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1. Introduction 
 

Footbridges are a useful special type of bridges, which 

due to their particular form, their geometrical characteristics 

as well as their relatively small live loads, are very often 

badly designed and secondary dynamic phenomena are 

neglected. The most frequently appeared problems are those 

of lateral and torsional (coupled or uncoupled) vibrations 

due to human crowd loadings, especially from pedestrians 

in marching. 

There are numerous works studying the vertical and 

lateral motion of such bridges by analytical or experimental 

way such as the ones by Bachman and Ammann (1987), 

Fujino et al. (1992, 1993), Stoyanoff (1992), and others. 

On June 2000, the Millennium footbridge in London, 

which has been built across the river Thames, has opened 

for the public. In the opening ceremony, a crowd of over 

1000 people had assembled on the south half of the bridge 

with a band in front. When the crowd started to walk across 

with the band playing, there was immediately an 

unexpectedly pronounced lateral movement of the bridge 

deck. This movement became sufficiently large for people 

to stop walking in order to retain their balance and 

sometimes to hold onto the handrails for support. Video 

pictures showed later that the south span had been moving 

with amplitude of about 50 mm at 0.8 Hz and the central 

span about 75 mm at 1 Hz, approximately. 

It was decided immediately to limit the number of 

people on the bridge, but even so the deck movement was 

sufficient to be uncomfortable and to raise concern for 

public safety so that on June 12, 2000, the bridge was 

closed in order to find a solution for the problem. The 

footbridge remained closed and has reopened for the public  
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on February 22, 2002.  

It was realized very quickly that the problem was due to 

lateral excitation. Therefore, it became necessary to 

strengthen the bridge. Thus, strengthening of the bridge 

with external cables was chosen as a solution. As a result, 

the set cables carry a very high tensile force for a bridge of 

this size, totaling about 2000 tons-see Fig. 1.  

A significant number of publications followed by, where 

the case of strengthening of a bridge with external cables 

has been investigated. External cables are usually employed 

to cope with unexpectedly large lateral or torsional 

deformations in existing bridges. These phenomena are 

usually appearing due to incorrect or improper design. On 

this field, one must refer to the studies of Dallard et al. 

(2001), Nakamura and Kawasaki (2006), Eckhard and Ott 

(2006), Roberts et al. (2006), Ingolfsson and Georgakis 

(2011), Ingolfsson et al. (2012), Li et al. (2013), Lonetti 

and Pascuzzo (2014), Racic and Morin (2014), Zhang and 

Yu (2015), Zhang and Zhang (2016) and Sun et al. (2016). 
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Fig. 1 The London Millennium footbridge shortly after its 

completion 
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Fig. 2(a) Perspective, and (b) side-view of a cable-damper 

 

 

Fig. 3(a) Cable system, and (b) equivalent vertical and 

horizontal systems 

 

 

(a) (b) 

Fig. 4(a) displacements of the deck, and (b) detailed 

analysis 

 

 

The present paper deals with the lateral-torsional motion 

of a bridge provided with external cables as dampers under 

the action of horizontal dynamic loads or of walking human 

crowd loads. A 3-D analysis is performed for the solution of 

the bridge models. The theoretical formulation is based on a 

continuum approach, which has been widely used in the 

literature to analyze bridges. The resulting equations of the 

uncoupled motion are solved using the Laplace 

Transformation, while the case of the coupled motion is 

solved through the use of the potential energy. The method 

presented herein has been verified via the FE method as 

well as the exact solution of lateral-torsional motion of 

beams, the basics of which are given in the Appendix. 

Finally, characteristic examples are presented and useful 

results are obtained.  
 

 

2. Basic assumptions 
 

1. A damping system, consisted of cables such as the 

ones shown in Fig. 2, is applied on an inclined plane by 

angle θ. 

2. The initial stretching of the hangers is So, while under 

dynamic loading it becomes eo SSS +=                                                                                                        

3. An arbitrary point of the bridge at x (Fig. 2), under 

the action of an earthquake motion governed by υο(t), is 

displaced as shown in Fig. 3.   

