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1. Introduction 
 

Having various benefits over the conventional 

composite laminates, such as withstanding very high 

temperature gradients, less stress concentrations, further 

corrosive resistance, higher toughness and higher fracture 

resistance attract many researchers for investigating 

behaviors of structures made up of functionally graded 

materials (FGMs) (Shariati 2008, Heydari and Kazemi 

2009, Heydari 2011, 2013, 2015, Heydari and Kazemi 

2015, Roshan and Neha 2015, Ranganathan et al. 2016, 

Heydari 2017, Lal and Ahlawat 2017, Shojaeefard et al. 

2017, Sachdeva and Padhee 2018, Shaterzadeh and 

Foroutan 2016, Yang and Yu 2017). These materials have 

continuous variation of thermo-mechanical properties due 

to varying the microstructure or atomic order with a specific 

gradient. Therefore, inventing FGMs make it possible to 

have incompatible properties such as thermal resistance and 

ductility in a material simultaneously. These kinds of 

materials are designed to achieve specific properties for  
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specific applications such as electrical devices, diodes, 

sensors, inner wall of nuclear reactors, car engine cylinders, 

turbine blades, optical fibers, computer circuit boards, 

biomedical engineering, energy transformation, optics, etc. 

(Suresh 1998, Shariati et al. 2011, Mohammadhassani et al. 

2013, Nguyen and Gan 2014, Wang and Gu 2014, Rezaiee-

Pajand et al. 2015, Khorami et al. 2017, Khorramian et al. 

2017, She et al. 2017, Shariati et al. 2018, Toghroli et al. 

2018, Li et al. 2017, Moradi and Arwade 2014). 

Sun et al. (2015) study the buckling of a standing 

tapered Timoshenko column subjected to tip force and self-

weight. Tossapanon and Wattanasakulpong (2016) study 

buckling and vibration of FG sandwich beams with the 

homogeneous core rested on two-parameter elastic 

foundation by using Chebyshev collocation method. Top 

and bottom layers of sandwich beam are made up of FGM. 

The parameters of foundation model are Winkler and shear 

layer springs. They assumed that the FG layers are 

composed of ceramic and metal phases. In their research the 

shear deformation and rotary inertia effects are considered 

for constructing the governing equations of motion by 

employing the Timoshenko beam theory (TBT). They 

investigate the effects of various boundary conditions, 

foundation parameters, thickness ratio and material volume 

fraction index. They show that the parameters of elastic 

foundation have significant influence on the buckling and 

vibration behavior of these types of beams. Buckling 
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Abstract.  The current study presents a new technique in the framework of the nonlocal elasticity theory for a comprehensive 

buckling analysis of Euler-Bernoulli nano-beams made up of bidirectional functionally graded material (BDFGM). The 

mechanical properties are considered by exponential and arbitrary variations for axial and transverse directions, respectively. 

The various circumstances including tapering, resting on two-parameter elastic foundation, step-wise or continuous variations of 

axial loading, various shapes of sections with various distribution laws of mechanical properties and various boundary 

conditions like the multi-span beams are taken into account. As far as we know, for the first time in the current work, the 

buckling analyses of BDFGM nano-beams are carried out under mentioned circumstances. The critical buckling loads and mode 

shapes are calculated by using energy method and a new technique based on calculus of variations and collocation method. Fast 

convergence and excellent agreement with the known data in literature, wherever possible, presents the efficiency of proposed 

technique. The effects of boundary conditions, material and taper constants, foundation moduli, variable axial compression and 

small-scale of nano-beam on the buckling loads and mode shapes are investigated. Moreover the analytical solutions, for the 

simpler cases are provided in appendices.  
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analysis of homogeneous nano-beams using finite element 

method in the frame work of size dependent nonlocal 

integral elasticity theory is carried out by Taghizadeh et al. 

(2015). Buckling analysis of bidirectional FG nano-beams 

with uniform section subjected to constant axial 

compression based on nonlocal elasticity theory is 

performed by Nejad et al. (2016). The similar solutions for 

bending (Nejad and Hadi 2016) and free vibration (Nejad 

and Hadi 2016) problems are conducted. The governing 

equations are obtained by employing the minimum potential 

energy and thereafter the Generalized Differential 

Quadrature Method (GDQM) is used in order to calculate 

the critical buckling load. In special case by taking scale 

coefficient equal to zero, their model is degenerated into the 

classical model. Şimşek (2016) studied the buckling 

behavior of beams composed of two-dimensional 

functionally graded materials (2D-FGMs) having variable 

mechanical properties in axial and through-thickness 

directions according to the power-law form. In his research 

by employing TBT and after using the Ritz method, the 

critical buckling loads of local 2D-FG beams are calculated 

numerically. Various classical boundary conditions by 

adding auxiliary functions to the displacement functions are 

considered and trial functions in polynomial forms are used 

to calculate the critical loads. By using nonlocal strain 

gradient theory a Timoshenko FG beam model, which 

accounts for through-thickness power-law variation is 

derived by Li et al. (2016). They employed the Hamilton 

principle for obtaining the equations of motion. In their 

research for considering the effects of strain gradient stress 

field and nonlocal elastic stress field, the material length 

scale parameter and nonlocal parameter are introduced 

respectively. They found that the transverse grading of 

beam can be used to control the natural frequencies. In 

addition, they discovered that the vibration frequencies 

increased by the increasing of material length scale 

parameter or decreasing of nonlocal parameter in general. 

