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1. Introduction 
 

Recently, the authors presented a paper (Rossit et al. 

2017) regarding dynamic behavior of cantilever tapered 

beams carrying concentrated masses. For the authors 

knowledge it was the first paper on the matter since, there 

has not been any previous attempt to solve the problem of 

an axially functionally graded beam carrying an attached 

mass. 

Subsequently, Nikolić (2017) analyzed a non-uniform 

axially functionally graded cantilever beam with a tip body, 

by means of the rigid element method. 

In those papers, beams flexural deformation is described 

by means of Bernoulli-Euler theory.  

According to a recent literature survey, apparently, there 

are no papers on Timoshenko AFG beams carrying attached 

masses. As it is known Timoshenko theory, posed in 1921 

(Timoshenko 1921, 1922), provides more accurate results in 

the general study of beams and is mandatory in the case of 

high frequencies or non-slender beams. Remarks of 

historical character on the subject can be found in the paper 

by Elishakoff et al. (2015). 

Certainly, even papers about bare AFG Timoshenko 

beams are scarce. Among them, mention must be made of 

the paper of Shahba et al. (2011) who studied free vibration 

and stability of AFG Timoshenko beams through a finite 

element approach. Huang et al. (2013) presented a new  
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approach: by introducing an auxiliary function, they 

changed the coupled governing equations with variable 

coefficients for the deflection and rotation to a single 

governing equation. He et al. (2013) improved the 

traditional beam element to consider the variable axial 

parameters which were formulated in terms of a power 

series. Tang et al. (2014) obtained closed form solutions for 

uniform AFG Timoshenko beams whose bending stiffness 

and distributed mass density are assumed to obey a unified 

exponential law. Rajasekaran and Norouzzadeh Tochaei 

(2014) investigated the free vibration analysis of AFG 

Timoshenko beams carried out through the differential 

transformation element method and the quadrature element 

method. They introduce an element-based differential 

method that significantly improves the accuracy of results. 

They also introduced a lower order differential quadrature 

element based on differential quadrature element method. 

They showed the accuracy of both methods with several 

numerical examples.  

Also, Sarkar and Ganguli (2014) founded closed form 

solutions for certain polynomial variations of the material 

mass density, elastic modulus and shear modulus, along the 

length of the beam. Gan et al. (2015) presented a finite 

element procedure for dynamic analysis of non-uniform 

AFG Timoshenko beams under multiple moving point 

loads. Sun et al. (2016) suggested a new initial value 

method to determine critical tip force and axial loading at 

buckling of a standing column with varying cross-section 

and variable material properties under self-weight and tip 

force. More recently, in 2017 Zhao et al. introduced a new 

approach based on Chebyshev polynomials theory and 

Tudjono et al. derived exact shape functions for both non-

uniform (non-prismatic section) and inhomogeneous 

(functionally graded material) Timoshenko beam element 

formulation explicitly and Chen et al. (2017) developed the  
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Fig. 1 AFG cantilever tapered beam with N masses attached 

at arbitrary points 

 

 

initial value method of a system of ordinary differential 

equations to determine the resonance frequencies of 

functionally graded nanocantilevers carrying a nanoparticle. 

In the present paper, we describe the determination of the 

natural frequencies of vibration of a Timoshenko cantilever 

beam with varying rectangular cross section and made of 

axially functionally graded material, carrying attached 

masses at arbitrary positions, having into account their 

rotatory inertia. In view of the mathematical difficulties of 

the problem since variable coefficients appear in the 

governing differential equations, approximated methods are 

required to solve general cases. The well-known Rayleigh-

Ritz method (Ilanko and Monterrubio 2014) is employed 

and its suitability to apply to Timoshenko beams with 

properties varying according to its axial axis and attached 

masses is verified by comparison with particular cases of 

the posed model published in the literature. 

 
 

2. Analytical approach 
 

According to the Timoshenko beam theory, the 

determination of the beam frequencies involves the effects 

of rotational inertia, shear deformation and their combined 

effects.  

