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Dynamic behavior of footbridges strengthened by external cable systems
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Abstract. This paper deals with the lateral - torsional motion of bridges provided with external cables acting as dampers under
the action of horizontal dynamic loads or of walking human crowd loads. A three dimensional analysis is performed for the
solution of the bridge models. The theoretical formulation is based on a continuum approach, which has been widely used in the
literature to analyze bridges. The resulting equations of the uncoupled motion are solved using the Laplace Transformation,
while the case of the coupled motion is solved through the use of the potential energy. Finally, characteristic examples are

presented and useful results are obtained
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1. Introduction

Footbridges are a useful special type of bridges, which
due to their particular form, their geometrical characteristics
as well as their relatively small live loads, are very often
badly designed and secondary dynamic phenomena are
neglected. The most frequently appeared problems are those
of lateral and torsional (coupled or uncoupled) vibrations
due to human crowd loadings, especially from pedestrians
in marching.

There are numerous works studying the vertical and
lateral motion of such bridges by analytical or experimental
way such as the ones by Bachman and Ammann (1987),
Fujino et al. (1992, 1993), Stoyanoff (1992), and others.

On June 2000, the Millennium footbridge in London,
which has been built across the river Thames, has opened
for the public. In the opening ceremony, a crowd of over
1000 people had assembled on the south half of the bridge
with a band in front. When the crowd started to walk across
with the band playing, there was immediately an
unexpectedly pronounced lateral movement of the bridge
deck. This movement became sufficiently large for people
to stop walking in order to retain their balance and
sometimes to hold onto the handrails for support. Video
pictures showed later that the south span had been moving
with amplitude of about 50 mm at 0.8 Hz and the central
span about 75 mm at 1 Hz, approximately.

It was decided immediately to limit the number of
people on the bridge, but even so the deck movement was
sufficient to be uncomfortable and to raise concern for
public safety so that on June 12, 2000, the bridge was
closed in order to find a solution for the problem. The
footbridge remained closed and has reopened for the public
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Fig. 1 The London Millennium footbridge shortly after its
completion

on February 22, 2002.

It was realized very quickly that the problem was due to
lateral excitation. Therefore, it became necessary to
strengthen the bridge. Thus, strengthening of the bridge
with external cables was chosen as a solution. As a result,
the set cables carry a very high tensile force for a bridge of
this size, totaling about 2000 tons-see Fig. 1.

A significant number of publications followed by, where
the case of strengthening of a bridge with external cables
has been investigated. External cables are usually employed
to cope with unexpectedly large lateral or torsional
deformations in existing bridges. These phenomena are
usually appearing due to incorrect or improper design. On
this field, one must refer to the studies of Dallard et al.
(2001), Nakamura and Kawasaki (2006), Eckhard and Ott
(2006), Roberts et al. (2006), Ingolfsson and Georgakis
(2011), Ingolfsson et al. (2012), Li et al. (2013), Lonetti
and Pascuzzo (2014), Racic and Morin (2014), Zhang and
Yu (2015), Zhang and Zhang (2016) and Sun et al. (2016).
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Fig. 2(a) Perspective, and (b) side-view of a cable-damper
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Fig. 3(a) Cable system, and (b) equivalent vertical and
horizontal systems
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Fig. 4(a) displacements of the deck, and (b) detailed
analysis

The present paper deals with the lateral-torsional motion
of a bridge provided with external cables as dampers under
the action of horizontal dynamic loads or of walking human
crowd loads. A 3-D analysis is performed for the solution of
the bridge models. The theoretical formulation is based on a
continuum approach, which has been widely used in the
literature to analyze bridges. The resulting equations of the
uncoupled motion are solved wusing the Laplace
Transformation, while the case of the coupled motion is
solved through the use of the potential energy. The method
presented herein has been verified via the FE method as
well as the exact solution of lateral-torsional motion of
beams, the basics of which are given in the Appendix.

Finally, characteristic examples are presented and useful
results are obtained.

2. Basic assumptions

1. A damping system, consisted of cables such as the
ones shown in Fig. 2, is applied on an inclined plane by
angle 6.

2. The initial stretching of the hangers is S,, while under
dynamic loading it becomes S=S, +S,

3. An arbitrary point of the bridge at x (Fig. 2), under
the action of an earthquake motion governed by v(t), is
displaced as shown in Fig. 3.