They observed the stiffness-softening and stiffness-

hardening effects on beam by using smaller and larger 

material characteristic parameter with respect to the 

nonlocal parameter, respectively. The buckling analysis of 

axially functionally graded and non-uniform Timoshenko 

beams were investigated by Huang et al. (2016). They 

obtained a system of linear algebraic equations by using the 

auxiliary functions and power series from the coupled 

governing equations. Also, by considering various boundary 

conditions, they derived the characteristic polynomial 

equations corresponding to the buckling loads for axially 

heterogeneous local beams. They calculate higher and 

lower-order eigenvalues from the multi-roots 

simultaneously. Nguyen et al. (2016) proposed an analytical 

modeling for thin-walled open mono-symmetric channel 

section and I-section made up of FGM. There is a distance 

between center of gravity and the centroid of section in 

mono-symmetric I-section. The mechanical properties are 

varied through-thickness of section based on the power law 

distribution. They derived the locations of shear center and 

center of gravity for these kinds of beams. They considered 

restrained warping for the thin-walled FG beam by using 

Vlasov’s assumptions. The exact solutions are achieved by 

solving the general governing equations, directly. They 

investigate the effects of thickness ratios and gradual law of 

metal or ceramic on the behavior of beams. The stability of 

non-uniform and axially FG Euler-Bernoulli beams rested 

on elastic foundation with general form of classical 

boundary conditions is considered by Shvartsman and 

Majak (2016). They avoid using infinity values of the 

stiffness coefficients by transforming end conditions into 

convenient form. The initial parameters in differential form 

are used for conducting numerical solutions. In their 

research, the homogeneous linear algebraic system of order 

two and iterative solution of two initial value problems are 

obtained. For improving the accuracy of outcomes, they 

used the Richardson extrapolation method. Arbitrarily in-

plane large transverse displacements of planner curved FG 

beams are studied by Eroglu (2016). For deriving the 

governing differential equation system the axial and shear 

deformations are considered. Also, across the section 

material properties distribution is considered as an arbitrary 

function. He used Variational Iterational Method (VIM) by 

explicitly steps to solve the equations and examined snap-

through and bifurcation buckling of pinned-pinned FG 

circular arches. Based on Euler-Bernoulli beam theory and 

modified strain gradient theory the buckling behavior of 

size-dependent microbeams made up of FGM for different 

end conditions is investigated by Akgöz and Civalek 

(2013). They used a variational statement to obtain the 

higher-order governing differential equation after regarding 

all possible classical and non-classical end conditions. The 

effects of the slenderness ratio, ratio of additional material 

length scale parameters for two constituents, ratio of beam 

thickness to additional material length scale parameter, 

material volume fraction index and boundary conditions are 

investigated on the buckling behavior of FG microbeams. 

They compared the outcomes of their model with results of 

the modified couple stress and classical continuum models. 

Compared to many other techniques, the Differential 

Transformation (DT) based on Dynamic Stiffness approach 

is a versatile method. Rajasekaran (2013) studied the 

buckling and free vibration of axially FG non-uniform local 

beams with various end conditions using DT based on 

Dynamic Stiffness approach. The mentioned method is 

capable of modeling any beams whose mechanical and 

geometrical properties vary along the beam. The buckling 

phenomenon is an important issue in structural designs, 

especially in braced frames (Bazzaz et al. 2011, Bazzaz et 

al. 2012, Jalali et al. 2012, Andalib et al. 2014, Bazzaz et 

al. 2014, Bazzaz et al. 2015, Bazzaz et al. 2015, Mansouri 

et al. 2017). 

In current work, the neutral stability equation is 

obtained by setting the total potential energy equal to zero. 

By regarding the principle of the minimum potential energy 

a new semi-analytical technique based on calculus of 

variation and collocation method is obtained for buckling 

analysis of tapered arbitrary bidirectional functionally 

graded material (BDFGM) Euler-Bernoulli nano-beam 

subjected to variable axial compression. This scheme has a 

good compatibility for tapered FG plates (Heydari et al. 

2017). The BDFGM nano-beam is rested on the Winkler 

(one-parameter) or Pasternak (two-parameter) foundation. 
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The effects of material and taper constants, foundation 

parameters, continuous or step-wise variations of axial 

compression, various boundary conditions like the multi-

span conditions and small-scale of the nano-beam on the 

buckling loads and mode shapes are investigated. After 

simplifying the governing equations, the exact transverse 

displacement of one-span tapered local FG beam rested on 

shear layer by ignoring Winkler stiffness parameter is 

obtained in terms of Bessel functions of the first and second 

kinds. For this case, by considering nontrivial solution after 

applying various boundary conditions, the dimensionless 

first mode shapes and corresponding critical buckling loads 

are obtained. The exact analytical results are obtained from 

solution of stability differential equation directly; therefore 

the results can be used for verifying the numerical outcomes 

based on collocation method. Moreover, the governing 

differential equation of current work after simplifying for 

the uniform nonlocal nano-beam subjected to constant axial 

force rested on Pasternak elastic foundation is same as the 

nonlinear vibration equation of motion of nano-beam after 

neglecting time dependent terms and axial deformation 

(Ghannadpour et al. 2013, Mohammadhassani et al. 2014, 

Togun and Bağdatlı 2016). Meanwhile, excellent agreement 

between current work outcomes with the known data in 

literature, wherever possible, is observed (Ghannadpour et 

al. 2013, Nejad et al. 2016, Shahabi et al. 2016) and 

validity of current new work is proved.  

 

 

2. Formulation 
 

The stress tensor in nonlocal elasticity theory depends to 

strain tensor at all points in domain of material. The one 

dimensional nonlocal differential constitutive equation that 

includes the small scale effect is as follows (Ghannadpour 

et al. 2013) 

σxx − η
2
d2

(dx)2
σxx = Eεxx (1) 

in which σxx, εxx and E are axial stress, axial strain and 

modulus of elasticity respectively. The small scale effect is 

considered by using the scale coefficient η. In the Euler-

Bernoulli beam theory the axial strain is equal to – yw′′(x), 
in which w is transverse displacement and w′′(x) denotes 

second derivative of w(x) with respect to x. The x axis lies 

on neutral axis (N.A.) and y is taken along the thickness of 

BDFGM beam. After multiplying Eq. (1) by ydA  and 

integrating over the cross section, one has 

M− η2
d2

(dx)2
M = −EIeq

d2

(dx)2
w (2) 