For the normal modes of beam vibration (Fig. 1) it can 

be expressed 

( , ) ( )cos ( )

( , ) ( )cos ( )

v x t V x t

x t Ψ x t



 

=

=
 (1) 

where v is the transverse displacement of the mid-surface in 

the y-direction displacement, ψ is the angle of rotation of 

the normal to the mid-surface of the beam, t is the time and 

ω is the circular frequency in radians per second. 

The non-dimensional coordinate is defined as  

x x L=  (2) 

where L is the length of the beam and 
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L

Ψ x Ψ x

=

=

 (3) 

are the dimensionless expressions of the transverse 

displacement and bending angle, respectively. 

If the cross section varies smoothly, the energy 

functional J for the vibrating beam of length L carrying 

attached N masses mk at positions kx  (see Fig. 1) is given 

by 
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where A(x) is the varying cross section and I(x) its second 

moment of area, the FGM density is ρ(x), the Young ś 

modulo is E(x) and the shear modulus is G(x). rk defines the 

radius of gyration of the mass mk with respect to the neutral 

axis of the beam and  is the shear coefficient. 

As the material and geometric characteristics of the 

beam may be general, one can define 
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It was considered 
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where  is the Poisson ratio. 

Obviously
A b hf f f  ,= 

3

I b h    f f f=  ,
G Ef f= . 

The subscript “0” refers to the cross section of the beam 

adopted as the reference section. 

To apply the Rayleigh-Ritz method, it is necessary to 

approximate the spatial component of the solution 

1
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where  and i jp q  are coordinate functions that satisfy the 

essential boundary conditions, Ci and Dj are arbitrary 

constants, Np and Nq are the number of terms. 

Following Rayleigh-Ritz procedure, the functional is 

minimized with respect to every arbitrary constant 
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Then a linear system of equations is formed 
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which results in the following eigenvalue equation 
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are the elements of matrices K and M, respectively; with 
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Then, the eigenvalue problem can be expressed as 

1 2 0−  = =KM  - I B- I  (16) 

where
2 =  are the eigenvalues of matrix B and I the 

identity matrix. 

For the cantilever beam, the following coordinate 

functions are chosen 
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Table 1 Frequency coefficients for a tapered AFG 

Timoshenko beam ( ( ) ( )2

0 0 0 0/  i i L A E I  = ) 

 Ω1 Ω2 Ω3 Ω4 

Shahba et al. 3.9359 15.1577 31.2638 47.7164 

Rajasekaran et al. 3.9358 15.1532 31.2236 47.5830 

Huang et al. 3.93579 15.1533 31.2239 47.5857 

Zhao et al. 3.93585 15.1540 31.2257 47.5871 

Present 3.93579 15.1533 31.2239 47.5836 

 

 

which satisfy essential boundary conditions. 

 

 

3. Numerical results 
 

Since there were not found, in the technical literature, 

values of natural frequencies of vibration of AFG 

Timoshenko beams with attached masses in order to verify 

the accuracy of the proposed model, comparisons are made 

with particular cases available in the literature.  

First, Table 1 compares values for a tapered 

Timoshenko beam made of axially functionally graded 

material studied by Shahba et al. (2011), Huang et al. 

(2013), Rajasekaran and Norouzzadeh Tochaei (2014) and 

Zhao et al. (2017). They obtained values for the first four 

natural frequency coefficients for a case that can be 

represented in the present model. 

The two constituent materials are Zirconia (ZrO2) and 

Aluminum (Al).  

ZrO2: 0 200 GPaE = ;
0 3

5700
kg

m
 =  (19) 

Al: 
1 70 GPaE = ; 

1 3
2702

kg

m
 =  (20) 

and properties of AFG material, like mass density , 

Young’s modulus E, shear modulus G, continuously vary in 

the axial direction with a power law relation. Then, a 

generic material property P(x) is assumed to vary along the 

beam axis x 

1 0

0

0

( )
( ) 1      nP P

P x P x
P

 −
= + 

 
 (21) 

In order to compare results, it is taken n=2 in Eq. (21). 

