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1. Introduction 
 

As a special class of composite material, functionally 

graded materials (FGMs) have received extensive attention, 

which are fabricated from two or more phases of material 

constituents with continuously gradual changing material 

properties and possess resistant high temperature gradient 

and strong mechanical performance (Koizumi 1993). A 

great deal of research has already been reported on the 

static and thermo-elastic analysis (Swaminathan and 

Sangeetha 2017, Nie et al. 2013, Reddy et al. 2016), 

buckling analysis (Shen and Wang 2016) and dynamic 

analysis (Huang and Li 2010, Hemmatnezhad et al. 2013, 

Wang et al. 2016, Lee and Lee 2017) of structures made of 

FGMs over the past decades. On the other hand, the 

introduction of piezoelectric materials may form the 

intelligent FGM structures. In literatures, dynamic 

characteristics and responses of FGM structures with 

piezoelectric layers have been widely studied (Huang and 

Shen 2006, Ray and Sachade 2006, Bodaghi et al. 2014, 

Duc et al. 2015, Wu and Liu 2016).  

With the further research on dynamics of FGM 

structures with piezoelectric layers, more and more 

attention has been focused on the investigation of the active 

vibration control for FGM structures integrated with 

piezoelectric actuators and sensors (Shirazi et al. 2011, 

Jadhav and Bajoria 2013, Kiani et al. 2013, Dogan 2014, 

Bruant and Proslier 2016, Selim et al. 2016, 2017, Nguyen-

Quang et al. 2017), in which the constant-gain velocity 

feedback algorithm is mostly used. Jadhav and Bajoria  

                                                      

Corresponding author, Associate Professor 

E-mail: xyalan@hotmail.com 

 

 

(2013) investigated the free and forced vibration analysis of 

piezoelectric FGM plate, and the structural vibration is 

suppressed by using a negative velocity feedback control 

law. Kiani et al. (2013) have discussed dynamic analysis 

and active control of shallow doubly curved piezoelectric 

FGM panels in which the dynamic equation has been 

developed by using the modified Sander’s shell theory, and 

the vibration was suppressed by using the classical negative 

velocity feedback control method. Dogan (2014) has 

discussed the active control of the nonlinear vibration of the 

functionally graded material plate under random excitation 

by using a velocity feedback control technique. Selim et al. 

(2016, 2017) have investigated the active vibration control 

of FGM plates and carbon nanotube reinforced composite 

(CNTRC) plates, respectively, in which a novel element-

free IMLS-Ritz model is developed for studying the free 

vibration behavior and a constant velocity feedback 

approach is adopted for the active vibration control of 

structures.  

Besides, the optimal control was applied to the active 

control of FGM structures in order to improve the control 

performance. Bruant and Proslier (2013) have investigated 

active vibration control of a piezoelectric FGM beam by 

using the linear quadratic regulator (LQR) control law. As a 

kind of static state-feedback optimal control scheme, the 

knowledge of the state variables is needed in the vibration 

control. However, it is not easy to capture complete 

variables by using sensors and a state observer is essential 

in LQR method which may require numerous computations 

(Rittenschober and Schlacher 2012). In order to avoid using 

the state observer and improve the control performance, an 

attempt to seek a dynamic output-feedback controller 

(Valter et al. 2015, Chang et al. 2016, Wei and Park 2017) 

will be made in this paper. 
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Abstract.  The dynamic output-feedback robust control method based on linear matrix inequality (LMI) method is presented 

for suppressing vibration response of a functionally graded material (FGM) beam with piezoelectric actuator/sensor layers in this 

paper. Based on the reduced model obtained by using direct mode truncation, the linear fractional state space representation of a 

piezoelectric FGM beam with material properties varying through the thickness is developed by considering both the inherent 

uncertainties in constitution material properties as well as material distribution and the model error due to mode truncation. The 

dynamic output-feedback robust H-infinity control law is implemented to suppress the vibration response of the piezoelectric 

FGM beam and the LMI method is utilized to convert control problem into convex optimization problem for efficient 

computation. In numerical studies, the flexural vibration control of a cantilever piezoelectric FGM beam is considered to 

investigate the accuracy and efficiency of the proposed control method. Compared with the efficient linear quadratic regulator 

(LQR) widely employed in literatures, the proposed robust control method requires less control voltage applied to the 

piezoelectric actuator in the case of same control performance for the controlled closed-loop system. 
 