The parameter EIeq  is equivalent through-thickness 

bending rigidity of BDFGM nano-beam. By using power 

law distribution, the modulus of elasticity for rectangular 

section is defined as follows 

E(x, Y) = eα(
x

L
) ((Ec − Em) (

1

2
+
Y

h
)
n

+ Em) (3) 

in which Em  and Ec  present modulus of elasticity for 

metallic and ceramic constituents. Also, the parameters n 

and α  are material volume fraction index and material 

constant, respectively (α ≥ 0, n ≥ 0). The parameters h and 

L are depth and length of the beam. The origin of Y ordinate 

is located at mid-axis (−h/2 ≤ Y ≤ h/2). The geometrical 

properties for rectangular section with positive taper 

constant are presented in Fig. 1. The parameters h0, e, ξ and 

b are depth at left end, distance between mid-axis and 

neutral axis (e=Y-y), taper constant and width of the 

rectangular section respectively. The variation of thickness 

in BDFGM nano-beam with rectangular section is linear 

(h(x)/h0=1+ξx/L). 

Because of through-thickness variation of mechanical 

properties, there exists a distance between neutral axis 

(N.A.) and centroid of the rectangle. The axial pressure load 

is imposed on N.A. which induces non-uniform pressure 

distribution due to distance between N.A. and mid-axis. 

Small changes of pressure, prebuckling forces or other 

imperfections are equivalent to prebuckling deformations 

imposed on the original BDFGM tapered beam’s 

configuration. The experiments performed on columns and 

flat plates under in-plane compressive forces showed that 

they are relatively insensitive to slight  imperfections 

(Ventsel and Krauthammer 2001). The sum of all 

infinitesimal axial forces must be vanished due to pure 

bending. Eq. (4) presents the sum of all infinitesimal axial 

forces in Cartesian coordinate. The parameter ρ denotes 

the radius of curvature caused by bending.  

∑fx = −∫∫
yE

ρ
dA (4) 

By considering Eq. (4), the distance between N.A. and 

mid-axis in rectangular section is obtained. 

e = ∫ EYdY

h(x)/2

−h(x)/2

∫ EdY

h(x)/2

−h(x)/2

⁄ = 

(
n(Ec − Em)

(Ec + nEm)(2n + 4)
) (1 + ξ

x

L
) h0 

(5) 

The equivalent flexural rigidity for rectangular section is 

calculated as follows 

EIeq(x) = b ∫ Ey2dy

h(x)

2
−e

−
h(x)

2
−e

= beα(
x

L
)
 

∫ ((Ec − Em) (
1

2
+
Y

h
)
n

+ Em) (Y − e)
2dY

h(x)

2

−
h(x)

2

 

(6) 

The equivalent bending rigidity for rectangular section 

is simplified as follows 

EIeq(x) = beα(
x

L
)h0
3 (1 + ξ

x

L
)
3

 

(
12Ec

2 + (n2 + 4n + 7)(4nEcEm + n
2Em

2 )

12(n + 2)2(n + 3)(Ec + nEm)
) 

(7) 

The modulus of elasticity for annular section is defined  
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Fig. 1 Geometrical properties of rectangular section 

 

 

Fig. 2 Geometrical properties of annular section 

 

 

as follows 

E(x, r) = eα(
x

L
)E0r

p (8) 

in which α, E0 and p are material constants and p takes 

the non-positive real values. Fig. 2 shows the geometrical 

properties for annular section for positive ξ and p ≠ −4. 

The parameters ri and ro are inner and outer radiuses at any 

section of the beam and the parameters Ri and Ro  are 

inner and outer radiuses at left end, respectively.  

By substituting Eq. (8) into Eq. (4) and after using 

coordinate transformation, the equilibrium of axial forces 

for annular section is observed. Therefore, in annular 

section N.A. is located at mid-axis (see Fig. 2). 

∑fx = −∫∫
(rsinθ)E(r)

ρ
dA = 

−
E0
ρ
∫ rp+2dr
ro(x)

ri(x)

∫ sinθdθ
2π

0

= 0 

(9) 

By assuming nonlinear thickness variation pattern for 

inner and outer radiuses, an analytical solution for 

equivalent through-thickness bending rigidity is obtained. 

ro(x)

Ro
=
ri(x)

Ri
= (1 + ξ

x

L
)

3

p+4
 (10) 

Equivalent through-thickness flexural rigidity for 

annular section is calculated with respect to the center line 

as follows 

EIeq(x) = ∫∫E(rsinθ)
2rdrdθ = 

E0e
α(

x

L
)∫ rp+3dr

ro(x)

ri(x)

∫ sin2θdθ
2π

0

 

(11) 

 

Fig. 3 Equilibrium of an infinitesimal BDFGM beam 

element 

 

 

The equivalent through-thickness flexural rigidity for 

annular section is obtained as follows 

EIeq(x) = 

{
 
 

 
 πe

α(
x

L
)E0(Ro

p+4
− Ri

p+4
)

p + 4
(1 + ξ

x

L
)
3

                p ≠ −4

πeα(
x

L
)E0(p + 4)(Ro

p+3
− Ri

p+3
) (1 + ξ

x

L
)
3

  p = −4

 
(12) 

Fig. 3 illustrates increment of internal forces and 

moment at right end of the beam element with an 

infinitesimal length, in which Ff, P, V, M and w′  are 

response of foundation, axial load (compression taken to be 

positive), shear force, bending moment and slope at left end 

(first derivative of transverse displacement with respect to 

x) respectively. The equilibrium of forces in vertical 

direction is calculated as follows 

Psin(w′) − (P + dP)sin(w′ + dw′) + Vcos(w′) − 

(V + dV)cos(w′ + dw′) − Ffdx = 0 
(13) 

The symbols ‘ ′ ’ and ‘ ′′ ’ denote first and second 

derivatives with respect to x, respectively. For small amount 

of w′  we have sin(w′) = w′  and cos(w′) = 1 . After 

neglecting differential terms with the orders greater than or 

equal to two, the equilibrium equation in vertical direction 

is obtained. 

