode on the i th

performance output and the ith measured voltage output,
respectively.

4. State-space representation of linear fractional
model

Egs. (21)-(22) can be rearranged as the following state
space form

X(t)= A o )x(t)+ B, (1), (1) + B ()(t)
y(t)=C, (n)x(t) (23)
Vs(t): Cs(p)X(t)

X(t)=[m(t). 7 (t). 72 () 722 0). ... 2 ()12 O] s

state vector and @, (t) is the control voltage input vector,

where

f(t) is the external disturbance input vector, y(t)is the
performance output of the system Vs(t)is the measured
voltage output of the sensor, and A(C, (n) is the system
matrix which depends on the modal parameters as follows

Alg, 0)=diag{A,,...,A,,.... A, },

0 1
Ai(givwi)=|:_w_2 _25_0)} =

The inherent uncertainties in constitution material
properties and material distribution will lead to the random
fluctuation of structural dynamic characteristics (Xu et al.
2015, 2016). The uncertainties in modal parameters are
dealt as follows

0 = @ + A, 5, &:§i+A§i52i (25)

where @, ¢; are the nominal value of modal parameters,
A

;?

A, are the ranges of fluctuation of uncertain modal

parameters around the nominal values @, & ,
Sy, O, are the normalized uncertain parameters for modal
parameters with the bound norms |5 <1 and ||6,] <1.

As such, with the uncertain modal parameters o, E the
system matrix A(m,c) can be developed as uncertain matrix

A(&)E) and its block A, (5,5,) can be written as
s~ =\ [0 1
A‘(“"‘H—@F —25@.}
0
) _a)IZJrzwiAw‘ JrAZw,512i (26)

1
=200, - 260050 — 20’|Ag Gy = ZAg‘AiAm‘ §1i§2i:|
= Ai(”u(i)*ﬁ(%i , Agi)ﬁi':i(ww &)
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where the matrices concerning the uncertainties can be
given by

Ei(AWA{.)Zl:_Z —Z:}

@

si{aﬁ 0} Fi(a)i.g“i){zwi 24}

0 52i 0 Zwi

(@7)

Recalling Eq. (23), the state-space representation of the
linear fractional model for the FGM structure with
considering the uncertainties in modal parameters

%(t) = A0, Ex() + B, ()@, (1)
+B f (p)f(t)+ E(A(u'Aé’ bul(t)'
y(t)=Cy (r)x(t) (28)
vs(t)=C(m)x(t)
hua(t) = F(e, Ox(t). gu(t)=8hy(t)
where the matrices introduced by the uncertainties are given
by
Els.a, J-diagli (0, 8 ) Enla, o )
8 =diag{d,,... 8, } (29)
F(C, (’)) = diag{F1(wll gl)"'ﬂ Fan (a)m S )}

Introducing the model error due to mode trunctuation
(Sana and Rao 2000), we have

G(s)=G(s)+e(s)x (30)

where e(s) has to form the upper bound of the un-modeled

high-frequency modes, which can be represented as the
following state space form

Xo(t)= Agx (t)+ B.@, ()

e(t)= Cox, )+ D,, (1) (31)

and 7y is the normalized uncertainty with the bound norm
"X"oo <1. As a result, the state-space representation of linear

fraction model for the FGM structure can be further
developed as

X(t)= A (t)+ By ,®,(t)+B, f(t)+Eg,(t)
yi(t)= C:Lyxl(t)“L Eliygu(t)'
vis(t)=Cox(t)+Ey_9u(t)

hy (t) = Fx,(t)+ @, (t), g,(t)=An,(t)

(32)

where the state variables x,(t):{)’((t) )'(e(t}T and the

system matrix, the input matrices and the output matrices
are given as

A :diag{AvAe}' BI_a :[Ba Be]!

(33)
BI_f :[Bf 0]’ CI_a = [Cy Ol Cl_s :[Cs O]
and the matrices concerning uncertainties are given as
E,=[E o] E ,=[0 E,} E =0 E]
! I_y [ yl I_ (3 4)

F, =diag{F,C.}, F, =[0 D.J', A=diag{s,x}

5. Controller design based on LMI approach

This part is aimed at designing a dynamic output-
feedback controller as follows

Xe (t) = Acxc (t) + Bch (t)

@, (t) = Cext) + D v (t) (39)

where X (t) 1is the state vector of the controller;

A.,B;,C., D, are unknown parameters.