The geometry of the varying section is defined adopting in 

Eqs. (5) 

( )
3

1 0.1  , 1 0.1A If x f x= − = −  (22) 

They adopted 

5
10; ; 0.30

6
s  = = =  (23) 

Then, Table 2 compares values with the case studied by 

Torabi et al. (2013): A wedge cantilever homogeneous 

Timoshenko beam (ν= 0.25, κ=2/3) with an attached tip 

mass (M=0.32) and whose cross-sectional properties are  
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Table 2 Frequency coefficients for a tapered homogeneous 

Timoshenko beam with a tip mass (

( ) ( )2

0 0 0 0/  i i L A E I  = ) 

 s=10 s=25 Solution 

Ω1 
1.997 2.117 Torabi et al. 

1.9977 2.0957 Present 

Ω2 
10.695 13.420 Torabi et al. 

10.6947 13.4311 Present 

Ω3 
24.388 36.109 Torabi et al. 

24.3869 36.1016 Present 

Ω4 
40.174 66.697 Torabi et al. 

40.1487 66.6219 Present 

Ω5 
56.739 102.451 Torabi et al. 

56.7489 102.108 Present 

 

 

defined by: ( )
3

1 0.4  , 1 0.4A If x f x= − = − . Two different 

slenderness ratios are considered and the first five non-

dimensional natural frequencies are presented. 

In all cases the calculations were done with Np=Nq= 20 

in Eqs. (17)-(18), and the cross section at the clamped edge 

(x=0) is taken as the reference cross section. 

As it can be seen, the agreement is excellent in both cases. 

It is worth mentioning that the Rayleigh-Ritz method gives 

upper bounds of the wanted values. 

Next, an example of the convenience of using 

Timoshenko theory in certain situations: in the paper that 

preceded and gave rise to the present (Rossit et al. 2017) 

are compared frequency values with a previous work (Chen 

and Liu, 2006) of a case of a Bernoulli-Euler beam with 

attached masses. Taking into account the geometry of the 

analyzed structure, the use of Timoshenko theory to 

describe the flexural behavior of the beam would have 

yielded more accurate results. 

The physical properties and dimensions of the beam 

studied are: Young ś modulus E=2.0511011 N/m2, mass 

density ρ=7850 kg/m3, constant beam width b=0.1 m, beam 

length L= 1.60 m, lineal variable beam depth: 0.08 m at the 

free end and 0.40 m at the clamped end. 

Each attached mass has a magnitude of one-fifth of the 

actual total mass of the beam: 60.288 kg. 

In the present model, according to the definition used 

for the relative magnitude of the mass, it must be adopted 

0

2

0

12
; 0; 1 to 5.

100

                                                                (24)

k k

i
i

M c k

EI

L A
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= = =
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=
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where, as indicated previously,
i is the natural frequency in 

radians per second. 

Two particular situations were considered: 

a) One point mass attached at the free end (Table 3) 

(Fig. 2). 

Five equal point masses attached at coordinates: 0.125L, 

0.3125L, 0.5L, 0.6875L and 0.875L respectively (Table 4) 

(Fig. 1). 

Table 3 Frequency values in radians per second for a 

tapered homogeneous cantilever beam with one attached 

mass 

 Chen and Liu Rossit et al. Present 

ω1 569.6279 569.3747 557.5622 

ω2 2508.895 2503.714 2297.209 

ω3 6743.232 6710.268 5548.167 

ω4 13408.53 13289.00 9823.906 

ω5 22570.17 22240.74 14743.28 

 Bernoulli-Euler Timoshenko 

 

 

Fig. 2 AFG cantilever tapered beam with one mass m 

attached at the free end 

 

Table 4 Frequency values in radians per second for a 

tapered homogeneous cantilever beam with five attached 

masses 

 Chen and Liu Rossit et al. Present 

ω1 613.220 613.194 594.523 

ω2 2525.54 2524.88 2259.80 

ω3 6366.50 6356.55 5056.30 

ω4 12184.0 12116.4 8716.58 

ω5 16089.9 15928.0 11551.5 

 Bernoulli-Euler Timoshenko 

 

 

When the free end of the beam has no attached mass, the 

summation in Eq. (18) starts with j=2 to partially satisfy the 

natural edge conditions and accelerate convergence of 

Rayleigh-Ritz method. 