V′ = −Pw′′ − P′w′ − Ff (14) 

In Fig. 3, the equilibrium of bending moment after 

ignoring differential terms with the orders greater than or 

equal to two, implies that v = dM/dx. The bending moment 

in Fig. 3 and bending moment in Eq. (2) have the opposite 

signs. Therefore, the right hand-side of Eq. (14) after 

applying a minus sign is equal to the second derivative of 

bending moment with respect to x. 

By considering Eqs. (2) and (14), the bending moment 

of nonlocal BDFGM nano-beam is obtained.  

M = −EIeqw
′′ + η2(Pw′′ + P′w′ + Ff) (15) 

In two parameter elastic foundation models, the 

continuity of independent, discrete, linear elastic springs 

(supporting Winkler medium) is presumed by connecting 

them to a thin elastic membrane under a constant tension 

(Filanenko Borodich model) or connecting them to an 

isotropic layer of incompressible vertical elements with the 

shear interaction among the elements (Pasternak model). 

The response of Pasternak model for rectangular beam is 
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presented mathematically as follows 

Ff = k0bw − Gw" (16) 

in which Ff is the response of the foundation model with the 

unit N/m, k0 is Winkler modulus with the unit N/m3 and G 

is Pasternak modulus (or constant tension in Filanenko 

Borodich model) with the Newton unit in SI. 

 

 

3. Governing differential equation 
 

According to the Lyapunov’s stability definition, the 

stability of system is classified with respect to the response 

to an infinitesimal perturbation. If system returns to its 

initial position then the system is stable. But unstable 

system buckles significantly. In the neutral equilibrium state 

the system remains in vicinity of initial position. For 

deriving neutral equilibrium equation of BDFGM nano-

beam the total potential energy (Π) is set equal to zero. The 

bending strain energy of BDFGM nano-beam and strain 

energy of elastic foundation are the elastic strain energy of 

the system (U). The work done by axial force (P) is the 

potential energy associated to the external force (Ω =
−We), where the minus sign implies a loss of potential 

energy. The thin BDFGM nano-beam is subjected to axial 

compression without eccentricity. It is assumed that the 

BDFGM nano-beam is perfect without any initial transverse 

deformation in unloaded state. The work done by external 

force, after using two terms of Taylor series expansion is 

calculated as follows 

We = ∫ (√1 + (w′)2 − 1) Pdx
L

0

=
1

2
∫ (w′)2Pdx
L

0

 (17) 

The neutral stability equation of BDFGM nano-beam is 

obtained as follows (Π = U + Ω) 

Π =
1

2
∫ (Ffw−Mw")dx
L

0

−
1

2
∫ (w′)2Pdx
L

0

= 0 (18) 

After substituting Eqs. (15) and (16) into Eq. (18), the 

stability equation is obtained as follows  

∫ ϕ(x,w,w′, w′′)dx
L

0

= 0 (19) 

in which ϕ is introduced in Eq. (20). 

ϕ = (EIeqw
′′ − η2(Pw′′ + P′w′))w" + 

(k0bw − Gw")(w − η
2w") − (w′)2P 

(20) 

The BDFGM nano-beam rested on elastic foundation is 

in a stable state if and only if its potential energy attains 

minimum. According to the Fermat’s theorem at any point 

where a differentiable function attains a local extremum, its 

derivative is zero. This is analogous to concept of Euler’s 

equation in calculus. First, we assume that the function w(x) 

is differentiable and the integral in Eq. (19) is twice 

continuously differentiable. If w(x) extremizes Eq. (19), 

then any slight perturbation of w(x) preserves the boundary 

values. An auxiliary function is the result of such a 

perturbation of w(x) as g(x)=w(x)+µλ(x) in which λ(x) is 

differentiable function satisfying the following equations 

λ(i)(0)=λ(i)(L)=0 (i∈{0,1}). For minimizing the value of P 

in Eq. (19) the following equation must be satisfied. 

lim
μ→0

∂

∂μ
∫ ϕ(x, g, g′, g′′)dx
L

0

= 0 (21) 

After using integrations by parts the general form of 

modified Euler-Lagrange equation is obtained in which 

w(i) is the ith derivative of w(x) with respect to x. 

∂

∂w
ϕ +∑(−1)i

∂i

(∂x)i
∂

∂w(i)
ϕ

2

i=1

= 

φ0 +∑φiw
(i)

4

i=1

= 0 

(22) 

The coefficients φ0 to φ4 are as follows 

φ0 = −k0bwL
5 

φ1 = P
(3)L5η2/2 − L5P′ 

φ2 =
(2η2k0b + 3η

2P′′ + 2G − 2P)L5

2
− EI0e

αx

L  

[αx2ξ2(αxξ + 3L(α + 2ξ)) + 3L2ξ 

(α2x + 4αξx + 2xξ2 + 2L(α + ξ)) + α2L3] 

φ3 = 2η
2(P′)L5 − 2LEI0e

αx

L  

[ξ(3L2(α + 2ξ) + xξ(αxξ + 3αL + 3Lξ))x 

+L3(α + 3ξ)] 

φ4 = L2 (L3η2(P − G) − EI0e
αx

L (ξx + L)3) 

(23) 

in which the parameter EI0 = EIeq(0) is bending rigidity 

at left end of the BDFGM nano-beam. The parameter EI0 

is calculated from Eqs. (7) and (12) for rectangular and 

annular sections respectively. The governing differential 

equation in Eq. (22) for the uniform nonlocal nano-beam 

subjected to constant axial force rested on Pasternak elastic 

foundation is same as the nonlinear vibration equation of 

motion of nano-beam after ignoring time dependent terms 

and axial deformation (Arabnejad Khanouki et al. 2011, 

Ghannadpour et al. 2013, Togun and Bağdatlı 2016). 