Keywords:  FGM; piezoelectric layers; dynamic output-feedback robust control; linear matrix inequality; uncertainty 

 



 

Yalan Xu, Zhousu Li and Kongming Guo 

 

 

Fig. 1 Configuration of piezoelectric FGM beam 

 

 

Owing to the reason that the design of model-based 

dynamic controller requires the accurate modeling of the 

open-loop system, the uncertainties in FGM structures 

should be considered in the stage of control design in order 

to guarantee the robustness of the closed-loop system. First, 

the uncertainties in constitution material properties and 

volume fraction index for FGMS are inevitable due to the 

complexity in the manufacturing and fabrication process of 

FGMs, which will be reflected on the uncertainties in 

structural dynamic characteristics and dynamic responses. 

In literatures, the influences of the uncertainties in material 

properties and volume fraction index for FGMS on the 

system dynamics have been widely reported (Lal 2007, 

Shaker 2008, Shegokar and Lal 2014, Mahammad and 

Singh 2015, Xu et al. 2015, 2016). Furthermore, modeling 

uncertainty may result from the model reduction which is 

required for obtaining the implementable relatively low-

order controller. In model-reduction approaches, the direct 

mode truncation is commonly used to obtain a relatively 

low-order model including dominating low-frequency 

modes. In the active control, un-modeled high-frequency 

modes may lead to the instability of the closed -loop system 

(Xu et al. 2015). To the best of the author's knowledge, few 

studies have investigated robust control methods of FGM 

structures with considering uncertainties mentioned above. 

In this paper, based on the linear fractional state space 

model of piezoelectric FGM beams considering the 

uncertainties in both modal parameters and modeling, a 

dynamic output- feedback robust controller is designed by 

using linear matrix inequality (LMI) method (Reza and 

Esfanjani 2016, Li and Adeli 2016, Berardengo 2017) in 

order to suppress the vibration response due to the 

disturbance, and the corresponding comparative studies are 

conducted.  

 
 

2. Configuration of piezoelectric FGM beam  
 

An FGM beam with bonded piezoelectric layers as 

sensors and actuators having the length l, width b, thickness 

h of host FGM beam and thickness ha/hs of piezoelectric 

actuator/sensor with co-ordinate system (oxyz) as shown in 

Fig. 1.  

The top layer of the laminated beam is the piezoelectric 

actuator layer and the bottom layer is the piezoelectric 

sensor layer. The intermediate layer is an FGM beam made 

of the combined metal and ceramics, its properties are 

graded through the thickness direction according to the 

following volume fraction power law distribution (Segokar 

and Lal 2014) 
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where PF denotes the effective material property (e.g., 

elastic modulus, mass density) of the host FGM, PT, PB 

denote the material properties of the top surface and bottom 

surface material of host FGM beam, respectively. n
denotes the volume fraction index.  

 

 

3. Dynamics modeling and model reduction 
 

3.1 Theory formulation for host FGM beam  
 

The displacement field described by the third-order 

shear deformation theory (TSDT) of Reddy can be given as 
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where ( ) ( )txwtxu ,,, 00  are the axial and transverse 

displacements of the mid-plane in the zx, directions, 

respectively, 
x

 is the cross-sectional rotation, and 

21
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The strain field in the case of the small deformation can 

be written as 
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The stress field is given as 
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where EF(z) is the effective Young’s modulus, which is the 

function of z for the FGM beam, and the Poisson’s ratio v is 

assumed to be constant. 