Applying Eqg. (35) to Eg. (32), the closed-loop system
can be described as

2(t) = Agz(t) + Buf (1) + Eq, (t)
y(t) =Cq_yz(t)+Eq_,9,(t)
hy(t)=Fu_.z(t)+Fa_¢9.(t) (36)
@, (t) = Coy_o2(t)+ Dor_o94 (1)
9u(t)=Ahy (t)

where z(t) is the augmented state vector denoted by

2(t)={x,(t), x.(t)}" and the augmented system matrix, input
matrices and output matrices are described as follows

respectively
B.— B ¢
Lo @

= [DCC|_S Cc]

_ A"'BI_aDcCI_s BI_acc
¢ BcCI_s Ac
Cay=lc, 0} C

cl_o

and the augmented influence matrices related to the
uncertainties are expressed as

EI +BI aDcEI s
E,= - - Eyqyv=E .,
cl { BCEI_S cl_y Iy

Fcl_z = [Fl + I:ZDCCI_yl FZCcl

I:cl_g = I:ZD(:EI_sr Dcl_s = DcEI_s

(38)

In order to suppress the vibration response as well as
guarantee the system stability, the robust controller can be
designed by setting an upper bound « on the H-infinity
norm from the external disturbance f(f) to the system
response y(¢) of Eq. (36) as follows

dlzT (tPz(t))/dt +yT (Oy(t)- 2T (F () <O,

(39)
P=P">0

in the case of the uncertainties

gs (o, t)<hi bh, ) (40)

Substituting Eq. (36) into Egs. (39)-(40), the controller
design problem can be transformed into the solution of the
following matrix inequality by using the S-Procedure
method (Xu et al. 2015)

AGP+PAG +Co Co y+ BFa Fa, PEy+CiEay+ AR Fag PBg
EI,P + EIUCC, + ﬁFcingF.;Lz EILyEcLy + ﬂFJ,chl,g -pl 0 |<0, 520 (41)
BIP 0 —-a’l
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Rearranging Eq. (41) and utilizing the Schur
complement theorem, Eq. (41) can be transformed into the
following equivalent matrix inequality by,

AlP+PA, PE, PBy Fl, CJ |
* —1 0 Fa, Edy
* *  _g%l 0 0 |<0 (42
* * * 10
* * * * —1

Conducting the following partitioning

P: P2 a9 [P P2l g Py
P= N G N
{pl pj [p! pj : LJ!

and performing a
diag . 1,1,1,1
inequality Eq. (42) can be converted into the linear matrix
inequality and the controller design problem can be
converted into the following linear convex optimization
problem

|
0} (43)

congruence transformation with

on Eq. (42), the nonlinear matrix

Min  «
Subject  to

APy +PAT +BLC+CIBI,  AtBDC+Al  E+BLDE. By PR +CIF pCl,|
.

Alpy+pA +CLBI +BC s PE+BE, pBy F +CDIF Cl, |
* * -1 0 EDF E,|

: . N )

*
* * N 0 |

. . . . . o

-
P >0
I py)

The parameters A,B;,C;,D.,p;,p; can be obtained
by solving the above optimization problem, the parameter
P,can be obtained by the singular value decomposition
(SVD) of the matrix | —p;f;, and the unknown parameters
A.,B.,C. of controller Eq. (35) can be obtained by

(U,S,V) =SVD(l -pypy), po=V, p,=US,

Ce= (Ct - DcCI_szFA)Z Tl,

B, =p;'(B: ~P:B,_:D.) (45)
A= pl_l(At - p1<A| + B|_aDcC|_s)31

N N AT }1
+PyB.Cy P +P1B| .CcP? f67)

6. Simulation results

In this part, the flexural vibration control of a cantilever
piezoelectric FGM beam with piezoelectric actuator bonded
to the top surface and piezoelectric sensor bonded to the
bottom surface is considered to investigate the effectiveness
and efficiency of the proposed control method, in which the
tip flexural vibration response will be suppressed by the
proposed control method. The host FGM beam is composed
of ceramics (Zirconia) and metal (Alumina) with the
material properties of Young’s elastic modulus £~151 Gpa,
mass density for Zirconia, and Young’s elastic modulus

