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1. Introduction 
 

Recently researchers have become increasingly 

interested in studying nonlocal and van der Waals (vdW) 

force effects on dynamic behavior of carbon nanotubes 

(CNTs) (Bagdatli 2015, Tufekci et al. 2016 and Kaghazian 

et al. 2017). The first study on vibration and instability of 

CNTs conveying fluid was apparently carried out by Yoon 

et al. (2005). Subsequently, there have been a number of 

further studies on the topic conducted by other researchers. 

Khosravian and Rafii-Tabar (2007) studied the flow of 

viscous fluids through multi-walled carbon nanotubes 

(MWNTs) without considering nonlocal effect. They found 

that nanotubes conveying viscous fluids are more stable 

against vibration-induced buckling than nanotubes 

conveying non-viscous fluids, and that the aspect ratio plays 

the same role in both cases. Lee and Chang (2009) also 

studied vibration of a clamped-clamped SWNTs conveying 

viscous fluid using a nonlocal elastic model. They found 

that under the same velocity conditions, increasing the 

viscous parameter, aspect ratio or elastic medium constant 

increases the frequency of SWNTs. Wang and Ni (2009) 

found that during the flow of a fluid through a nanotube, 

modelled as a continuum beam, the effect of viscosity of the 

flowing fluid on vibration and instability of CNTs may be 

ignored. Later on, in order to consider the effect of the 

geometric nonlinearity on the transverse vibration of the 

double-walled carbon nanotubes (DWNTs) conveying fluid, 

Kuang et al. (2009) employed a nonlinear vdW force model 

without considering the nonlocal effect. The study showed  
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that the effect of geometric nonlinearity on the amplitude-

frequency properties can be neglected. 

Both Timoshenko and Euler-Bernoulli (EB) beam 

theories have been used by researchers to model flow of a 

non-viscous fluid in CNTs. In the absence of nonlocal 

effects, Khosravian and Rafii-Tabar (2008) found that the 

Timoshenko beam theory predicts the loss of stability at 

lower fluid flow velocities, a phenomenon which is 

neglected when using the EB classical beam theory. By 

considering nonlocal effects, Wang (2009a) studied 

dynamic behavior of DWNTs conveying fluid and found 

that their natural frequencies depended on nonlocal 

parameters. Ke and Wang (2011) also studied flow-induced 

vibration and instability of embedded DWNTs based on a 

modified coupled stress and the Timoshenko beam theory. 

They found that the critical flow velocity of the DWNTs 

increases with an increase in the length scale parameter and 

DWNTs with larger aspect ratio is more likely to cause 

divergence instability. A number of studies have been also 

conducted on vibration and instability of cantilevered CNTs 

conveying fluid (Yoon et al. 2006, Wang 2009b, Sobamowo 

2016). Among these, only Wang (2009b) considered 

nonlocal effect on cantilevered CNTs conveying fluid. He 

has shown that nonlocal parameter (e) effects may be 

neglected for micro-beams. However according to our 

results reported in the present work, the results of Wang’s 

paper are not representative for cantilevered systems with 

e>0. 

DWNTs conveying fluid have been also modeled based 

on Donnell’s shell theory (Chang and Liu 2011). It is noted 

that when the length of DWNTs decreases, a comparative 

difference between the results from Eulerian beam and 

Donnell’s shell models appears. Also, it is revealed that as 

the flow velocity increases, DWNTs have a way to get 

through multi-bifurcations of the first (pitchfork) and 

second (Hamiltonian Hopf) bifurcations in turn (Chang and  
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Fig. 1 A Continuum model of a nanotube conveying fluid 

 

 

Liu 2011). Chemi et al. (2018) employed nonlocal 

Timoshenko beam theory to study buckling behavior of 

chiral double-walled carbon nanotubes embedded in an 

elastic medium. 

This paper aims to study nonlinear dynamics behavior 

of SWNTs conveying fluid with different boundary 

conditions in present of small scale effects.  For this 

purpose, the nonlocal continuum field theory of Eringen 

together with Von Karman nonlinear strains are employed 

to develop an analytical model for the problem. Numerical 

results on chaos and a period-doubling transition to chaos 

are presented. 