(b)
Fig. 5(a) Forces, and (b) displacements of the deck

4. It is also considered that:  f [%J =f,

5. Under the action of dead and vertical live loads, it is v
=0, w=0, p=0 and S = S,.

3. Introductory concepts

1. The system studied is shown in Fig. 2(a). The external
cables have length L, sag f, and are set inclined by angle 6.
For the initial stress N, we have the horizontal component H
and stresses S of the hangers.

2. The above system is analyzed into the systems of Fig.
3(b), consisting of one vertical with sag fy, fy, and stress of
the hangers Sv and one horizontal with fu, fu, and S,
respectively.

The following relations are valid

fy, =Tf,sin®
i, =f,cos0

Sy =S-sind

Sy =S-cosO M

According to the theory of cables, their tensions will be

_SyL? S.sing-l?s-L?

Hy = = —— - =H
8fy, 8f,sin6  8.f, 2
oo - S,L> S-cos@-L* S-1?
H7oef,,  8f,cosd  8-f,
3. The following relations are valid
oot
H=HotHe S=oHA(fean Ho=—r -!‘Afdx
4 8f? S L2 ©)
g
f(x):L—;(Lx—xz), LC:L[1+L2°] , Hy= ;fo + Ho=-5
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4. The deck

Separating the deck and showing its motion because of
the action of a horizontal load, we get Fig. 4(a), showing
the displacement of a cross-section of the deck, where v,
is the v,w,and¢o are the

displacements and the angle of rotation of the cross-
section’s gravity center.

Because of the angle ¢, the points A; and A, have
additional displacements determined as follows, taking into
account that ¢<10° and so cosp=1, sinp=¢ . The

following relations are valid (see also Fig. 4(b))
BZ=ZA=7B'+ B'/A=hsing+acoso=ho+a
dw=TA, =Bl —azhp+o-a=he
du=TE=TA+AE=BZ+AE=BS-ZS+AE=b-bcoso+asing=ao

ground motion and

Therefore, the displacements of points A; and A; are

Ap: parallelto Sy @ vy =v-00

"MS, 0 Wy =W+bo
AL e o O
5 y+ Vaz =L+0p

" 1] SZ. WAZZW_b(p

5. The acting forces

In Fig. 5(b), one can see the displacements of the points
A; and A; (where they are joined the hangers), because of
live or dynamic loadings.

One can observe that applying the positive signs for v,
w and ¢ some displacements cause additional strain on
hangers, while the rest cause looseness of hangers (see Fig.
5b). This remark is taken into account in the following
analysis.

5.1 The vertical forces

Marking by the index “0” the forces without dynamic

loadings and by “e” the additional forces because of

dynamic loads we have

P, =g+p,(X,t)-c,W—-mw— (S, +Sy,) =
=0+ P, (X, 8) = €W =MW+ (Hy; + Hyeg)(Fy +W)"+ (Hyp + Hyeo)(Fy +W,)" =
=0+, (%, 1) = C,W = M+ 2H,fy, + Hy (W +W,) + Hygfy + Hyefy

or finally

P, =p,(X,t) —C,W —mw + 2H w" —

A2 |
L /VE F '.[de
cV c'c ° (5)

8f

2 «in2
with: ) =~—7-sin6, and L0V:[1+MJ

L2

where Egs. (3), and (4) are taken into account and also that
Af <<f.

5.2 The horizontal forces

Following a similar procedure with §5.1 we have

= py(X,t)—CZ(0+OO )—m(5+95,)

—(Hu —Hua )(Fy =01 )"+ (Hpz + Hpgeo )(Fy +05)"
Because of Eqgs. (3) and (4), we finally obtain

L
2f12

- vdx
LCH / ECFC 0

Py = py (X, 1) =€, (0 +05) =m(D + B;) + 2H,0" —

(6)

2 2
with: f,::_%o.me' and LcH:[1+8f° cos eJ

LZ
where v, (t) is the soil motion, while it is taken into

account that a positive va; brings about looseness of the
cable 1.