 

(a) 

 
(b) 

Fig. 5(a) Forces, and (b) displacements of the deck 

 

 

4. It is also considered that:  of
2
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5. Under the action of dead and vertical live loads, it is υ 

= 0, w=0, φ=0 and S = So. 
 

 

3. Introductory concepts  
 

1. The system studied is shown in Fig. 2(a). The external 

cables have length L, sag fo and are set inclined by angle θ. 

For the initial stress N, we have the horizontal component H 

and stresses S of the hangers. 

2. The above system is analyzed into the systems of Fig. 

3(b), consisting of one vertical with sag fV, fVo and stress of 

the hangers SV and one horizontal with fH, fHo and SH, 

respectively. 

The following relations are valid 
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4. The deck 
 

Separating the deck and showing its motion because of 

the action of a horizontal load, we get Fig. 4(a), showing 

the displacement of a cross-section of the deck, where o  

is the ground motion and  and,w,  are the 

displacements and the angle of rotation of the cross-

section’s gravity center. 

Because of the angle φ, the points A1 and A2 have 

additional displacements determined as follows, taking into 

account that φ<10o and so  sin,1cos . The 

following relations are valid (see also Fig. 4(b))  
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5. The acting forces  
 

In Fig. 5(b), one can see the displacements of the points 

A1 and A2 (where they are joined the hangers), because of 

live or dynamic loadings. 

One can observe that applying the positive signs for υ, 

w and φ some displacements cause additional strain on 

hangers, while the rest cause looseness of hangers (see Fig. 

5b).  This remark is taken into account in the following 

analysis. 

 

5.1 The vertical forces 
 

Marking by the index “o” the forces without dynamic 

loadings and by “e” the additional forces because of 

dynamic loads we have 
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(5) 

where Eqs. (3), and (4) are taken into account and also that 

ff  . 

 

5.2 The horizontal forces  
 

Following a similar procedure with §5.1 we have 

 

 

Because of Eqs. (3) and (4), we finally obtain 
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where )t(o  is the soil motion, while it is taken into 

account that a positive υΑ1 brings about looseness of the 

cable 1.  
 

5.3 The torsional moments  
 

Taking into account §5.1 and 5.2 we obtain 
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6. The equations of motion   
 

Taking into account Eqs. (5), (6), (7) and that the 

external loadings can be expressed as relations of t, the 

complete equations of motion are given by the following 

expressions 
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7. Doubly symmetric cross-section 
 

For a bridge, the deck of which has a doubly symmetric 

cross-section, it will be 0zM = , α=0, and therefore Eq. (8) 

become uncoupled 
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In this case, we observe that all equations are 

))(())((

)()(),(

)()(),(

+++−−−

+−+−=

=−++−+−=

2H2He2H1H1He1H

oozy

2H1Hoozyy

fHHfHH

mctxp

SSmctxpP





597



 

S. Amir M. Ghannadpour and Payam Kiani 

 

independent each other and therefore they can be solved 

separately. 

 

7.1 The vertical motion 
    

In order to solve Eq. (9a), we are searching for a 

solution of the form 


=

 =

n

1
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where  )t(T  are the time functions under determination 

and )x(W  are functions arbitrarily chosen that satisfy the 

boundary conditions. As such functions we choose the 

shape functions of a single span beam with axial force 

sinH2 o , given by Michaltsos and Raftoyiannis (2012) 
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while y are given by the relation 
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Introducing expression (10a) into Eq. (9a) we obtain 
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Remembering that )x(W  satisfies the equation of free 

motion 
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Eq. (11a) becomes 
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Multiplying the above by )x(W  and integrating from 

0 to L we get 
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with α from Fig. 7. 