 

3.2 Piezoelectric constitute equation 
 

For one-dimensional structures, the constitutive 

relationship of piezoelectric material coupling elastic and 

electric field is given by (Duc et al. 2015) 
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where zED ,z denote electric field and electric 

displacement in the z direction, εσ, are stress and strain 

vector, respectively. 
E
33

E ,, Se are the piezoelectric 

constant matrix, material elastic constant matrix and 

dielectric coefficient, respectively. 

 

3.3 Finite element model 

The displacements )( 000 





x

w
wu o at the 

mid-plane and electric potential for a beam element can be 

defined in terms of nodal variables as follows 
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where 
e
p, Φq

e
are the generalized nodal displacements and 

the nodal electric potentials respectively. p, NN are the 

shape function matrix. So, the displacement filed can be 

written as 
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The stress field can be expressed in terms of nodal 

variables as follows 
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The electric field can be expressed in terms of nodal 

electric potentials. 
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The kinetic energy for FGM beam with piezoelectric 

layers can be expressed as
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where ( )zF is the effective mass density, which is the 

function of z for the FGM beam, and p  is the mass 

density of piezoelectric material. 

The strain energy for FGM beam with piezoelectric 

layers can be expressed as 
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The external work is given as 
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where 0  is the absolute dielectric constant of 

piezoelectric material. 

Substituting Eq. (6)-Eq. (9) into Eq. (10)-Eq. (11) and 

applying Hamilton’s principle, the following finite element 

equation of free vibration for the the element can be 

obtained 
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where the matrices ,,,,,,, F
e
aFFapF

e
s
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KKKKKM

eee
F ssaas ,, KKK  are given by  
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(14) 

Further, we obtain the following dynamic vibration 

equation in the case that there is no voltage applied to the 

piezoelectric sensor layer 
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where the matrices ( ) ( )tt ee
f

e
control,, QGK  are given by 
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For the sensor layer, the applied charge is zero and the 

converse piezoelectric effect is assumed negligible. Thus, 

the sensor voltage is obtained by (Pota and Alberts 1995) 

( ) ( )
( )

V
A

hhh
ttv

e
sV

ue

eeee d
2

,
E
33

ss
outouts 

+
== eBQqQ  

(17) 

Assembling element equations and introducing the 

proportional damping matrix C , we have 

( ) ( ) ( ) ( ) ( )

( ) ( )tt

ttttt

e

f

qQv

ΦQfGKqqCqM

outs

acontrol ,

=

−=++ 
 (18) 

where MKC ba += ， a  and b  are Rayleigh coefficients. 

 

3.4 Modal decoupling and model reduction 
 

The j th modal frequency j  and normalized mode 

shape jφ  are governed by  

( ) njjj ,,2,1,02 ==− φMK   (19) 

and making ( ) ( )tt μηq =  by the normalized mode shape 

matrix  nφφφμ 21= , we have  
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where ( )tη  is the modal displacement vector, and ωζ,

are modal damping and modal frequency. 

With mode truncation method, the dynamic equation of 

structure can be written as  
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where ( )tka is the k th applied voltage, lf is the l th 

disturbance, and filik bb _a_ , are the influence coefficients of 

the k th actuating patch and the l th disturbance on the i th 

mode, respectively. 

With structural modes, the performance displacement 

outputs of system and the measured voltage outputs of 

sensor can be defined as 
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where ( )tyi  
is the i th performance output, ( )tv is  is the 

i th measured voltage output, and
 s__ , ijyij cc  are the 

influence coefficients of the thj  mode on the i th 

performance output and the thi measured voltage output, 

respectively. 

 

 

4. State-space representation of linear fractional 
model 
 

Eqs. (21)-(22) can be rearranged as the following state 

space form 
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where ( ) ( ) ( ) ( ) ( ) ( ) ( ) T2211 ,,,,,, ttttttt mm  =x  is 

state vector and ( )taΦ  is the control voltage input vector, 

( )tf  is the external disturbance input vector, ( )ty is the 

performance output of the system ( )tsv is the measured 

voltage output of the sensor, and ( )ωζA ,  is the system 

matrix which depends on the modal parameters as follows 
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The inherent uncertainties in constitution material 

properties and material distribution will lead to the random 

fluctuation of structural dynamic characteristics (Xu et al. 