 

 

2. Nonlinear nonlocal formulation for bending of 
Euler-Bernoulli beam theory 
 

Reddy (2010) reformulated classical and shear 

deformation beam and plate theories using Eringen (2002) 

nonlocal elasticity theory. Also, Wang (2009b) presented a 

nonlocal Euler-Bernoulli elastic beam model for the 

vibration and instability of pipes conveying fluid using the 

theory of nonlocal elasticity. For the sake of completeness, 

we have presented formulation here which also includes our 

correction to the beam theory formulation.  

 

2.1 Euler-Bernoulli beam theory (EBT) 
 

The displacement field in EBT is given by 

 
(1) 

where u and w are the axial and transverse displacement of 

points on center line (z=0) of nanotube in Fig. 1. Von 

Karman nonlinear strain for EBT is considered as follows 

 

(2) 

Now using the principal of virtual displacement we have 

 

(3) 

where f(x) and q(x) are the axial and transverse distributed 

forces (measured per unit un-deformed length). N and M are 

also the stress resultants, i.e., 

 

(4) 

By using the principal of virtual displacement, we 

obtain the following Euler-Lagrange equations in 0<x<1 

 

(5) 

 

(6) 

The boundary conditions involve specifying one 

element of each of the following three pairs at x=0 and x=1 

 

(7) 

Here, V denotes the equivalent shear force. Reddy 

(2010) reported Eqs. (6) and (7) in the following incorrect 

form 

 

(8) 

 
(9) 

 

2.2 Nonlocal theory 
 

Equivalent differential form of the constitutive relations 

in nonlocal theory (Eringen 2002) is, 

 
(10) 

where e0 is a material constant, and a is the internal 

characteristic length. By ignoring nonlocal effect in the 

thickness direction, Relation (10) takes the following form 

for homogeneous isotropic Euler-Bernoulli beams,  

 

(11) 

where E is Young’s modulus and P is a linear operator. 
 

2.3 Constitutive relations 
 

Constitutive relations are 

 
(12) 

 
(13) 

where I is second moment of area about the y-axis and 

 

(14) 
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2.4 Stress resultant in term of displacements 

 
Substituting for the first derivative of the axial force N 

from Eq. (5) into Eq. (12), we obtain, 

 

(15) 

Also, substituting for the second derivative of M from 

Eq. (6) into Eq. (13), we obtain, 

 

(16) 

where N is given by Eq. (15). 

 
2.5 Equilibrium equations 

 
Substituting N from Eq. (15) into Eq. (5), and 

substituting M from Eq. (16) into Eq. (6), we obtain 

equilibrium equations as follows 

 

(17) 

 

(18) 

where N is given by Eq. (15). Conventional Euler-Bernoulli 

beam theory is obtained by setting m=0 and P=1 in Eq. (17) 

and Eq. (18). 

 
2.6 Fluid force model 

 
Non-viscous fluid flow in a pipe whose diameter is 

sufficiently smaller than its length (slender body) can be 

modelled as a plug flow as follows (Paidoussis 1998) 

 
(19) 

where q(x) is transverse force on nanotube and other three 

terms in the right hand side of the equation are related to 

centrifugal, coriolis and inertia forces, respectively. Also, v 

is the mean flow velocity and mn and mf are the mass per 

unit length of the nanotube and fluid, respectively. The dot 

and prime denote derivatives with respect to the time t and 

axial coordinate x, respectively. 

 
2.7 The governing equation 

 
By ignoring axial force and displacement in Eq. (15) we 

obtain 

 

(20) 

After substituting Eqs. (19) and (20) into Eq. (18), the 

governing equilibrium equation is obtained as follows 

 

(21) 

Eq. (21) can also be express in following form 

 

(22) 

The boundary conditions involve specifying one 

element of each of the following pairs at x=0 and x=1 

 

(23) 

Now, introducing the following dimensionless quantities 

 

(24) 

Dimensionless form of Eq. (22) can be expressed as 

follows 

 
(25) 

and dimensionless form of boundary conditions (23) are 

 

(26) 

where . The dot and prime 

denote derivatives with respect to the dimensionless time τ 

and dimensionless axial coordinate ζ, respectively. Wang 

(2009b) presented boundary conditions as follows: 

• pinned-pinned (PP) 

 
(27) 

• clamped-clamped (CC) 

 
(28) 

• clamped-free (CF) 

 
(29) 

It appears that in Wang’s paper (2009b) the derivatives 

with respect to the dimensionless time τ have been omitted. 