In order to solve the above system Eq. (11d), we use the 

Laplace Transformation with initial conditions 
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Therefore, the system of Eq. (11d) becomes 
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and finally 
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7.2 The lateral motion 

 

In order to solve Eq. (9a), we are searching for a 

solution of the form 
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where  )t(R  are the time functions under determination 

and )x(V  are functions arbitrarily chosen that satisfy the 

boundary conditions. As such functions, we choose the 

shape functions of a single span beam with axial force 

cosH2 o , given by Michaltsos and Raftoyiannis (2012)  
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while z are given by the relation 
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Introducing (12a) into (9b) and Following the procedure 

of §7.1 we conclude to the system 
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In order to solve the above system of Eq. (12d), we use 

the Laplace Transformation with initial conditions 
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Therefore, the system (12d) becomes 
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and finally 
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7.3 The torsional motion 
 

In order to solve Eq. (9c), we are searching for a 

solution of the form 
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where, )t(Z  are the time functions under determination 

and )x(  are functions arbitrarily chosen that satisfy the 

boundary conditions. As such functions we choose the 

shape functions for torsion of a single span beam, given by 

the following equations 
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while   are given by following the relation 
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Introducing (13a) into (9c) and following the procedure 

of §7.1 we conclude to the system 
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In order to solve the above system Eq. (14a), we use the 

Laplace Transformation with initial conditions 
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Therefore, the system of Eq. (14a) becomes 
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and finally 

)s(NL)t(Z 1
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−
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8. The general case (coupled motion)  
 

In this case it is 0zM  and therefore, Eqs. (8) are valid. 

From Eq. (8a), we observe that the vertical motion is 

independent and therefore the equations of §7.1 are valid. In 

order for the solution of the problem of coupled lateral-

torsional motion to apply the Lagrange’s equations, we 

consider the potential energy of the system. 
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We call K the kinetic energy, D the dynamic one, F the 

dissipation energy and Ω the work of the external forces. 

 

8.1 The potential energy of the system 
 

8.1.1 The kinetic energy 
The kinetic energy is produced by the lateral-torsional 

motion of the deck and it is given by the following 

expression 
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8.1.2 The dynamic energy 
The dynamic energy is caused by the stresses of the 

deck and the moments produced by the hangers. Thus, from 

the deck we have 
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while from the moments of the hangers we get 
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Therefore, the total dynamic energy will be 

21 DDD +=  (16d) 

 
8.1.3 The dissipation energy 
The dissipation energy of the system will be 
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8.1.4 The work of the external forces 
Finally, the work produced by the external forces is 
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8.2 The solution of the equations of the problem 

 

We are searching for a solution of the form 













=

=





n

nn

n

nn

)t(R)x()t,x(

)t(R)x(V)t,x(

 (17) 

where Rn(t) are the time functions under determination and 

Vn(x), Φn(x) are functions arbitrarily chosen that satisfy the 

boundary conditions. As such functions we choose the 

shape functions given by (12b) and (13b) respectively. 

8.2.1 The kinetic energy 
Introducing expressions (17) into eq (16a) we have 
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From the above equation, we obtain successively 
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After differentiation and taking into account the 

orthogonality conditions of V and  we obtain 
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In addition 

0
R

K
=







 (18b) 

 
8.2.2 The dynamic energy 
Introducing (17) into (16d) and taking into account the 

orthogonality conditions we get 
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From the above equation we get 
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8.2.3 The dissipation energy 
Introducing Eq. (17a) into Eq. (16e) we obtain 
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8.2.4 The work of the external forces 
Introducing Eq. (17a) into Eq. (16f) we obtain 
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From the above we obtain 
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8.2.5 The Lagrange’s equations 
Applying the Lagrange’s equations 
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and taking into account Eq. (18a) to (18e) we obtain 
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In order to solve the above differential system (19b) we 

use the Laplace Transformation setting 
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From the above and with initial conditions 
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Therefore, the system of Eq. (19b) becomes 
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Solving the above system, we get the functions )s(G

and, therefore 

)s(GL)t(R 1


−
 =  (20d) 

 

9. Numerical results and discussion 
 

Let us consider a simply supported footbridge with span 

length L=40 m and width b=3 m. The bridge is made from 

structural steel (isotropic and homogeneous material) with 

modulus of elasticity E=2.1×108kN/m2, shear modulus 

G=0.8×108kN/m2, moments of inertia Iy=0.001 m4, Iz=0.030 

m4, Id =0.0005 m4, warping constant Iw =0.100m6, mass per 

unit length m=200 kg/m, damping coefficient β=0.05 and 

rotational mass inertia Ipx =1000 kgm2.  