Table 1 First three modal frequencies f; (Hz) for
piezoelectric FGM beam

=0 =05 w5 =0 10

Y No With No With No With No With No With
piezo  piezo  piezo  piezo  piezo  piezo  piezo  piezo  piezo  piezo

i=1 12045 1.1872 1.0830 1.0668 0.9691 0.9539 0.8886 0.8744 0.8634 0.8536

i=2 77784 75571 6.8957 6.7926 6.1674 6.0700 5.6564 5.5660 5.4965 5.4235

i =3 220312 21.7453 19.8189 19.5197 17.7106 17.4301 16.2580 15.9892 15.8923 15.6414
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(©)
Fig. 2 Variations of modal frequencies with volume fraction
index

E,=70 Gpa, mass density p,, =2707kg/ m® for Alumina.

The Poisson’s ratio is assumed to be constant 0.3 for each
constituent material. In FGM, material properties are
assumed to vary through the thickness according to power
law distribution Eq. (1). For the piezoelectric layers,
Young’s elastic modulus, Poisson’s ratio, mass density,
piezoelectric constant, dielectric coefficient and absolute
dielectric constant are E,=2 Gpa, v,=0.3, p.=3000 kg/m?,

pp=1800 kg/m?, 631:*1.0626*101’}’1/1/,553 =1.5e—-8F /m,
&=0.0464 C/m?, respectively. The host FGM beam has the
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Fig. 3 First two mode shapes of piezoelectric FGM beam
(n=2)

geometric parameters of 20 m in length, 0.4 m in thickness
and 0.8 m in width, the piezoelectric layer has the same
length and width as the host structure, and the thickness of
piezoelectric layer is set to be 0.01 m in order not to have a
great impact on the dynamic characteristics of the host
beam. Eight elements are used to model the piezoelectric
FGM beam in finite element simulation.

6.1 Dynamic characteristics

Firstly, Modal analysis is carried out to investigate the
influence of piezoelectric layers on the dynamic
characteristics of the structure. Compared to the FGM beam
without piezoelectric layers, the first three modal
frequencies of the piezoelectric FGM beam with the top
piezoelectric layers as actuator and the bottom piezoelectric
layer as sensor are list in Table 1 and the variations of
modal frequencies with the volume fraction index N are
shown in Fig. 2(a)-2(c).

From Table 1, the modal frequencies are slightly
decreased with the introduction of the piezoelectric layers
in the active control of FGM beam. It can be observed from
Fig. 2 that the modal frequencies decrease with the increase
of volume fraction index ». It is because the increase in
volume fraction index leads to the increase in the volume of
metal, and, as a result, the stiffness of FGM beam reduces.
It is worth noting that modal frequencies nearly remain

Displacement (m)

=3

=5

=50

=300

Magnitude (dB)

Frequency (radis)
(b)
Fig. 4 Envelopes of impulse and frequency responses for
FGM beam

unchanged with the increase of volume fraction index n
when volume fraction index » is large enough. This can be
explained that metal plays a dominant role in FGM when
volume fraction index n becomes large enough, and the
effective material properties has no obvious changes with
the increase of the volume fraction index n (Xu et al. 2016).

Compared to the host FGM beam without piezoelectric
layers, the first two normalized mode shapes for the
piezoelectric FGM beam are illustrated in Fig. 3(a) and Fig.
3(b), showing the effect of piezoelectric layers on the mode
shapes of the host FGM beam. It is seen that the
introduction of piezoelectric layers has no significant effect
on the mode shapes of the structure.

Fig. 4 give the envelopes of impulses and frequency
responses for the FGM beam with different volume fraction
indices, from which it is seen that the amplitude of vibration
is getting larger (Fig. 4(a)) and the resonant frequency is
getting lower with the increase of volume fraction index
(Fig. 4(b)), which means the FGM beam becomes more
flexible and more susceptible to vibration and may last for a
long time.