 

 

4. Buckling analysis 
 

For surveying buckling loads and mode shapes of 

tapered bidirectional FG nano-beam rested on Pasternak 

elastic foundation subjected to variable axial compression 

the collocation method is used. The Taylor series expansion 

of w(x) up to m degree is selected as the finite-dimensional 

space of candidate solution and the points xi = iL/m (i =
1,2, . . , m − c) for perfect FG-nano beam are selected as the 

collocation points, in which c is the number of boundary 

condition equations. In the first step, some coefficients in 

candidate solution are obtained by satisfying boundary 

conditions then the polynomial of approximated deflection 

is substituted into Eq. (22) to find the other coefficients of 
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Taylor series expansion of w(x) at collocated points. After 

obtaining the coefficients, the approximated deflection has 

been substituted into Eq. (19) and the resultant has been 

solved with respect to P. The mentioned procedure results to 

solve an algebraic system of linear equations to find the 

coefficients of Taylor series expansion of transverse 

displacement. The unknown coefficients of Taylor series 

expansion of w(x) are b0, b1, …, bm. The coefficients b0 to 

bc-1 are determined in terms of the coefficients bc to bm by 

satisfying boundary conditions. For perfect BDFGM nano-

beam the coefficients bc to bm-1 are determined in terms of 

bm by satisfying Eq. (22) at collocation points xi as bj=-

(BjiAim)bm where bm is a scalar, bj and Aim (mth column of 

matrix A) are vector and Bji is a second order tensor. The 

indices i and j are dummy and free indices, respectively 

(i∈{1,2,…,m-c} and j∈{c,c+1,…,m-1}). By using Levi-

Civita symbol concept, Bji is calculated in terms of matrix A 

as follows 

(−1)i+jq ∑ …

q−1

bq−1=1

∑ ∑ ∑ …

q−1

aq−1=1

q−1

b1=1

q−1

b2=1

 

∑ ∑ ∏ ∏ ∏sign(at − as)

q−1

k=1

q−1

t=s+1

q−1

s=1

q−1

a1=1

q−1

a2=1

 

sign(bt − bs)Ãakbk/ 

[∑ …

q

bq=1

∑ ∑ ∑ …

q

aq=1

q

b1=1

q

b2=1

 

∑ ∑ ∏ ∏ ∏sign(at − as)

q

k=1

q

t=s+1

q

s=1

q

a1=1

q

a2=1

 

sign(bt − bs)Aakbk] 

(24) 

in which q =  m − c . The matrix Ã  is obtained from 

deleting row j and column i of matrix A. The notation ‘sign’ 

represents the sign function. The matrix Aij is defined as 

follows 

Aij =
2Pi2jL7

m2
(
iL

m
)
j

(1 − j −
P′iL

Pm
) + Aij

TB + Aij
N (25) 

in which Aij
TB  and Aij

N  are matrices corresponding to 

mechanical and geometrical properties of tapered 

bidirectional (superscript TB) and nonlocal (superscript N) 

nano-beam respectively. The matrix Aij
TB  includes the 

parameters ξ and α. 

Aij
TB = −2EI0L

4e
αi

m (
iL

m
)
j

j(j − 1) (
ξiL

m
+ L) 

[
ξ2i2j2

m2
+
2ξ2αi3j

m3
+
ξ2α2i4

m4
+
2ξij2

m
+ 

4ξαi2j

m2
+
ξ2i2j

m2
+
2ξα2i3

m3
+
2ξ2αi3

m3
+
2αij

m
− 

4ξij

m
+
α2i2

m2
−
2ξαi2

m2
−
4αi

m
+ j(j − 5) + 6] 

(26) 

Also, the matrix Aij
N  includes the nonlocal parameter 

η. 

Aij
N = η2L5 (

iL

m
)
j

j [
4P′ij2L

m
 +
3P′′i2jL2

m2
+ 

P(3)i3L3

m3
−
12P′ijL

m
−
3P′′i2L2

m2
+ 

8P′iL

m
+ 2P(j3 − 6j2 + 11j − 6)] 

(27) 

For FG nano-beam subjected to constant axial 

compression an eigenvalue problem is solved. For this case 

the determinant of matrix A in Eq. (25) is vanished and 

buckling load of first modes are obtained. By assuming 

P=P0f(x), the unknown coefficients of transverse 

displacement b0 to bm are obtained in terms of P0, where P0 

is a constant and the function f(x) shows the variation of 

axial load in axial direction. After substituting the 

transverse displacement in stability equation a nonlinear 

equation in terms of P0 will be obtained. The roots of the 

characteristic equation are corresponding to the buckling 

loads of the associated buckling modes. The buckling load 

of multi-span nano-beam can be obtained after considering 

the deflection of each span as an independent function. In 

first step, the dependent boundary and natural conditions 

(like the continuation of slope or moment at inner supports) 

are neglected and only independent boundary and natural 

conditions (like the zero deflection or free end conditions) 

are satisfied for each span separately. Thereafter, the Eq. 

(24) is employed to calculate the coefficients bj=-(BjiAim)bm 

(i∈{1,2,…,m-c} and j∈{c,c+1,…,m-1}) of Taylor series 

expansion for transverse displacements of side-spans. The 

unknown coefficients of Taylor series expansion of 

deflection for inner spans are calculated as bj=-(BjiAim)bm 

(i∈{1,2,…,m-c-1} and j∈{c,c+1,…,m-2}) in terms of P0, 

bm-1 and bm. After performing this step, the buckling loads 

are obtained by vanishing the sum of rotational stiffness 

(the ratio of moment to rotation) at inner supports. For this 

purpose, the following equations must be satisfied 

(
wql
′′

wql
′ )

x̃q−1=Lq

− (
wqr
′′

wqr
′
)
x̃q=0

= 0, q = 1,2, … , s (28) 

where s, wql, wqr and Lq are number of inner supports, 

deflections of the left and right spans and length of left span 

at the inner support q, respectively (see Fig. 4). The 

variation of mechanical and geometrical properties are 

considered in local coordinate x̃q. The local coordinate x̃q 

is defined for the right span of inner support q. The global 

coordinate is replaced by x=xq+x̃q , where xq is the distance 

between the inner support q and the left end of the multi-

span beam. It is worth mentioning that, after assigning a 

small amount to Lq in Eq. (28), the boundary condition for 

clamped end will be obtained. The natural condition for free 

end is obtained after considering the equilibrium of shear 

force at free end as follows 

(Pw′(x̃) −
d

dx̃
M(x̃))

x̃=Lc

= 0 (29) 
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Fig. 4 Multi-span FG nano-beam 