When using the formulation reported by Wang (2009b), 
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different results are obtained in comparison to those 

reported in that paper. This could possibly be due a 

programming error. 

 

 

3. Solution methods 
 

3.1 Differential quadrature (DQ) method 
 
DQ method was first introduced by Richard Bellman 

and his associates in the early 1970s and since then some 

books have been written on the method by various authors, 

e.g., Shu (2000), Chen (2006) and Zhi (2009). The DQ 

method is widely used in the analysis of nanotube 

conveying fluid problems (Wang et al. 2008, Wang 2009b 

and Zhen and Fang 2010). In the linear analysis we 

employed DQ method to compare our results with those 

reported by Wang (2009b). The basic premise of the DQ 

method is that the derivative of a function at a sample point 

is approximated by the weighed linear sum of the function’s 

value at all of the sample points in the problem domain. 

Hence, w and its kth derivative with respect to x can be 

approximated by 

 

(30) 

where xj=1,2,…,N are discrete point and Cij
(k) is weighed 

coefficients whose definitions can be found in Zhen, B. 

Fang (2010). In this study, the grid points are chosen as 

Chebyshev-Gauss-Lobatto pattern (Shu 2000) 

 

(31) 

By utilizing the DQ method, we can discretize spatial 

derivative and obtain a set of nonlinear ordinary differential 

equations which can be expressed in matrix form as 

 
(32) 

where M is mass matrix and KL is the linear stiffness 

matrix. KNL is nonlinear stiffness matrix which is function 

of η and C is the damping matrix. For the linear analysis by 

ignoring KNL the solution of Eq. (32) can be written in the 

form of 

 
(33) 

where  is an undetermined function of vibration 
amplitude, Im(ω) is natural frequency and Re(ω) is related 

to system damping. Substituting Eq. (33) into Eq. (32) we 

obtain the following eigenvalue problem, 

 
(34) 

 

3.2 Galerkin method 
 

By employing Galerkin procedure, we can project  

 

Fig. 2 Fundamental frequencies for various nonlocal 

parameter and fluid velocity of a PP system 

 

 

nonlinear PDE into a finite set of nonlinear coupled ODEs. 

The solution of Eq. (25) can be written in the form 

 

(35) 

where ϕi(ξ) is ith Eigen function of a cantilevered beam. 

Substituting (35) in Eq. (25), multiplying it by ϕj(ξ) and 

integrating with respect to ξ along [0,1] we obtain 

 
(36) 

where 

 

(37) 

This finite set of ODEs can capture essential system 

behaviour if we choose appropriate and sufficient number 

of eigen functions. The number of eigen functions can be 

dictated by some of the parameters in PDE. Paidoussis 

(1998) studied critical flow velocity versus mass ratio for a 

cantilevered pipe conveying fluid.  He showed that results 

are sensitive to number of modes and indeed as β→1 more 

and more beam modes participate in the dynamic behavior 

of the pipe. 

 

 

4. Results 
 

4.1 Linear analysis 
 

Pipes supported at both ends lose stability via 

divergence and cantilevered pipes lose stability via flutter. 

As the dynamics of these systems are fundamentally 

different, they will be studied separately. Here, again we 

use mass ratio β=0.64 as used by Wang (2009b) in order to 

compare our linear analysis results with those reported in 

his paper. However, the main results are reported for β=0.1,  

624



 

Nonlinear dynamic analysis of SWNTs conveying fluid using nonlocal continuum theory 
 

 

 

Fig. 3 Four natural frequency of a PP system for β=0.64 
and various nonlocal parameter values at u=0 

 

 

Fig. 4 Critical fluid velocity of different supported systems 

and nonlocal parameters values 

 

 

Fig. 5 Four natural frequencies of a cantilevered system for 

β=0.64 and various nonlocal parameter at u=0 

 

 

which is more realistic for SWNTs (Lee and Chang 2009). 