2015, 2016). The uncertainties in modal parameters are 

dealt as follows 
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where the matrices concerning the uncertainties can be 

given by  
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Recalling Eq. (23), the state-space representation of the 

linear fractional model for the FGM structure with 

considering the uncertainties in modal parameters 
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where the matrices introduced by the uncertainties are given 

by 
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Introducing the model error due to mode trunctuation 

(Sana and Rao 2000), we have  
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where ( )se  has to form the upper bound of the un-modeled 

high-frequency modes, which can be represented as the 

following state space form 
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and χ  is the normalized uncertainty with the bound norm 

1


χ . As a result, the state-space representation of linear 

fraction model for the FGM structure can be further 

developed as 
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 (32) 

where the state variables  T
el ()()( ttt xxx =  and the 

system matrix, the input matrices and the output matrices 

are given as 

   

     0CC0CC0BB
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 (33) 

and the matrices concerning uncertainties are given as 

     

     χδΔD0FCF,F

E0EE0EEE sy

,,,

,,,0

T
e2e1

s_ly_ll

diagdiag ===

===  
(34) 

5. Controller design based on LMI approach 
 

This part is aimed at designing a dynamic output-

feedback controller as follows 

)())(

)()()(
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scccc

ttt

ttt

vDxCΦ

vBxAx

+=

+=
 (35) 

where )(tcx  is the state vector of the controller; 

cccc ,,, DCBA are unknown parameters.  

Applying Eq. (35) to Eq. (32), the closed-loop system 

can be described as 
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 (36) 

where )(tz  is the augmented state vector denoted by 

 T
cl )(),()( ttt xxz = and the augmented system matrix, input 

matrices and output matrices are described as follows 

respectively 
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 (37) 

and the augmented influence matrices related to the 

uncertainties are expressed as  

 
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(38) 

In order to suppress the vibration response as well as 

guarantee the system stability, the robust controller can be 

designed by setting an upper bound   on the H-infinity 

norm from the external disturbance f(t) to the system 

response y(t) of Eq. (36) as follows   

( ) ( )( ) ( ) ( ) ( ) ( )

0

,0/d

T

2TT

=

−+

PP

ffyydPzz ttttttt T
 (39) 

in the case of the uncertainties  

( ) ( ) ( ) ( )tttt u
T
uu

T
u hhgg   (40) 

Substituting Eq. (36) into Eqs. (39)-(40), the controller 

design problem can be transformed into the solution of the 

following matrix inequality by using the S-Procedure 

method (Xu et al. 2015) 
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Rearranging Eq. (41) and utilizing the Schur 

complement theorem, Eq. (41) can be transformed into the 

following equivalent matrix inequality by, 

0
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Conducting the following partitioning  
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and performing a congruence transformation with 

 II,I,I,,F1
ˆdiag  on Eq. (42), the nonlinear matrix 

inequality Eq. (42) can be converted into the linear matrix 

inequality and the controller design problem can be 

converted into the following linear convex optimization 

problem 
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(44) 

The parameters 11
ˆ,,,,, ppDCBA cttt  can be obtained 

by solving the above optimization problem, the parameter 

2p̂ can be obtained by the singular value decomposition 

(SVD) of the matrix ,ˆ
11ppI − and the unknown parameters

ccc ,, CBA  of controller Eq. (35) can be obtained by  

( )( )
( )

( )(

)( ) 1

22cl_a11l_s2

1l_scl_al1t
1

1c

cl_a1t
1

2c

1

21l_sctc

2211

ˆˆˆ

ˆ

,

,ˆˆ

,ˆ,),ˆ(),,(

−

−

−

−

++

+−=

−=

−=

==−=

TT
c

T

SVD

ppCBppCBp

pCDBApApA

DBpBpB

ppCDCC

USpVpppIVSU

 (45) 

 

 