Next, some cases are evaluated to show the influence of 

the application of Timoshenko theory on an AFG vibrating 

beam with attached masses. The effect of the slenderness of 

the beam: 
0 12

sL
h
=  on such influence is evidenced. 

Among the infinity of cases that could be evaluated due to 

the quantity and variability of the parameters involved in 

the description of the behavior of the posed model, just the 

case of a beam whose height varies quadratically is 

considered: ( )2

0( ) 1 0.5h x h x= − .In all cases, there are 

taken into account the quantity and positions of masses of 

Tables 3 and 4. 

Properties of AFG materials, like mass density, 

Young’s modulus E, shear modulus G, continuously vary in 

the axial direction according to Eq. (21). 

Three cases are considered in Eq. (21), n=0 

(homogeneous material), n=1 (AFG material with linear 

variation) and n=2 (AFG material with quadratic variation). 
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Table 5 Frequency coefficients for a homogeneous tapered 

beam with a mass at the free end 

0

L
h

 Ω1 Ω2 Ω3 Ω4 Ω5 

5 2.61342 12.4385 25.7434 42.1832 66.2152 

10 2.65308 13.1585 27.9641 50.8473 87.2670 

50 2.66619 13.4136 28.8753 55.3339 100.861 

100 2.66661 13.4218 28.9059 55.4978 101.411 

500 2.66674 13.4244 28.9157 55.5506 101.589 

1000 2.66674 13.4245 28.9160 55.5522 101.595 

B-E 2.66674 13.4245 28.9161 55.5528 101.597 

 

Table 6 Frequency coefficients for a tapered beam with 

AFG material (Alum-St) varying linearly and a mass at the 

free end 

0

L
h

 Ω1 Ω2 Ω3 Ω4 Ω5 

5 3.37453 15.5940 30.9115 54.5280 88.4008 

10 3.42831 16.2669 33.4780 66.0183 116.311 

50 3.44611 16.4974 34.5370 71.8186 133.950 

100 3.44667 16.5047 34.5726 72.0287 134.657 

500 3.44685 16.5071 34.5840 72.0964 134.886 

1000 3.44686 16.5072 34.5844 72.0985 134.893 

B-E 3.44686 16.5072 34.5845 72.0992 134.896 

 

Table 7 Frequency coefficients for a tapered beam with 

AFG material (Alum-St) varying quadratically and a mass 

at the free end 

0

L
h

 Ω1 Ω2 Ω3 Ω4 Ω5 

5 3.57172 16.9323 33.1276 59.9104 97.620 

10 3.62692 17.5915 35.9643 72.8383 128.876 

50 3.64517 17.8147 37.1361 79.3762 148.734 

100 3.64574 17.8218 37.1755 79.6132 149.531 

500 3.64592 17.8240 37.1881 79.6896 149.789 

1000 3.64593 17.8241 37.1885 79.6919 149.797 

B-E 3.64593 17.8241 37.1886 79.6927 149.800 

 

 

In the calculations, the AFG material made of steel and 

aluminum oxide Al2O3 (alumina) proposed by Su et al. 