6.2 Active control without considering uncertainties

Considering the more dominant contribution of lower
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modes to the system response compared to high modes, first
two modes are included in the reduce model which is
required for the design of implementable output-feedback
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Fig. 8 Envelopes of impulse responses for original and
controlled system with different n

H-infinity controller.

Without considering uncertainties, a dynamic output-
feedback H-infinity control law based on the reduced model
including first two modes is designed. Fig. 5 gives the
impulse responses and frequency responses for the
uncontrolled and controlled reduced system without
considering the uncertainties, from which the first two
modes are excellently suppressed. It is also seen that the
thickness of piezoelectric layer has obvious effects on the
dynamic characteristics and response of structure and has
no dominant effects on the control performance since the
effect of piezoelectric layer on the host structure has been
taken into accounted in the development of structural model
used for designing the control law.

However, the problem has arisen when the control law
based on the reduced model was applied to the original
system. Fig. 6 gives the impulse responses and frequency
responses for the uncontrolled original and controlled
systems without considering the uncertainties, from which
it is evident that some high modes are excited when the low
frequencies are controlled (Fig. 6(b)), and the system
vibration response cannot be suppressed (Fig. 6(a)).
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controlled systems (n=2)

6.3 Robust control with considering uncertainties

Considering the uncertainties coming from the
parameters and the high modes excluded in the reduced
model, an output-feedback H-infinity robust control law is
designed in this part. 1% random error in modal parameters is
considered. For the modelling error, the following
weighting function e(s) forming the upper bound of the un-
modeled high-frequency modes is utilized

2
e(S) le —8s

= , 46
s? +2*1155 +1152 (46)

and Fig. 7 gives the frequency responses for the original,
reduced model and weighting system.

Applying the control law with considering the
uncertainties to the original system, Fig. 8 gives the
envelopes of the impulse responses for the uncontrolled and
controlled system, from which the proposed control method
is effective for different volume fraction indices and the
amplitude of vibration is relatively smaller for the smaller
volume fraction indices.

Fig. 9 gives the impulse responses and frequency
responses for the uncontrolled and controlled system with
considering the uncertainties, from which it can be seen that

10

[&)]

Voltage (V)

o

Time (s)

Fig. 10 Control voltages applied to the piezoelectric
actuator for different volume fraction indices

the low-frequency modes is suppressed without exciting the
high-frequency modes (Fig. 9(b)), and therefore the
spillover appearing in the control without considering
uncertainties is avoided and the vibration response is
suppressed (Fig. 9(2)).

Fig. 10 gives the control voltages applied to the
piezoelectric actuator for the controlled system with
different volume fraction indices. It is observed that, in the
beginning of control process, the control voltage is larger
for the smaller volume fraction volume index compared to
the larger volume fraction volume index, which means the
suppression of vibration for the FGM beam with smaller
volume fraction index need more efforts due to the large
stiffness.

6.4 Comparative study

The experimental studies on active control of FGM
structures are extremely scarce in the literature for the
complexity in the manufacturing and fabrication process of
FGMs and the difficulty of experiment test for the FGM
structure. So, for comparative purpose, both the efficient
linear quadratic regulator (LQR) (Bruant and Proslier 2013)
and the proposed method are employed to control the
vibration of the FGM beam with piezoelectric layers. In
LQR method, the control law can be expressed as

@, (t)=—Ke(t) (47)
which minimizes a cost function given by

3= % j:(zT(t)Qz(t)+(pj(t)mpa(t))dt,

R>0, Q=0

(48)

where R, Q are the weighting matrices of state variables
and input variables respectively and tuned to refine the
LQOR control law. With the decrease of R value or the
increase of Q value, the better control performance is
obtained while higher control cost is required or the higher
input voltage is applied to the piezoelectric actuator. The
optimal solution is

K=R™BP (49)
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where P is the solution of Riccati equation (Schulz and
Gomes 2013).

Compared to the LQR method with different values of
R, the impulse responses for the controlled system by using
the proposed control method are shown in the Fig. 11. It is
seen that the better time-domain response can be obtained
for the controlled systems by using the proposed control
method or the LQR method with the smaller value of R,
having a settling time of 10s for the proposed control
method and 8.44 s for the LQR method with smaller value
of R respectively, while the time-domain response is not
satisfactory for the controlled system by using the LQR
method with relatively higher value of R, having a settling
time of 65 s.