6. Simulation results 
 

In this part, the flexural vibration control of a cantilever 

piezoelectric FGM beam with piezoelectric actuator bonded 

to the top surface and piezoelectric sensor bonded to the 

bottom surface is considered to investigate the effectiveness 

and efficiency of the proposed control method, in which the 

tip flexural vibration response will be suppressed by the 

proposed control method. The host FGM beam is composed 

of ceramics (Zirconia) and metal (Alumina) with the 

material properties of Young’s elastic modulus Ec=151 Gpa, 

mass density for Zirconia, and Young’s elastic modulus  

Table 1 First three modal frequencies fi (Hz) for 

piezoelectric FGM beam 

fi 

n=0 n=0.5 n=5 n=50 n=∞ 

No  

piezo 

With  

piezo 

No  

piezo 

With  

piezo 

No  

piezo 

With  

piezo 

No  

piezo 

With  

piezo 

No  

piezo 

With  

piezo 

1=i  1.2045 1.1872 1.0830 1.0668 0.9691 0.9539 0.8886 0.8744 0.8634 0.8536 

2=i  7.7784 7.5571 6.8957 6.7926 6.1674 6.0700 5.6564 5.5660 5.4965 5.4235 

3=i  22.0312 21.7453 19.8189 19.5197 17.7106 17.4301 16.2580 15.9892 15.8923 15.6414 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2 Variations of modal frequencies with volume fraction 

index 

 

 

Em=70 Gpa, mass density
 

3
m kg/m2707=  for Alumina. 

The Poisson’s ratio is assumed to be constant 3.0  for each 

constituent material. In FGM, material properties are 

assumed to vary through the thickness according to power 

law distribution Eq. (1). For the piezoelectric layers, 

Young’s elastic modulus, Poisson’s ratio, mass density, 

piezoelectric constant, dielectric coefficient and absolute 

dielectric constant are Ep=2 Gpa, vp=0.3, ρc=3000 kg/m3, 

ρp=1800 kg/m3, e31=−1.062e−10m/V, ,/85.1
33

mFeE −=  

ξ0=0.0464 C/m2, respectively. The host FGM beam has the  
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(a) 

 
(b) 

Fig. 3 First two mode shapes of piezoelectric FGM beam 

(n=2) 

 

 

geometric parameters of 20 m in length, 0.4 m in thickness 

and 0.8 m in width, the piezoelectric layer has the same 

length and width as the host structure, and the thickness of 

piezoelectric layer is set to be 0.01 m in order not to have a 

great impact on the dynamic characteristics of the host 

beam. Eight elements are used to model the piezoelectric 

FGM beam in finite element simulation. 

 

6.1 Dynamic characteristics  
 

Firstly, Modal analysis is carried out to investigate the 

influence of piezoelectric layers on the dynamic 

characteristics of the structure. Compared to the FGM beam 

without piezoelectric layers, the first three modal 

frequencies of the piezoelectric FGM beam with the top 

piezoelectric layers as actuator and the bottom piezoelectric 

layer as sensor are list in Table 1 and the variations of 

modal frequencies with the volume fraction index n are 

shown in Fig. 2(a)-2(c). 

From Table 1, the modal frequencies are slightly 

decreased with the introduction of the piezoelectric layers 

in the active control of FGM beam. It can be observed from 

Fig. 2 that the modal frequencies decrease with the increase 

of volume fraction index n. It is because the increase in 

volume fraction index leads to the increase in the volume of 

metal, and, as a result, the stiffness of FGM beam reduces. 

It is worth noting that modal frequencies nearly remain  

 
(a) 

 
(b) 

Fig. 4 Envelopes of impulse and frequency responses for 

FGM beam 

 

 

unchanged with the increase of volume fraction index n 
when volume fraction index n is large enough. This can be 

explained that metal plays a dominant role in FGM when 

volume fraction index n becomes large enough, and the 

effective material properties has no obvious changes with 

the increase of the volume fraction index n (Xu et al. 2016). 

Compared to the host FGM beam without piezoelectric 

layers, the first two normalized mode shapes for the 

piezoelectric FGM beam are illustrated in Fig. 3(a) and Fig. 