(2013) is used. Their Young’s modulus and density are 

210
St

E GPa= ; 37800 /
St

kg m = ; 390
Alum

E GPa= ; 
33960 /

Alum
kg m = ; 0.30

St Alum
 = =  

(25) 

Note that the alumina, more rigid, is lighter than steel. It 

is adopted 5
6

 = and the masses are all the same 

0.20 0.10k

k k

r
M c

L
= = =,    (26) 

Tables 5-7 show the values of the frequency coefficient 

( ) ( )2

0 0/i i st stL A E I  = for the three compositions of  

Table 8 Frequency coefficients for a homogeneous tapered 

beam with 5 masses attached 

0

L
h

 Ω1 Ω2 Ω3 Ω4 Ω5 

5 2.54668 11.4422 25.0435 40.2884 55.9815 

10 2.59584 12.3499 28.1789 47.0494 70.4052 

50 2.61217 12.6836 29.4089 49.8045 76.3278 

100 2.61269 12.6944 29.4493 49.8951 76.5124 

500 2.61285 12.6979 29.4623 49.9241 76.5714 

1000 2.61286 12.6980 29.4627 49.9250 76.5733 

B-E 2.61286 12.6980 29.4628 49.9253 76.5739 

 

Table 9 Frequency coefficients for a tapered beam with 

AFG material (Alum-St) varying linearly and 5 masses 

attached 

0

L
h

 Ω1 Ω2 Ω3 Ω4 Ω5 

5 3.34776 14.4042 31.0773 49.7108 68.3974 

10 3.41463 15.4125 34.4194 57.6441 89.0157 

50 3.43689 15.7767 35.6846 60.7844 97.5336 

100 3.43759 15.7884 35.7258 60.8869 97.7912 

500 3.43782 15.7922 35.7390 60.9198 97.8734 

1000 3.43783 15.7923 35.7394 60.9208 97.8759 

B-E 3.43783 15.7923 35.7395 60.9211 97.8768 

 

Table 10 Frequency coefficients for a tapered beam with 

AFG material (Alum-St) varying quadratically and 5 

masses attached 

0

L
h

 Ω1 Ω2 Ω3 Ω4 Ω5 

5 3.53034 15.4729 33.2349 53.0152 72.9484 

10 3.59840 16.5480 36.7570 61.5285 94.8568 

50 3.62101 16.9345 38.0812 64.8727 103.644 

100 3.62173 16.9470 38.1242 64.9813 103.905 

500 3.62196 16.9510 38.1380 65.0161 103.988 

1000 3.62196 16.9511 38.1384 65.0172 103.990 

B-E 3.62196 16.9511 38.1386 65.0176 103.991 

 

 

the cantilever beam considered when a mass is attached at 

the free end. 

Different values of the slenderness of the beam are 

taken into account. The value for the Bernoulli-Euler beam 

is indicated at the last row of every table for comparison 

Tables 8 to 10 show the results when five masses are 

attached to the beam. 

As can be seen and as might be expected, as the beam's 

slenderness increases the frequency values tend to the 

values obtained using the simpler theory of Bernoulli-Euler. 

Figs. 3 to 7 show the differences of the values of the 

first five frequencies of the different beam cases analyzed 

with respect to the respective value of the Bernoulli-Euler 

beam. The graphs indicate the decrease in absolute value

%Δ , according to the slenderness of the beams for the 

analyzed cases: 
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Fig. 3 Variations of the first frequency by the use of theory 

of Timoshenko 

 

 

Fig. 4 Variations of the second frequency by the use of 

theory of Timoshenko 

 

 

1(a): Homogeneous beam with one mass attached. 

1(b): AFG (linear) beam with one mass attached. 

1(c): AFG (quadratic) beam with one mass attached. 

5(a): Homogeneous beam with five masses attached 

5(b): AFG (linear) beam with five masses attached. 

5(c): AFG (quadratic) beam with five masses attached. 

It is plotted up to the ratio 100L
h
= to improve the  

 

Fig. 5 Variations of the third frequency by the use of theory 

of Timoshenko 

 

 

Fig. 6 Variations of the fourth frequency by the use of 

theory of Timoshenko 

 

 

representation of trends, since for the slenderest beams the 

differences are very small. 