 

Table 1 Dimensionless critical buckling load for various 

size scale parameters and various boundary conditions 

η/L Ref. Boundary condition 

  C-C S-S C-S C-F 

0 

Current work 39.4784 9.8696 20.1907 2.4674 

(Nejad et al. 2016) 39.4784 9.8696 20.1907 - 

(Ghannadpour et al. 2013) 39.4784 9.8696 20.1907 2.4674 

0.2 

Current work 15.3068 7.0760 11.1697 2.2457 

(Nejad et al. 2016) 15.3068 7.0760 11.1697 - 

(Ghannadpour et al. 2013) 15.3068 7.0760 11.1697 2.2458 

1 

Current work 0.9752 0.9080 0.9528 0.7115 

(Nejad et al. 2016) 0.9753 0.9080 0.9528 - 

(Ghannadpour et al. 2013) 0.9753 0.9080 0.9528 0.7116 

 

 

in which x̃ and xc are the local coordinate of cantilever 

beam and the distance between support of the cantilever 

beam and left end of the multi-span beam respectively. The 

parameter Lc is the length of the cantilever beam.  

 

 

5. Results and discussion 
 

In this section the numerical exercises are conducted 

and the results for buckling analysis of tapered bidirectional 

nonlocal FG beam rested on two-parameter elastic 

foundation subjected to variable axial compression are 

presented. The dimensionless buckling loads of current 

work (P0L
2/EI0) for FG nano-beam with uniform section 

(ξ = 0) and transverse graduation (α = 0) subjected to 

constant axial compression (f(x)=1) after neglecting 

parameters of elastic foundation ( k0 = G = 0 ) are 

compared with the known data in literature in Table 1. Table 

1 presents the validity of current work outcomes for various 

boundary conditions and various scale coefficients. 

Moreover, the results of collocation method are same as the 

results of Eqs. (A6), (A7), (A9) and (A11) for α=η=0 when 

ξ approaches to zero. 

The metallic and ceramic constituents are Zirconia and 

Aluminum, the material properties of which are Ec=200 

GPa and Em=70 GPa. For numerical solutions some 

numerical values are selected as b = h0 = ro =  η = 1nm, 

ri=0.5 nm, L=10 nm, ξ=β=0.1, n=2, p=-2. Furthermore, the 

material constant for annular FG nano-beam is selected as 

E0= 7.75074 to have the same EI0 with the rectangular 

section. Fig. 5 illustrates the ratio of nonlocal critical 

buckling load to local critical buckling load (PR) for tapered  

 

Fig. 5 The size scale parameter effect on the critical 

buckling load of tapered BDFGM (ξ=α=0.1) 

 

 

Fig. 6 Critical buckling load ratio versus α (ξ = 0.1) 

 

 

rectangular and annular bidirectional FG nano-beams with 

the clamped-clamped (C-C) boundary condition against L 

for various amounts of η. This figure demonstrates the 

increase of buckling load ratio by decreasing scale 

coefficient or increasing length of the beam. The results of 

nonlocal elasticity theory approaches to the results of local 

elasticity theory by increasing the length of BDFGM nano-

beam.  

Fig. 6 presents the critical buckling load ratio of tapered 

rectangular and annular two-directional FG nano-beams 

with the end condition (C-C) against α  for various 

amounts of η . The buckling load ratio decreases by 

increasing α. This figure shows that the difference between 

the results of nonlocal elasticity theory and local elasticity 

theory for bidirectional FG nano-beam is more than 

through-thickness graded FG nano-beam for the same 

amount of EI0.  

The dimensionless critical buckling load (P0L
2/EI0) of 

tapered bidirectional FG nano-beam for constant, sinusoidal 

and quadratic compression loads and for various end 

conditions is presented in Fig. 7. The minimum and 

maximum amounts of total applied compression load (area 

under the load curve for P0=1) are for quadratic and 

sinusoidal loads respectively. However the total applied 

load for quadratic distribution is less than other loads, but 

the load concentration at vicinity of mid-span for quadratic 

distribution is more than other distributions that yields to 

maximize the dimensionless critical buckling load. Also, 

dimensionless buckling load for beam with clamped- 

743



 

Abbas Heydari and Mahdi Shariati 

 

 

Fig. 7 The dimensionless critical buckling load for various 

patterns of distributed axial compression (η=1 nm, α=0.1) 

 

 

Fig. 8 Critical buckling load ratio against Kv (ξ = α =
0.1, Ks = 3) 

 

 

Fig. 9 The normalized error for various amounts of taper 

constant (α = 0.1, η = 1nm) 

 

 

clamped (C-C) end condition is more than beam with 

clamped-simply supported (C-S) end condition.   

Fig. 8 presents the critical buckling load ratio for 

rectangular tapered BDFGM nano-beam subjected to 

variable axial compression with boundary condition (S − S) 

for various values of scale coefficient (η) against Kv for 

Ks = 3  (where Kv = k0/(EI0/bL
4)  and Ks = G/(EI0/

L2)).  This figure demonstrates the increase of buckling 

load ratio due to increase of Winkler modulus. The 

difference between results of nonlocal elasticity theory and 

results of local elasticity theory decreased in the presence of 

the elastic foundation. 