3(b), showing the effect of piezoelectric layers on the mode 

shapes of the host FGM beam. It is seen that the 

introduction of piezoelectric layers has no significant effect 

on the mode shapes of the structure. 

Fig. 4 give the envelopes of impulses and frequency 

responses for the FGM beam with different volume fraction 

indices, from which it is seen that the amplitude of vibration 

is getting larger (Fig. 4(a)) and the resonant frequency is 

getting lower with the increase of volume fraction index 

(Fig. 4(b)), which means the FGM beam becomes more 

flexible and more susceptible to vibration and may last for a 

long time. 

 

6.2 Active control without considering uncertainties 
 

Considering the more dominant contribution of lower  
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(b) 

Fig. 5 Impulse and frequency responses for the uncontrolled 

and controlled reduced systems (n=2) 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.03

-0.02

-0.01

0

0.01

0.02

 

 

D
is

p
la

c
e
m

e
n
t 

(m
)

 Time (s)

Original system

Controlled system

0 0.1 0.2 0.3 0.4 0.5
-5

0

5
x 10

-6

 

 

 
(a) 

 
(b) 

Fig. 6 Impulse and frequency responses for the original and 

controlled systems (n=2) 
 

 

modes to the system response compared to high modes, first 

two modes are included in the reduce model which is 

required for the design of implementable output-feedback  

 

Fig. 7 Frequency responses for the original system, reduced 

model and weighting function (n=2) 
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Fig. 8 Envelopes of impulse responses for original and 

controlled system with different n 

 

 

H-infinity controller.  

Without considering uncertainties, a dynamic output-

feedback H-infinity control law based on the reduced model 

including first two modes is designed. Fig. 5 gives the 

impulse responses and frequency responses for the 

uncontrolled and controlled reduced system without 

considering the uncertainties, from which the first two 

modes are excellently suppressed. It is also seen that the 

thickness of piezoelectric layer has obvious effects on the 

dynamic characteristics and response of structure and has 

no dominant effects on the control performance since the 

effect of piezoelectric layer on the host structure has been 

taken into accounted in the development of structural model 

used for designing the control law.  

However, the problem has arisen when the control law 

based on the reduced model was applied to the original 

system. Fig. 6 gives the impulse responses and frequency 

responses for the uncontrolled original and controlled 

systems without considering the uncertainties, from which 

it is evident that some high modes are excited when the low 

frequencies are controlled (Fig. 6(b)), and the system 

vibration response cannot be suppressed (Fig. 6(a)). 
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 (a) 

 
(b) 

Fig. 9 Impulse and frequency responses for the original and 

controlled systems (n=2) 

 

 

6.3 Robust control with considering uncertainties 
 
Considering the uncertainties coming from the 

parameters and the high modes excluded in the reduced 

model, an output-feedback H-infinity robust control law is 

designed in this part. 1% random error in modal parameters is 

considered. For the modelling error, the following 

weighting function e(s) forming the upper bound of the un-

modeled high-frequency modes is utilized  

( ) ，
22

2

115115*2

81

++

−
=

ss

se
se  (46) 

and Fig. 7 gives the frequency responses for the original, 

reduced model and weighting system.  

Applying the control law with considering the 

uncertainties to the original system, Fig. 8 gives the 

envelopes of the impulse responses for the uncontrolled and 

controlled system, from which the proposed control method 

is effective for different volume fraction indices and the 

amplitude of vibration is relatively smaller for the smaller 

volume fraction indices.  

Fig. 9 gives the impulse responses and frequency 

responses for the uncontrolled and controlled system with 

considering the uncertainties, from which it can be seen that  

 

Fig. 10 Control voltages applied to the piezoelectric 

actuator for different volume fraction indices 

 

 

the low-frequency modes is suppressed without exciting the 

high-frequency modes (Fig. 9(b)), and therefore the 

spillover appearing in the control without considering 

uncertainties is avoided and the vibration response is 

suppressed (Fig. 9(a)). 