The input voltages applied to the piezoelectric actuator
for the proposed control method and the LQR method with
different values of R are given in Fig. 12. It is observed
that, compared to the LQR method with smaller value of R,
much less input voltage is required to obtain the same
control performance in the proposed control method. In the
LQR method with smaller value of R, the applied input
voltages have peaked at 344 V. In the case of the same order
of input voltage, the better control performance can be
obtained for the proposed control method law than that of
LQR method with lager value of R.

7. Conclusions

The dynamic model has been developed for
piezoelectric FGM beams, based on which linear fraction
state-space representation for the structure considering both
the inherent uncertainties in constitution material properties
as well as material distribution and the model error due to
mode truncation. Based on which, a dynamic output
feedback H-infinity robust control law is designed by using
the linear matrix inequality for the purpose of suppressing
the vibration of the piezoelectric FGM structure. The
following conclusions can be obtained from this study.

(1) Compared to the host structure without piezoelectric
layers, the modal frequencies become smaller for the
piezoelectric FGM beam. The volume fraction index has a
dominant effect on the structural dynamic characteristics
and response, in which modal frequencies decrease and the
amplitudes of vibration increase with the increase of the
volume fraction index.

(2) The higher modes may be excited when the lower
modes have been suppressed for the original system by
using the control law without considering the uncertainties
due to the model reduction.

(3) The vibration of the original system can be
controlled by using the control law considering the
uncertainties, in which the low frequency modes can be
suppressed without exciting the high-frequency modes, and
therefore the spillover appearing in the vibration control can
be avoided.

(4) Compared to the linear quadratic regulator (LQR),
the same control performance for the controlled system can
be achieved just by applying less control voltage to the
piezoelectric actuator in the proposed control method.

Acknowledgments

The authors would like to acknowledge financial
support of Science Foundation of Shaanxi Province (China)
under Grant No. 2016JM1021 and National Science
Foundation of China under Grant N0.11502183.

References

Berardengo, M., Manzoni, S. and Conti, A.M. (2017), “Multi-
mode passive piezoelectric shunt damping by means of matrix
inequalities”, J. Sound Vibr., 405, 287-305.

Bodaghi, M., Damanpack, A.R., Aghdam, M.M. and Shakeri, M.
(2014), “Geometrically non-linear transient thermo-elastic
response of FG beams integrated with a pair of FG piezoelectric
sensors”, Comput. Struct., 107, 48-59.

Bruant, I. and Proslier, L. (2013), “Improved active control of a
functionally graded material beam with piezoelectric patches”,
J. Vibr. Contr,, 1, 1-22.

Bruant, I. and Proslier, L. (2016), “Optimal location of
piezoelectric actuators for active vibration control of thin axially
functionally graded beams”, Int. J. Mech. Mater. Des., 12(2),
173-192.

Chang, X.H., Xiong, J. and Park, H. (2016), “Fuzzy robust
dynamic output feedback control of nonlinear systems with
linear fractional parametric uncertainties”, Appl. Math.
Comput., 291, 213-225.


http://www.sciencedirect.com/science/article/pii/S0022460X17304686
http://www.sciencedirect.com/science/article/pii/S0022460X17304686
http://www.sciencedirect.com/science/article/pii/S0022460X17304686
http://www.sciencedirect.com/science/article/pii/S0096300316304313
http://www.sciencedirect.com/science/article/pii/S0096300316304313
http://www.sciencedirect.com/science/article/pii/S0096300316304313
http://www.sciencedirect.com/science/article/pii/S0096300316304313
http://www.sciencedirect.com/science/article/pii/S0096300316304313
http://www.sciencedirect.com/science/journal/00963003
http://www.sciencedirect.com/science/journal/00963003
http://www.sciencedirect.com/science/journal/00963003/291/supp/C

Active vibration robust control for FGM beams with piezoelectric layers 43

Dogan, V. (2014), “Active vibration control of functionally graded
plates under random excitation”, J. Intell. Mater. Syst. Struct., 1,
1-15.

Duc, N.G., Quan, T.Q. and Luat, V.D. (2015), “Nonlinear
dynamic analysis and vibration of shear deformable
piezoelectric FGM double curved shallow shells under
damping-thermo-electro-mechanical loads”, Comput. Struct.,
125, 29-40.