Fig. 9 illustrates the convergence of critical buckling  

 

Fig. 10 First two mode shapes of BDFGM nano-beam for 

various amounts of scale coefficient (ξ=α=0.1) 

 

Table 2 Dimensionless critical buckling loads for nonlocal 

beams (A), (B), (C) and (D) 

η/L Ref.  P0L2/EI 

   A B C D 

  Mode     

0 

Present work 

1 

2 

3 

83.9094 

149.952 

238.113 

49.3812 

96.3978 

147.138 

9.50168 

61.0275 

120.072 

8.53913 

36.4239 

70.4409 

(Ghannadpour, Mohammadi  

et al. 2013) 

1 

2 

3 

83.911 

149.96 

238.12 

- 

- 

- 

9.5019 

61.028 

120.07 

- 

- 

- 

0.05 

Present work 

1 

2 

3 

69.3596 

109.065 

149.260 

39.9957 

66.8675 

89.2857 

9.28121 

52.9491 

92.3503 

8.32098 

31.3938 

52.9700 

(Ghannadpour, Mohammadi  

et al. 2013) 

1 

2 

3 

69.361 

109.07 

149.26 

- 

- 

- 

9.2814 

52.949 

92.35 

- 

- 

- 

0.1 

Present work 

1 

2 

3 

45.6254 

59.9924 

70.4241 

25.2751 

33.8943 

38.7446 

8.67720 

37.8988 

54.5603 

7.71986 

22.1476 

30.1192 

(Ghannadpour, Mohammadi  

et al. 2013) 

1 

2 

3 

45.626 

59.994 

70.425 

- 

- 

- 

8.6774 

37.899 

54.56 

- 

- 

- 

 

Table 3 The effect of additional supports on buckling load 

ratio (PR) in BDFGM multi-span nano-beam  

 Boundary conditions at end spans 

 C-C S-S C-S C-F 

Number of spans (n)     

1 

2 

3 

0.7141 

0.5472 

0.4202 

0.9095 

0.7133 

0.5197 

0.8305 

0.6579 

0.4900 

0.9757 

0.9407 

0.8826 

 

 

Fig. 11 Multi-span nonlocal beams (A), (B), (C) and (D) 

 

 

load for (S-S) boundary condition and various amounts of 

taper constant, where Pm is buckling load corresponding to 

Taylor series expansion of approximated transverse 

displacement up to m degree. The high rate of convergence 

is observed. The convergence rate is increased by 
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decreasing taper constant. The approximated transverse 

displacement up to 10 degree is sufficient and using more 

terms in Taylor series expansion does not affect the 

accuracy of outcomes significantly. The first two 

normalized buckling mode shapes of tapered BDFGM 

nano-beam with (C-C) end condition for various amounts of 

η is presented in Fig. 10. The scale coefficient affects 

second mode shape more than first mode shape. 

The results for first three modes of nonlocal beams (A) 

and (C) in Table 2 are verified by the Eqs. (B2) and (B3) in 

appendix B. Also the results for nonlocal beams (A) and (C) 

show an excellent agreement with the known data in 

literature (Ghannadpour et al. 2013). Table 3 presents the 

ratio of nonlocal (η/L = 0.1) critical buckling load to local 

critical buckling load (PR) for tapered (ξ = 0.1), BDFGM 

( α = 0.1 ) nano-beam by considering various end 

conditions. The length of each span is L/n, in which n is the 

number of spans. The results of Table 3 show that, using 

additional supports in mid-span increases the difference 

between the outcomes of local and nonlocal elasticity 

theories. 

 

 

6. Conclusions 
 

In current study for the first time, the buckling analysis 

of rectangular and annular tapered bidirectional FG Euler-

Bernoulli nano-beam resting on two-parameter elastic 

foundation subjected to variable axial compression based on 

nonlocal elasticity theory is conducted. A new scheme is 

proposed to calculate the buckling loads of first modes of 

multi-span FG nano-beams subjected to stepwise variation 

of axial compression with various side-span end conditions. 

To the best of the authors’ knowledge, all the previous 

works about buckling analysis of bidirectional FG nano-

beams are limited to the BDFGM nano-beams having 

uniform thickness subjected to the constant axial force 

without considering the elastic foundation.  

The derived governing differential equation in current 

work for the uniform nonlocal nano-beam subjected to 

constant axial force rested on Pasternak elastic foundation 

is same as the nonlinear vibration equation of motion of 

nano-beam after neglecting time dependent terms and axial 

deformation (Ghannadpour et al. 2013, Khorramian et al. 

2015, Tahmasbi et al. 2016, Togun and Bağdatlı 2016). A 

novel technique based on calculus of variations and 

collocation method is used. For the simpler cases, the exact 

analytical solutions are obtained in appendices to validate 

the results of proposed technique. In addition, the excellent 

agreement between our outcomes with those of reported in 

the literature, wherever possible, is observed (Ghannadpour 

et al. 2013, Nejad et al. 2016) and validity of this new work 

is proved. The difference between results of nonlocal 

elasticity theory and results of local elasticity theory is 

decreased by increasing length, decreasing scale coefficient, 

increasing foundation moduli and decreasing material 

constant in length direction. The current work will be 

helpful for analyzing and developing tapered BDFGM thin 

nano-beams rested on elastic mediums subjected to variable 

axial compression. 
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Appendix A - Analytical solution for local tapered FG 

beam rested on shear layer 
 

For tapered local FG beam (η = 0) with transverse 

graduation ( α = 0 ), the ordinary differential equation 

(ODE) in Eq. (22) for k0 = 0, has the analytical solution in 

terms of hypergeometric function. In mathematics, the 

Gaussian or ordinary hypergeometric function 2F1(a,b;c;z) 

is a special function represented by the hypergeometric 

series.  

F12 (a, b; c; z) = ∑
(a)n(b)n
(c)n

zn

n!

∞

n=0

 , (A1) 

in which (x)n is Pochhammer symbol and represent the 

rising factorial as follows 

(x)n = x(x + 1)(x + 2)… (x + n − 1) =
Γ(x + n)

Γ(x)
 (A2) 

The ODE in Eq. (22) for η = α = k0 = 0 and constant 

P has the following solution 

w(x) = c0 + c1x + 

c2∑
(−1)n

(2)n

((P − G)L3)
n

(EI0ξ
2(ξx + L))

n
n!