A cable system such as the one shown in Fig. 2 is 

applied on this bridge, with the following characteristics:  
28

c m/kN109E = , cable’s diameter d=4 cm or cable’s 

cross-section required 
24

c m1012F −=  (by considering a 

allowed tension )cm/dN5000 2
, different fo, varying from 5 

to 15m. Particularly the values m15and,10,5fo = will be 

study, which correspond to 

dN00020and,00030,00060Ho = , respectively. 

In order to evaluate the cables’ influence under the most 

unfavorable loading cases on the bridge’s behavior, we will 

study firstly the bridge without cables. 

 

9.1 Bridge without cables 
 

The equations for free and forced motion corresponding 

to this case are given in the Appendix. 

In this section, the behavior of a pedestrian bridge under  
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Fig. 6 The impact phenomenon 

 

 

Fig. 7 The loading of a military force

 

 

Table 1 Characteristics of human crowd loading 

v 

(m/sec) 
0.5 1.0 1.4 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 

T (sec) 1.10 1.00 0.90 0.70 0.50 0.35 0.30 

kind of 

walk 
walking Light jogging jogging running 

Stride 
07.0h75.0 ==  

ρ=1.213 
15.0h

10.1

=

=  

ρ=1.071 

25.0h50.1 ==  

ρ=0.983 
 

Equation 
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Table 2 Maximum and minimum deflection w for various 

load speeds 

v (m/sec) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

max w (m) 0.177 0.178 0.195 0.205 0.210 0.221 0.224 0.238 

min w (m) 0.115 0.129 0.153 0.167 0.190 0.203 0.212 0.225 

amplitude (m) 0.062 0.049 0.042 0.038 0.020 0.018 0.012 0.013 

 

 

the action of human crowd and seismic loadings is studied 

in order to identify the most unfavorable intervals of 

frequency and speed of a human crowd loading. 

Although the human crowd load depends on many 

random factors, i.e., Musse and Thalmann (1997), Lee and 

Hughes (2006), there is a load that is the most dangerous 

one and, simultaneously, can be expressed by a simple 

mathematical formula, Akopov and Beklaryan (2012) and 

Dagbe (2012). This is the case of a military force marching 

with rhythmic step that produces vertical, lateral and 

torsional vibrations. The military force can be walking or 

jogging with some speed v with the characteristics given in 

Table 1. 

The walkers, the joggers or the runners have not a  

 

(a) 

 
(b) 

Fig. 8 Deflections at the middle of the bridge for (a) 

v=0.5and (b) v=4 m/sec 

 

 

Fig. 9 Maximum and minimum deflections at the middle of 

the bridge 

 

Table 3 Maximum and minimum angles of rotation 

v (m/sec) 0.5 1.0 1,5 2.0 2,5 3.0 3.5 4.0 

max φ (m) 0.45 0.26 0.18 0.06 0.025 0.025 0.018 0.017 

min φ (m) -0.40 -0.24 -0.10 -0.08 -0.035 -0.033 -0.020 -0.018 

Amplitude 

(rad/degο) 

0.85 

48.7o 

0.50 

28.6o 

0.28 

16.0o 

0.14 

5.1o 

0.060 

3.4o 

0.058 

3.3o 

0.038 

2.2o 

0.035 

2o 

 

 

continuous contact with the deck. This kind of loading can 

be approximated by the equation  




















+= t

T

2
cos1

2

1
)x(p)t,x(p oo , where T is the 

contact period of the marching military force depending, 

according to the Table 1, on the speed v as given by 

Wollzenmuller (2010). On the other hand, one must 

evaluate and take into account the impact phenomenon  

 

m 
orbit 

h 
m 

ρ 

v (speed) 

F (impact force) 

 

                                  v 
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(a) 

 
(b) 

Fig. 10 Rotation angles at the middle of the bridge for (a) 

v=0.5 and (b) v=4 m/sec 

 

 

Fig. 11 Maximum and minimum rotation angles at the 

middle of the bridge 

 

 

appearing when someone runs. This causes an increase of 

the loading, depending on the speed, on the stride of the 

runners and mainly on the coefficient of restitution. This 

last varies from 0.88 to 0.92 as shown by Elert (2006). 