Farnam, A. and Esfanjani, R.M. (2016), “Improved linear matrix
inequality approach to stability analysis of linear systems with
interval time-varying delays”, J. Comput. Appl. Math., 294, 49-
56.

Hemmatnezhad, M., Ansari, R. and Rahimii, G.H. (2013), “Large-
amplitude free vibrations of functionally graded beams by
means of a finite element formulation”, Appl. Math. Model.,
37(18-19), 8495-8504.

Huang, X.L. and Shen, H.S. (2006), “Vibration and dynamic
response of functionally graded plates with piezoelectric
actuators in thermal environments”, J. Sound Vibr., 289(1-2),
25-53.

Huang, Y. and Li, X.F. (2010), “A new approach for free vibration
of axially functionally graded beams with non-uniform cross-
section”, J. Sound Vibr., 329(11), 2291-2303.

Jadhav, P.A. and Bajoria, K.M. (2013), “Free and forced vibration
control of piezoelectric FGM plate subjected to electro-
mechanical loading”, Smart Mater. Struct., 22(6), 065021-
065035.

Lee, JW. and Lee, J.Y. (2017), “Free vibration analysis of
functionally graded Bernoulli-Euler beams using an exact
transfer matrix expression”, Int. J. Mech. Sci., 122, 1-17.

Li, Z.J. and Adeli, H. (2016), “New discrete-time robust Ha/Hu
algorithm for vibration control of smart structures using linear
matrix inequalities”, Eng. Appl. Artif. Intel., 55, 47-57.

Kiani, Y., Sadighi, M. and Eslami, M.R. (2013), “Dynamic
analysis and active control of smart doubly curved FGM
panels”, Comput. Struct., 102, 205-216.

Klug, M., Leite, J.S.V. and Silva, F.P.L. (2015), “Fuzzy dynamic
output feedback control through nonlinear Takagi-Sugeno
models”, Fuzz. Set. Syst., 263, 92-111.

Koizumi, M. (1993), “Concept of FGM”, Ceram. Trans., 34, 3-10.

Mohammad, T. and Singh, B.N. (2015), “Stochastic vibration
characteristics of finite element modelled functionally gradient
plates”, Comput. Struct., 130, 95-106.

Nguyen-Quang, K., Dang-Trung, H., Ho-Huu, V., Luong-Van, H.
and Nguyen-Thoi, T. (2017), “Analysis and control of FGM
plates integrated with piezoelectric sensors and actuators using
cell-based smoothed discrete shear gap method(CS-DSG3)”,
Comput. Struct., 165, 115-129.

Kitipornchai, S., Yang, J. and Liew, K.M. (2006), “Random
vibration of the functionally graded laminates in thermal
environments”, Comput. Meth. Appl. M., 195(9-12), 1075-1095.

Lal, A., Singh, B.N. and Kumar, R. (2007), “Natural frequency of
laminated composite plate resting on an elastic foundation with
uncertain system properties”, Struct. Eng. Mech., 27(2), 199-
222.

Nie, G.J., Zhong, Z. and Chen, S.P. (2013), “Analytical solution
for a functionally graded beam with arbitrary graded material
properties”, Compos. Part B-Eng., 44(1), 274-282.

Pota, H.R. and Alberts, T.E. (1995), “Mulitivariable transfer
functions for a slewing piezoelectric laminate beam”, ASME J.
Dyn. Syst., 117(3), 353-359.

Ray, M.C. and Sachade, H.M. (2006), “Finite element analysis of
smart functionally graded plates”, Int. J. Sol. Struct., 43(18-19),
5468-5484.

Reddy, J.N., Romanoff, J. and Loya, J.A. (2016), “Nonlinear finite
element analysis of functionally graded circular plates with
modified couple stress theory”, Eur. J. Mech. A-Sol., 56, 92-

104.

Rittenschober, T. and Schlacher, K. (2012), “Observer-based self
sensing actuation of piezoelastic structures for robust vibration
control”, Automat., 48(6), 1123-1131.