It is observed that for the first three frequencies, the 

influence of considering the theory of Timoshenko is 

greater in the beams with five masses for all the material 

compositions. However, for the fourth and fifth frequencies, 

the influence is greatest on beams carrying just one mass. 
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Fig. 7 Variations of the fifth frequency by the use of theory 

of Timoshenko 

 

Table 11 Convergence study (case of the first row in Table 

10) 

p,qN  Ω1 Ω2 Ω3 Ω4 Ω5 

5 3.53362 15.5960 34.2454 62.0190 97.4123 

10 3.53129 15.5170 33.5176 53.8933 74.6629 

15 3.53053 15.4876 33.3527 53.3795 73.5660 

20 3.53034 15.4729 33.2349 53.0152 72.9484 

25 3.53022 15.4690 33.1829 52.6410 72.1216 

30 3.53014 15.4651 33.1366 52.5256 71.8635 

35 3.53010 15.4601 33.0987 52.4371 71.6952 

 

Table 12 Frequency coefficients for a homogeneous tapered 

beam with a mass at the free end 

0

L
h

 Ω1 Ω2 Ω3 Ω4 Ω5 

5 1.27563 2.14165 8.58443 21.5106 39.2133 

10 1.27843 2.15684 8.87121 23.0863 43.8814 

50 1.27932 2.16182 8.96939 23.6722 45.8118 

100 1.27935 2.16197 8.97252 23.6913 45.8767 

500 1.27936 2.16202 8.97352 23.6974 45.8975 

1000 1.27936 2.16202 8.97355 23.6976 45.8981 

B-E 1.27936 2.16202 8.97354 23.6976 45.8983 

 
 

In terms of the composition, it can be said that the 

influence of using Timoshenko theory in general is similar 

for the two cases of AFG material studied and for the 

homogeneous beam. Only in the case of the beam with 5 

masses and for the fifth frequency the influence of the 

theory of Timoshenko is greater for the two cases with AFG  

Table 13 Frequency coefficients for a tapered beam with 

AFG material (Alum-St) varying linearly and a mass at the 

free end 

0

L
h

 Ω1 Ω2 Ω3 Ω4 Ω5 

5 1.36309 2.39179 11.2089 28.1562 51.5514 

10 1.36512 2.41198 11.5495 29.9232 56.7953 

50 1.36576 2.41860 11.6656 30.5684 58.8905 

100 1.36578 2.41880 11.6692 30.5893 58.9602 

500 1.36579 2.41887 11.6704 30.5960 58.9826 

1000 1.36579 2.41887 11.6705 30.5963 58.9833 

B-E 1.36579 2.41887 11.6704 30.5962 58.9833 

 

Table 14 Frequency coefficients for a tapered beam with 

AFG material (Alum-St) varying quadratically and a mass 

at the free end 

0

L
h

 Ω1 Ω2 Ω3 Ω4 Ω5 

5 1.40096 2.48318 12.3504 31.2174 57.0748 

10 1.40280 2.50489 12.7168 33.1502 62.8409 

50 1.40338 2.51200 12.8413 33.8538 65.1354 

100 1.40340 2.51222 12.8453 33.8766 65.2117 

500 1.40341 2.51229 12.8465 33.8839 65.2361 

1000 1.40341 2.51230 12.8466 33.8841 65.2369 

B-E 1.40341 2.51229 12.8466 33.8841 65.2369 

 

 

materials than for the homogeneous beam. 

 

 

4. Convergence of the procedure 
 

4.1 Selection of number of terms 
 

The situation of the first row of Table 10 will be used to 

evaluate the convergence of the approach because it is the 

most complex of the analyzed ones: greater shear effect, 

height of the cross section varying quadratically and five 

attached masses. Table 11 indicates the results for different 

numbers of terms in the summations of Eqs. (17)-(18). 

The values in Table 11 prove the convergence of the 

method (it is recalled that Rayleigh-Ritz gives upper bounds 

of the wanted values). The computation time is significantly 

increased for Np,Nq>20. Therefore, considering that the 

results are sufficiently indicative from an engineering 

viewpoint and evaluating the time of data processing, was 

taken Np = Nq = 20 for all cases. 