∞

n=0

+ 

c3K(1,2i√
(P − G)L3

EI0ξ
2(ξx + L)

)√ξx + L 

(A3) 

The parameter i represent one of the square roots of -1. 

J(v, x) and Y(v, x) are the Bessel functions of the first and 

second kinds respectively. They satisfy Bessel's equation 

x2y′′ + xy′ + (x2 − v2)y = 0 . Also I(v, x)  and K(v, x) 
are the modified Bessel functions of the first and second 

kinds, respectively.  They satisfy the modified Bessel's 

equation x2y′′ + xy′ − (v2 + x2)y = 0. The Taylor series 

expansion for I(1,2i√z)/(i√z)   and -  J(1, −2√z)/√z  is 

presented in Eq. (A4). 

I(1,2i√z)

i√z
= −

 J(1, −2√z)

√z
=∑

(−1)n

(2)n

zn

n!

∞

n=0

 (A4) 

The series in Eq. (A3) has the form of the series in Eq. 

(A4). Also the real part of K(1, iz) is equal to J(1, z) ×

Re(K(1,mi))/J(1,m)  and imaginary part of K(1, iz)  is 

equal to Y(1, z) × Im(K(1,mi))/Y(1,m), in which m is a 

positive real number and Re and Im denote the real and 

imaginary parts, respectively. After some manipulations the 

Eq. (A3) is simplified as follows 

w(x) = c0 + c1x + 

c2J (1,2√
(P − G)L3

EI0ξ
2(ξx + L)

)√L + ξx + 

c3Y(1,2√
(P − G)L3

EI0ξ
2(ξx + L)

)√L + ξx 

(A5) 
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It is noteworthy to mention that the parameter (P-G) in 

Eq. (A5) represent the increase of buckling load of FG 

beam caused by shear modulus of foundation. The amount 

of G will be added to the buckling load of local FG beam 

directly. In general, deflection of FG beam in Eq. (A5) has 

the four unknown coefficients to be determined by using 

natural and boundary conditions at the ends of FG beam. 

These equations for pinned (S-S), clamped (C-C), clamped 

and pinned (C-S) and pinned and clamped (S-C) are 

w(0) = w(L) = w′′(0) = w′′(L) = 0 , w(0) = w(L) =
w′(0) = w′(L) = 0 , w(0) = w(L) = w′(0) = w′′(L) =
0 and w(0) = w(L) = w′(L) = w′′(0) = 0, respectively. 

The equations for free right end and clamped left end (C-F) 

are w′′(L) = w′(0) = 0 . Also, the equations for end 

condition (F-C) are w′′(0) = w′(L) = 0 . For boundary 

conditions (C-F) and (F-C) the coefficients c0 and c1 in Eq. 

(A5) are vanished. After satisfying above mentioned 

equations a system of algebraic homogeneous equations is 

obtained. It is obvious that for having nontrivial solution the 

determinant of coefficient matrix must be vanished. This 

leads to solve an eigenvalue problem. The buckling load for 

FG beam with rectangular or annular section is equal to 

G + EI0z
2/L3 in which z for (S-S), (C-S), (S-C), (C-F), (F-

C) and (C-C) boundary conditions is obtained after solving 

Eqs. (A6) to (A11) with respect to z for various numerical 

values of L and ξ, respectively.  

J(1, γ)Y(1, Γ) − J(1, Γ) Y(1, γ) = 0 (A6) 

Y(1, Γ)(J(1, γ)(1 + ξ)L − J(0, γ)√Lz) − 

Y(1, γ)J(1, Γ)(1 + ξ)L + Y(0, γ)J(1, Γ)√Lz = 0 
(A7) 

−Y(1, Γ) (J(1, γ)√(1 + ξ)L) − Y(0, Γ)(J(1, γ)z) + 

Y(1, γ) (J(1, Γ)√(1 + ξ)L + J(0, Γ)z) = 0 

(A8) 

Y(1, Γ)(J(1, γ)ξL − J(0, γ)√Lz) − 

Y(1, γ)J(1, Γ)ξL + Y(0, γ)J(1, Γ)√Lz = 0 
(A9) 

Y(1, Γ)J(1, γ)ξ√(1 + ξ)L − Y(0, Γ)z + 

Y(1, γ) (J(0, Γ)z − J(1, Γ)ξ√(1 + ξ)L) = 0 
(A10) 

Y(1, Γ)√L(1 + ξ)(J(0, Γ) − J(0, γ)) + 

Y(1, γ)√L ((J(0, γ) − J(0, Γ))(1 + ξ)) + 

+Y(0, Γ)[J(1, γ)ξ√L − J(1, Γ)√L(1 + ξ) + 

J(1, γ)√L − J(0, γ)z] + Y(0, γ) 

[J(1, Γ)√L(1 + ξ) − J(1, γ)ξ√L 

−J(1, γ)√L + J(0, Γ)z = 0 

(A11) 

The parameters γ and Γ are defined in Eq. (A12). 

γ =
2z

ξ√L
,    Γ =

2z

ξ√L(ξ + 1)
 (A12) 

Appendix B - Analytical solution for non-local 
uniform FG beam  
 

The ODE in Eq. (22) for (α = ξ = k0 = G = 0 and 

f(x)=1) has the following solution 

w = c0 + c1x + 

c3sin(√
P

EI − Pη2
x) + c4cos (√

P

EI − Pη2
) 

(B1) 

After considering Eq. (B1) for local FG beam (η = 0) 

the relation between the local buckling load (F) and 

nonlocal buckling load (P) for all buckling modes is 

obtained as follows 

F =
P

1 −
P

EI
η2

 (B2) 

Also, the nonlocal buckling load (P) in terms of local 

buckling load (F) is calculated as follows 

P =
F

1 +
F

EI
η2

 (B3) 
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