Thus, the acting load can be written as:  

++= cosvm)1()t,x(pp oz , where α is shown in Fig. 6, 

and m the mass of the runner. Therefore, the finally acting 

loading will be 




















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 
++= t

T

2
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g

cosv
)1(1

2

p
p o

z  (21) 

We will limit our research up to speed value of 4 m/sec. 

The final loading, except of the vertical motion, 

produces also a torsional one, caused by the torsional 

moment Mt which depends on the eccentricity of the 

distributed load pz. The worst loading case is shown in Fig.  

 

Fig. 12 Influence of angle θ for fo=5 m. without cables 

(black), θ=10o (red), θ=15o (green), θ=20o (blue) 

 

 

Fig. 13 Influence of sag fo for θ =10o.without cables (black), 

fo=5 m (red), fo=10 m (green), fo=15 m (blue) 

 
 

6, where the distributed load is moved on the left half of the 

deck. The studied cases are shown in Fig. 7. 
 

9.1.1 The vertical motion 
Applying the formulae given in the Appendix for a 

range of speeds from 0.5 to 4 m/sec, we obtain the Table 2, 

where the maximum and minimum deflections w are 

shown. 

In the diagram of Fig. 8 one can see the deflections of 

the middle of the bridge for speed v=0.5 m/sec (Fig. 8(a)) 

and v=4 m/sec (Fig. 8(b)). 

From the above results we ascertain that for the studied 

range of speeds the deflections of the middle of the bridge 

differ slightly, while the deflections’ amplitude is greater as 

the speed is lower (see and diagram of Fig. 9).  

 

9.1.2 The torsional motion 
Applying the formulae given in the Appendix for a 

range of speeds from 0.5 to 4 m/sec, we obtain the Table 3, 

where the maximum and minimum angles φ are shown. 

In the diagram of Fig. 10 are shown the rotation angles 

of the middle of the bridge for speed v=0.5 m/sec (Fig. 

10(a)) and v=4 m/sec (Fig. 10(b)).  

From the above results we ascertain that for the studied 

range of speeds the rotation angles of the middle of the  
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Fig. 14 Accelerogram of the ground motion 

 

 

Fig. 15 Influence of angle θ for fo=5 m without cables 

(black), θ=10o (red), θ=60o (green), θ=70o (blue) 

 

 

Fig. 16 Influence of angle θ for fo=5 m. θ=10o (red), θ=20o 

(green), θ=40o (blue) 

 

 

bridge depend considerably on the speed v, while the 

rotation angles’ amplitude is greater as the speed is lower 

(see and diagram of Fig. 11).  

 

9.2 Bridge with cross-section of double symmetry 
 

Studying the behavior of a bridge without cables, we 

conclude to the plots of Fig. 9 (for vertical motion) and of 

Fig. 11 (for torsional motion). 

We select to study the lateral motion for  

sec10.1Tsec,/m5.1 == , and the torsional one for 

sec00.1Tsec,/m0.1 == . 

 

9.2.1 The vertical motion 
Applying the equations of §7.1 we will study the 

influence of angle θ and of sag fo. Studying the influence of  

 

Fig. 17 Rotation angles of the middle of the bridge for fo=5 

m. without cables (black), and θ=10o (red) 

 

 
(a) 

 
(b) 

Fig. 18 Influence of zM and α for θ=10o and fo=5. zM=0.5 m, 

α=0 and (b) zM=1.0 m, α=2.0 m 

 

 

angle θ (Fig. 2) of the cables for fo=5 m, we obtain the plots 

of Fig. 12. We observe that even for small values of the 

angle θ the decrease of the deformations is considerable. 

Particularly, for θ = 10ο, the decrease amounts to ~40%, 

for θ = 15ο, the decrease amounts to ~55%, while for θ = 

20ο, the decrease amounts to ~75%. 

For θ = 10o, we are studying the influence of fo (Fig. 2) 

gathering the plots of Fig. 13. We see that the influence of 

the sag fo is also considerable.  

Particularly, for fo = 5 m, the decrease amounts to ~40%, 

for fo = 10 m the decrease amounts to ~75%, while for fo = 

15 m the decrease amounts to ~90%. 