Fig. 10 gives the control voltages applied to the 

piezoelectric actuator for the controlled system with 

different volume fraction indices. It is observed that, in the 

beginning of control process, the control voltage is larger 

for the smaller volume fraction volume index compared to 

the larger volume fraction volume index, which means the 

suppression of vibration for the FGM beam with smaller 

volume fraction index need more efforts due to the large 

stiffness.  

 
6.4 Comparative study 
 

The experimental studies on active control of FGM 

structures are extremely scarce in the literature for the 

complexity in the manufacturing and fabrication process of 

FGMs and the difficulty of experiment test for the FGM 

structure. So, for comparative purpose, both the efficient 

linear quadratic regulator (LQR) (Bruant and Proslier 2013) 

and the proposed method are employed to control the 

vibration of the FGM beam with piezoelectric layers. In 

LQR method, the control law can be expressed as 

( ) ( )tt KzΦ −=a  (47) 

which minimizes a cost function given by 
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QR

RΦΦQzz tttttJ
 (48) 

where R, Q are the weighting matrices of state variables 

and input variables respectively and tuned to refine the 

LQR control law. With the decrease of R value or the 

increase of Q value, the better control performance is 

obtained while higher control cost is required or the higher 

input voltage is applied to the piezoelectric actuator. The 

optimal solution is 

BPRK
1−=  (49) 
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Fig. 11 Impulse responses for the controlled system by 

using different control methods 
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Fig. 12 Control voltages applied to piezoelectric actuator 

for different control methods 

 

 

where P  is the solution of Riccati equation (Schulz and 

Gomes 2013). 

Compared to the LQR method with different values of 

R, the impulse responses for the controlled system by using 

the proposed control method are shown in the Fig. 11. It is 

seen that the better time-domain response can be obtained 

for the controlled systems by using the proposed control 

method or the LQR method with the smaller value of R, 

having a settling time of 10s for the proposed control 

method and 8.44 s for the LQR method with smaller value 

of R, respectively, while the time-domain response is not 

satisfactory for the controlled system by using the LQR 

method with relatively higher value of R, having a settling 

time of 65 s. 

The input voltages applied to the piezoelectric actuator 

for the proposed control method and the LQR method with 

different values of R are given in Fig. 12. It is observed 

that, compared to the LQR method with smaller value of R, 

much less input voltage is required to obtain the same 

control performance in the proposed control method. In the 

LQR method with smaller value of R, the applied input 

voltages have peaked at 344 V. In the case of the same order 

of input voltage, the better control performance can be 

obtained for the proposed control method law than that of 

LQR method with lager value of R. 

7. Conclusions 
 

The dynamic model has been developed for 

piezoelectric FGM beams, based on which linear fraction 

state-space representation for the structure considering both 

the inherent uncertainties in constitution material properties 

as well as material distribution and the model error due to 

mode truncation. Based on which, a dynamic output 

feedback H-infinity robust control law is designed by using 

the linear matrix inequality for the purpose of suppressing 

the vibration of the piezoelectric FGM structure. The 

following conclusions can be obtained from this study.  

(1) Compared to the host structure without piezoelectric 

layers, the modal frequencies become smaller for the 

piezoelectric FGM beam. The volume fraction index has a 

dominant effect on the structural dynamic characteristics 

and response, in which modal frequencies decrease and the 

amplitudes of vibration increase with the increase of the 

volume fraction index.  

(2) The higher modes may be excited when the lower 

modes have been suppressed for the original system by 

using the control law without considering the uncertainties 

due to the model reduction. 

(3) The vibration of the original system can be 

controlled by using the control law considering the 

uncertainties, in which the low frequency modes can be 

suppressed without exciting the high-frequency modes, and 

therefore the spillover appearing in the vibration control can 

be avoided. 

(4) Compared to the linear quadratic regulator (LQR), 

the same control performance for the controlled system can 

be achieved just by applying less control voltage to the 

piezoelectric actuator in the proposed control method. 
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