 

4.2 Stability of the solution in a case of large taper 
ratio 
 

For large taper ratios, the model moves further away 

from the classical theory of strength of materials, so it is 

important to verify whether the proposed solution tend 

steadily to the values obtained using the simpler theory of 

Bernoulli-Euler as the beam’s slenderness increases.  
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Table 15 Frequency coefficients for a homogeneous tapered 

beam with 5 masses attached 

0

L
h

 Ω1 Ω2 Ω3 Ω4 Ω5 

5 1.97783 5.36874 10.3193 19.4102 27.3144 

10 1.99942 5.48667 10.7394 21.2467 29.5836 

50 2.00644 5.48576 10.8857 21.9391 30.4221 

100 2.00666 5.48667 10.8904 21.9617 30.4493 

500 2.00673 5.48696 10.8919 21.9689 30.4580 

1000 2.00673 5.48697 10.8919 21.9691 30.4583 

B-E 2.00674 5.48697 10.8919 10.8919 30.4584 

 

Table 16 Frequency coefficients for a tapered beam with 

AFG material (Alum-St) varying linearly and 5 masses 

attached 

0

L
h

 Ω1 Ω2 Ω3 Ω4 Ω5 

5 2.45983 6.23187 12.3419 23.6946 31.9500 

10 2.48622 6.31773 12.8358 25.8668 34.3836 

50 2.49480 6.34590 13.0068 26.6812 35.2872 

100 2.49507 6.34678 13.0123 26.7077 35.3165 

500 2.49515 6.34707 13.0140 26.7162 35.3259 

1000 2.49515 6.34708 13.0141 26.7165 35.3262 

B-E 2.49516 6.34708 13.0141 26.7165 35.3263 

 

Table 17 Frequency coefficients for a tapered beam with 

AFG material (Alum-St) varying quadratically and 5 

masses attached 

0

L
h

 Ω1 Ω2 Ω3 Ω4 Ω5 

5 2.60538 6.58682 13.1136 25.2506 34.0783 

10 2.63303 6.67367 13.6388 27.5666 36.6714 

50 2.64202 6.70212 13.8203 28.4326 37.6315 

100 2.64231 6.70301 13.8261 28.4607 37.6626 

500 2.64240 6.70330 13.8280 28.4698 37.6726 

1000 2.64240 6.70331 13.8280 28.4700 37.6729 

B-E 2.64240 6.70331 13.8280 28.4701 37.6730 

 

 

The case ( )0( ) 1 0.95h x h x= − is evaluated for the same 

materials composition, quantity and positions of masses of 

Tables 5 to 10. 

As can be seen in Tables 12 to 17 the trend of the model 

is suitable. 

It is required to clarify that in the cases in which no 

natural condition is satisfied at the free edge (Tables 12 to 

14) it has been necessary to take Np = Nq = 25 in Eqs. (17) 

and (18) to obtain stability in the trend. 

Values of Tables 15 to 17 are obtained taken Np = Nq = 

20 in Eqs. (17) and (18). 
 
 

5. Conclusions 
 

The study of the use of FG materials in resistant 

structures has had an important development due to the 

ability of these materials to resist great efforts and to reduce 

the weight of structures. 

For this purpose, it is important to have tools that allow 

carrying out studies of the performance of structures in 

different work situations. Among them, the behavior of 

structural elements that support motors or machines 

attached to them is usual in many applications and their 

operation can cause severe efforts in the structure. 

In that case, the knowledge of the dynamic parameters 

of the beam-mass system is fundamental for what is 

necessary to have a model that correctly describes its 

behavior. In the case of short beams or higher frequencies, 

Timoshenko theory should be used to describe the flexural 

behavior of the beam. 

The well-known Rayleigh-Ritz method provides an 

accurate and convenient procedure to tackle the problem of 

a vibrating Timoshenko AFG beam carrying attached 

masses, a problem of which the authors have not found data 

in the literature. 

As a general conclusion, one may say that the influence 

of the use of Timoshenko theory on the frequencies of 

cantilever AFG beams supporting masses follows the same 

trends as for homogeneous beams. 
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