Sana, S. and Rao, V.S. (2000), “Application of linear matrix
inequalities in the control of smart structural systems”, J. Intel.
Mater. Syst. Str., 11(4), 321-323.

Schulz, S.L., Gomes, H.M. and Awruch, A.M. (2013), “Optimal
discrete piezoelectric patch allocation on composite structures
for vibration control based on GA and modal LQR”, Comput.
Struct., 128, 101-115.

Selim, B.A., Zhang, LW. and Liew, K.M. (2016), “Active
vibration control of FGM plates with piezoelectric layers based
on Reddy’s higher-order shear deformation theory”, Comput.
Struct., 155, 118-134.

Selim, B.A., Zhang, LW. and Liew, K.M. (2017), “Active
vibration control of CNT-reinforced composite plates with
piezoelectric layers based on Reddy’s higher-order shear
deformation theory”, Comput. Struct., 163, 350-364.

Shaker, A., Abdelrahman, W., Tawfik, M. and Sadek, E. (2008),
“Stochastic finite element analysis of the free vibration of
functionally graded material plates”, Comput. Mech., 41(5),
707-714.

Shegokar, N.L. and Lal, A. (2014), “Stochastic finite element
nonlinear free vibration analysis of piezoelectric functionally
graded materials beam subjected to thermo-piezoelectric
loadings with material uncertainties”, Meccan., 49(5), 1039-
1068.

Shen, H.S. and Wang, H. (2016), “Postbuckling of pressure-loaded
FGM doubly curved panels resting on elastic foundations in
thermal environments”, Thin Wall. Struct., 100, 124-133.

Shirazi, AH.N., Owji, H.R. and Rafeeyan, M. (2011), “Active
vibration control of an FGM rectangular plate using fuzzy Logic
controllers”, Proc. Eng., 14, 3019-3026.

Swaminathan, K. and Sangeetha, D.M. (2017), “Thermal analysis
of FGM plates-a critical review of various modeling techniques
and solution methods”, Comput. Struct., 160, 43-60.

Wang, Q.S., Shi, D.Y., Liang, Q. and Shi, X.J. (2016), “A unified
solution for vibration analysis of functionally graded circular,
annular and sector plates with general boundary conditions”,
Compos. Part B-Eng., 88, 264-294.

Wei, C.Z., Park, S.Y. (2017), “Dynamic optimal output feedback
control of satellite formation reconfiguration based on an LMI
approach”, Aerosp. Sci. Technol., 63, 214-231.

Wu, C.P. and Liu, Y.C. (2016), “A review of semi-analytical
numerical methods for laminated composite and multilayered
functionally graded elastic/piezoelectric plates and shells”,
Comput. Struct., 147, 1-15.

Xu, Y.L., Qian, Y., Chen, JJ. and Song, G. (2015), “Stochastic
dynamic characteristics of FGM beams with random material
properties”, Comput. Struct., 133, 585-594.

Xu, Y.L., Qian, Y. and Song, G. (2016), “Stochastic finite element
method for free vibration characteristics of random FGM
beams”, Appl. Math. Model., 40(23-24), 10238-10253.

Xu, Y.L, Qian, Y., Chen, J.J. and Song, G. (2015), “Modal-based
mixed vibration control for uncertain piezoelectric flexible
structures”, Struct. Eng. Mech., 55(1), 229-244.

PL


http://www.sciencedirect.com/science/journal/03770427
http://www.sciencedirect.com/science/article/pii/S0952197616300987
http://www.sciencedirect.com/science/article/pii/S0952197616300987
http://www.sciencedirect.com/science/journal/09521976
http://www.sciencedirect.com/science/journal/09521976/55/supp/C
http://www.sciencedirect.com/science/article/pii/S0165011414002632
http://www.sciencedirect.com/science/article/pii/S0165011414002632
http://www.sciencedirect.com/science/article/pii/S0165011414002632
http://www.sciencedirect.com/science/journal/01650114
http://www.sciencedirect.com/science/article/pii/S0005109812000891
http://www.sciencedirect.com/science/article/pii/S0005109812000891
http://www.sciencedirect.com/science/article/pii/S1270963817300093
http://www.sciencedirect.com/science/article/pii/S1270963817300093
http://www.sciencedirect.com/science/journal/12709638