 

9.2.2 The lateral motion 
It is assumed that the above bridge is subjected to an 

earthquake action, where the ground motion is given by: 

tsinet tk
o = −

, with 1sec12,50.0k,05.0 −=== ,  
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Fig. 19 Finite element model of the bridge with L=40 m, 

θ=20°, fo=10 m and zm=0.5 m 

 

 
(a) 

 
(b) 

Fig. 20 Stress and deformed states due to (a) concentric 

load and (b) eccentric load with e=1.5 m 

 

 

which gives the accelerogram shown in Fig. 14. 

In order to study the influence of the cables’ system on 

the bridge’s behavior, we apply the equations of §7.2, 

considering three cases: 

a)  fo = 5 m and θ = 10o, b) fo = 5 m and θ = 60o and c) 

fo = 5 m and θ = 70o.     

We find out that for small values of θ the effect is very 

strong (decrease of deformations ~95%), while for values 

greater than θ = ~65o, this effect decreases dramatically (for 

θ = 60o the decrease is ~65% and for θ = 70o the decrease is 

~45%). 
 

9.2.3 The torsional motion 
We assume next that the above bridge is subjected to an 

eccentric loading due to human crowd moving with a 

velocity v. This eccentricity produces a torsional moment 

Mt(x,t), (see Fig. 5). Therefore, the term of equation (14a) 

containing the torsional moment becomes  
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9.3 Bridge with cross-section of one axis of symmetry 
(the general case) 
 

In the previous sections it has been assumed that 

zM=α=0 for various values of fo and θ. In this section we 

proceed to estimate the influence of the distance zM 

between the shear and gravity centers and of the distance α 

between the hangers’ anchorage point and the gravity center 

on the effectiveness of an external cable system. For this 

purpose, we are employing a standard cable system with: 

θ=10o and fo=5 m and we study the influence of the last 

term of Eqs. (7) or (8c) which includes the summation 

(zM+α). 

Applying the equations of §7.3 we obtain the plots of 

Figs. 16 and 17.  

From the plots of Fig. 17, we see that the effect of the 

cable system is remarkable and the decrease of the rotation 

angle amounts to ~90%, while from the plots of Fig. 16, we 

see that for angles θ>10o the decrease of the angle φ is 

significantly greater. 

Fig. 18(a), with zM=0.5 m and α=0 gives φmax=0.0112 m, 

which differs slightly from the red diagram of Fig. 16 

(where zM=α=0) and gives φmax=0.0115 m (difference ~3%). 

Applying next the extreme values zM=1.0 m and α=2.0 m 

(which are almost non-realistic for a footbridge with the 

studied length), we obtain the plot of Fig. 18(b) that gives 

φmax=0.0097 m which compared to the one of Fig. 18(a) 

with φmax= 0.0112 m shows that the influence of the 

summation (zM+α) on the effectiveness of the applied 

external cables system results in a decrease of about 13% of 

the φmax. 

Comparing both results φmax from Fig. 18 with the one 

from Fig. 17, we see that the system of external cables with 

zM=α=0 provides a decreasing of the maximum value of φ 

of about 90%. From the above results we ascertain that the 

term zM slightly affects the rotation angles of the bridge, 

while for bigger values of zM and α (approaching non-

realistic values) we see that this influence increases but in 

not remarkable levels. 

 
 

10.  Finite elements analyses 
 

In order to validate the analytical models presented 

herein, a number of numerical analyses via the finite 

element method have been performed. For this purpose, the 

FEM analysis software by SOFISTIK has been employed 

and the above bridge has been modeled regarding the bridge  
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(a) 

 
(b) 

Fig. 21 Vertical deflection due to concentric load: (a) 

analytical model and (b) finite element model 

 

 

deck and the cables with the same material and cross-

sectional properties as in Section 9. Only the case with 

θ=20°, fo=10 m, zm=0.5 m and live load p=500 dN/m2 

moving with constant velocity v=1.5m/s is considered. Both 

cases of concentric and eccentric load with e=1.5 m have 

been investigated. 