Also, in this section the correct results for cantilevered 

pipes are presented. 

 
4.1.1 Both end supported systems 
In this section in order to study boundary condition 

effects on dynamical behavior clamped-clamped (CC), 

clamped-pinned (CP) and pinned-pinned (PP) boundary 

conditions are considered. Fig. 2 shows the dimensionless 

fundamental frequency as a function of dimensionless flow 

velocity for a PP system. 

As can be seen in this figure, increasing the nonlocal 

parameter decreases both fundamental frequency value and 

their respective critical flow velocity. According to this 

figure, the results from linear solution of the presented 

formulation and those from Wang (2009b) are entirely 

consistent. Fig. 3 shows the first four dimensionless natural 

frequencies of the PP system for β=0.64 and various e 

values at u=0. As seen in this figure increasing the nonlocal 

parameter causes natural frequencies to become closer to 

each other with a more pronounced effect in higher 

frequency range.  

Fig. 4 shows critical flow velocity (divergence velocity) 

for different boundary conditions and different nonlocal 

parameters. From this figure it can be seen that critical flow 

velocities are generally decreased with increasing values of 

nonlocal parameter. 

 

4.1.2 Cantilevered system 
In this section results are presented for cantilevered 

system with mass ratio β=0.64, the same value considered 

by Wang (2009b). Fig. 5 shows the first four natural 

frequencies of a cantilevered system for β=0.64 and various 

e values at u=0. 

As in the case of the PP system (Fig. 3), it is seen that 

increasing nonlocal parameter, decreases natural 

frequencies with a more significant effect in the higher 

frequency range. Fig. 6 shows eigenvalue evolution in 

Argand diagram with increasing flow velocity for 

e=0,0.05,0.1 and β=0.64. Circle marks in these figures 

show eigenvalues for flow velocity equal zero and square 

marks show eigenvalues for critical flow velocity. 

According to the results, in the case of β=0.64 and e=0 

(Fig. 6(d)) Hopf bifurcation occurs via first mode at 

uc=10.32 (same as Fig. 4 in Wang 2009b).  

But unlike Wang’s results in the case of β=0.64 and 

e=0.1, instability occurs in uc=8.35 via first mode (Fig. 

6(e)) and not in uc=3.32 via second mode (Fig. 5 in Wang 

2009b). Also, there is no third mode oscillatory instability 

via another Hopf bifurcation. In the case of e=0.05 and 

β=0.64, the system loses its stability at uc=10.64. Therefore, 

unlike PP systems, increasing nonlocal parameter do not 

generally decrease the critical flow velocity. In the case of 

β=0.1 and e=0,0.05,0.1 Hopf bifurcation occurs at 

uc=4.75,4.61,4.24 respectively and via second mode. As 

seen in Fig. 6, nonlocal parameter has more effect on 

critical flow velocity and eigenvalues evolution of system at 

higher mass ratios b. 
 

4.2 Nonlinear analysis 
 

4.2.1 Bifurcation diagram 
Bifurcation diagrams show dynamic behavior evolution 

of a system by varying a system parameter whilst keeping 

others fixed. Fig. 7 shows bifurcation diagrams for various 

nonlocal parameters by changing fluid velocity. In these 

figures, the displacements of the nanotube’s free-end η(1,τ) 

are plotted whenever its velocity η(1,τ) becomes zero. Since 

in some range of values of u  the symmetry of the solution 

was violated, we utilized both positive and negative initial 

conditions in the calculations 
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(38) 

For the sake of clarification in the results, the transient 

solutions were discarded. As seen in Fig. 7(a), for small 

value of u (before Hopf bifurcation) the system is at a stable 

fixed point and any disturbance around it will converge the 

system to its original stable position. Following the Hopf 

bifurcation (u;4.752), the system undergoes symmetric limit 

cycle. The radius of the limit cycle raises as fluid velocity 

increases. Thereafter, the system loses its symmetry and 

symmetric limit cycle is replaced by an asymmetric cycle, 

which corresponds to the pitchfork bifurcation. Fig. 7(c)  

 

 
 

shows the bifurcation diagram for a smaller range of u, 

where a period-doubling bifurcation is visible. This is then 

followed by occurrence of chaotic motion. Obviously, the 

route to chaos for different nonlocal parameter is via a 

period-doubling motion. It is interesting to note that after 

chaotic motion, in some range of u, periodic-motion 

prevails in the system (e.g., Fig. 8(g) shows 3-period 

motion) after which the system becomes chaotic again. 
 

4.2.2 Phase-plane and time history diagrams 
It is instructive to look at phase-plane corresponding to 

different fluid velocity which is marked in bifurcation 

diagrams (Fig. 7(a)-(g)). The middle column in Fig. 8 

shows Phase plane for different fluid velocities. For the 

purpose of construc ting phase plane d iagrams,  

 

Fig. 6 Eigenvalues evolution of a cantilevered system with various u for e=0,0.05,0.1 and β=0.64 

 

Fig. 7 Bifurcation diagrams at nanotube free-end point h=(1,t) for different nonlocal parameters 
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dimensionless displacement against dimensionless velocity 

at nanotube free-end η(1,τ) is plotted.  As mentioned 

previously, for small values of u, the system is at a stable 

fixed point. As velocity increases, the system undergoes 

symmetric limit cycle (a), asymmetric limit cycle (b), 

period-2 motion (c), period-4 motion (d), an asymmetric 

narrow-band chaotic motion (e) and a wide-band chaotic 

motion (f). Therefore, the sequence to chaos is via the 

period-doubling motion. Left column in Fig. 8 show 

corresponding time history of phase planes. 

 

4.2.3 Poincare maps 
The Poincare map is a powerful technique for 

distinguishing chaotic responses from Periodic ones or 

random noise. For an autonomous system, there are many 

ways to construct Poincare map. The scheme selected here  

 

 

is to plot displacement and velocity at nanotube free-end 

η(1,τ), when displacement of another point of nanotube 

(e.g., h=(0.7, t)) is zero (Paidoussis et al. 1989). Right 

column in Figs. 8 show Poincare maps. Figs. 8(a)-(d) and 

Fig. 8(g) show periodic motions. When the motion is 

periodic, Poincare map should consist of twice the number 

of period points. (e.g., there are 8 point in Fig. 8(d) which 

correspond to period-4 motion). Figs. 8(e) and 8(f) shows 

narrow and wide-band chaotic motions. Also, Figs. 9 and 

10 show a refined Poincare map for these chaotic motion. 

As seen in these figures when the motion is chaotic, 

Poincare map consist of infinite number of points but has a 

very definite structure in contrast to random noise motion in 

which the points fill the map. 

 

 

 

Fig. 8 Time responses, phase planes and Poincare maps for reference points in Fig. 7 
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5. Conclusions 
 

An analytical model of a SWNTs conveying fluid has 

been developed by employing nonlocal continuum and 

considering Von Karman nonlinear geometry. In the linear 

analysis, which has been carried out by DQ method, the 

natural frequencies and critical flow velocities are 

discussed. The results show that: 

• Increasing nonlocal parameter of both supported ends 

and cantilevered system, causes its natural frequencies to be 

shifted closer to each other and have more influence in the 

higher frequency range. 

• Critical fluid velocity for different two end supported 

systems decrease as nonlocal parameter increase. 

• Unlike two supported systems, increasing nonlocal 

parameter generally do not decrease critical flow velocity in 

the cantilevered beams. 

• Nonlocal parameter has more effect on critical flow 

velocity and eigenvalues of a system with higher mass ratio 

b. 

Nonlinear analysis has been carried out by bifurcation 

diagrams, phase plane and Poincare map. Bifurcation 

diagram for different nonlocal parameters with the flow 

velocity as a parameter shows chaotic motion in some range 

of flow velocity. The results demonstrate that: 

• A period-doubling bifurcation to chaos occurs for all 

the considered nonlocal parameters. 

• Increasing nonlocal parameter can cause the band of 

oscillation to get narrower in the chaotic region. 

 

 
 

Period-doubling transition to chaos are discussed by 

time history, phase plane and Poincare map.  
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