The bridge deck has been modeled with 160 beam 

elements along the longitudinal axis, while in the transverse 

direction the hangers are connected to the deck-beam with 

rigid link elements. A dense arrangement of hangers every 

2.0 m along the length of the bridge has been considered in 

the model. Both cables and hangers have been modeled 

with cable elements (see Fig. 19).  

The bridge models have been analyzed via non-linear 

time-history analyses, where the loading history has been 

manually introduced to the nodes of the deck-beam in the 

form of vertical forces (for concentric load) and vertical 

forces and moments (for eccentric load).  

In Fig. 20, one can schematically see the stress and 

deformed states of the bride at time t=25 s just before the 

load reaches the end of the bridge. The model in  

Fig. 20(a) corresponds to concentric load passage, while 

in Fig. 20(b) to eccentric load passage. 

In Fig. 21 one can see the vertical response of the bridge 

at the mid-length obtained for concentric load passage: (a) 

via the analytical model presented herein and (b) via the 

finite element model. From the response diagrams of Fig. 

21 it has been found that the maximum amplitude of w from 

the FE analysis is 0.01455 m (Fig. 21(b)), while the 

maximum amplitude from the analytical model is 0.01510 

m (Fig. 21(a)). Hence, there is a 3.8% difference between 

the maximum amplitudes from the two analyses. 

 
(a) 

 
(b) 

Fig. 22 Rotation angle due to eccentric load: (a) analytical 

model and (b) finite element model 

 

 

In Fig. 22, one can see the rotation angle responses of 

the bridge at the mid-length due to eccentric load passage. 

The maximum values of the amplitudes of φ are 0.0187 rad 

from the FE analysis (Fig. 22(b)) and 0.0173 rad from the 

analytical model (Fig. 22(a)), respectively, and the 

difference is almost 6.2%. 

The same pattern for both numerical models is observed 

also for the beam and cable forces and stresses. From the 

above analyses, it can be concluded that the finite element 

models are slightly stiffer than the analytical ones and can 

also predict the dynamical response of the bridge with 

sufficient accuracy. 

 

 

11. Conclusions 
 

From the above bridge model and the results presented 

herein, one can draw the following conclusions: 

• A mathematical model for the study of bridges 

strengthened by external cable system for the study of its 

dynamic behavior is proposed.  

• A system of external cables can act as a very efficient 

damping system, which can be applied in existing bridges 

(especially pedestrian ones) that are facing dynamic 

problems after their erection (probably due to bad design). 

The exposed results: 

• are the most unfavorable for the reason that the applied 

loads are extremely unfavorable. 

• The walking velocities v are critical for values v<1.5 

m/sec, while for very low walking speeds (v<0.3 m/sec) the 

torsional deformations φ become maximum. 

• The possible applied cable system is efficient for 

reduction of the vertical, lateral, and also the torsional 
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motion. 

• For the vertical motion, the decrease of the 

deformations amounts for about 40 to 75% for   relatively 

small angles θ while it becomes even more    efficient if 

combined with a proper selection of sag fo. 

• For the lateral motion, as it was expected, the cable 

system is remarkably effective where the lateral 

deformations decrease up to 95%. Even for big values of θ, 

one has a satisfactory reduction of the lateral motion 

amplitudes. 

• For the dynamic torsional motion, one can see that the 

effect of the cable system is remarkable and the decrease of 

the rotation angle amounts up to ~90%, while for angles θ > 

10o the decrease of the torsional angle φ is significantly 

greater.  

• The influence of zM is not considerable and its 

presence slightly affects the rotation angles of the bridge. 

For bigger values of zM and α (approaching non-realistic 

values) one can see an enhanced influence but in not 

remarkable levels. 

• The analytical method presented herein has been 

verified via the finite element method with sufficient 

accuracy.  

• Finally, one can ascertain that a detailed design should 

take into account all combinations of the above factors 

involved in the preceding analysis.   
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Appendix  
 

a. The vertical or lateral motion 
 
The equation of motion is the same for both the above 

cases 
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Forced motion under the action of a distributed dynamic 

load 
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(a.5) 

Forced motion under the action of a distributed moving 

load with speed υ 
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b. The torsional motion 
 

Equation of motion 
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For the case of a distributed moving moment with speed 

υ 
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