5.3 The torsional moments

Taking into account §5.1 and 5.2 we obtain
M, =M, (X,1) = Cu® = Jp®—Sysb + Sy b = Spyy (0 + Zpy) + Sppp (0 +2y)
or finally

L

M, =m,(x,t)—c,p—J ,MJ‘ dx +
x x (X, o® — Jpx® LcV/Echo(p

7
2(2M+oc)f,'_’|2-'rudx )
Low /EcR 5

6. The equations of motion

Taking into account Egs. (5), (6), (7) and that the
external loadings can be expressed as relations of t, the
complete equations of motion are given by the following
expressions

L
Elyw"" —2H,w"+c W+ mi = p,(x,t)+ BVJ'wdx
0
El,(v+v, )" —El, - Zy0"" —2H 0" +C,(0+ 0, )+ m(b+ 0, ) =

L
= py(x,t)—BHjudx
0

El 0" —El, - Zy(0+00)" =Gl 40" + o0+ Ip =

L L
:m‘(x,t)—bz~ij¢dx+(zM+a)BHIudx (8)
0 0
"2 .2
with : By = 2ty , By= 21
Lo/ ER Ly ECR
and: py(x,t)=py(x)-f, (1), p(x,t)=p,(x)-F, (1),
my (X,t) = m, (x)-f (1)

7. Doubly symmetric cross-section

For a bridge, the deck of which has a doubly symmetric
cross-section, it will be z,, =0, a=0, and therefore Eq. (8)
become uncoupled

L
El W™ = 2H,W" +C, W + mW = p, (X, t) - ijwdx
0

L
B0 = 2H,0" + ¢, + M = p, (x, 1) — E1,0, - €0, M, — BHIudx ©)
0

L
B0 = Gl0" + Gy + i = M, (X,1) ~ b2 ij(pdx
0

In this case, we observe that all equations are
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independent each other and therefore they can be solved
separately.

7.1 The vertical motion

In order to solve Eq. (9a), we are searching for a
solution of the form

W) = D W, (0T, () (10a)
p=1

where T (t) are the time functions under determination

and W, (x) are functions arbitrarily chosen that satisfy the

boundary conditions. As such functions we choose the
shape functions of a single span beam with axial force
2H,sin6 , given by Michaltsos and Raftoyiannis (2012)

. sinA,L .
W_(x) = ¢,| SinA,Xx ————2—-SinhA,X
p( ) l( 1 'nh;\,zl_ 2 J
H Hy ) mof
.
where: A, = [-—>+ S [ [
! El, [Elyj El, (106)

2
2
= | Ha [H_} L
El, \lEl,) EI

while oy, are given by the relation
4_4 2 2
pm Ely 2p T HO
o, + =123
Yo L’ mL2 p=1 (10c)

Introducing expression (10a) into Eq. (9a) we obtain

n n n . n ..
ELY W T - 2H Y W, T, +¢, Y WT +my W,T =
p=1 p=1 p=1 p=1
Ly (11a)
=p, ~By [ Y W,T,dx
0

p=1

Remembering that W, (x) satisfies the equation of free

motion
EL,W, —2H,W, —mw’ W, =0 (11b)
Eq. (11a) becomes
n } n ] n Lon
mZWpr + cyZWpr + mef,prTp =p,- BVJZWprdx (11c)
p=l p=l p=l 0 pl

Multiplying the above by W, (x) and integrating from

0to L we get
o L
o JpZWpdx J.Wpdx L
Te LT w0l T, = S 0B [D WTo (114)
mjwsdx mIszdx 0pd
0 0

with a from Fig. 7.

In order to solve the above system Eq. (11d), we use the
Laplace  Transformation  with  initial  conditions

T,(0)=T,(0)=0. Thus, we set

LT () = G, ()

Lf, (1) = F,(6)

LT () =5-G,(5) (11le)
LT (1) =s*-G,(s)

Therefore, the system of Eq. (11d) becomes

4G +2a,Gy ++a, G +---a,,6, +-a,,G, =B,
L L

BVIWpdeWkdx

. _ 0 0

where: a, = T

ijﬁdx
0

BV['O[WPdX] . (116

- 2,5 o402
a = +S" + S-!—O)yp

PP L
m I WZdx
0

IpszdX
B, =2——F(s)

p L

m I WZdx
0

and finally

T,()=L"G,() (11g)

7.2 The lateral motion

In order to solve Eq. (9a), we are searching for a
solution of the form

LGt = DV, (0-R, (1) (12a)
p=1

where R (t) are the time functions under determination
and V,(x) are functions arbitrarily chosen that satisfy the

boundary conditions. As such functions, we choose the
shape functions of a single span beam with axial force
2H,cosO , given by Michaltsos and Raftoyiannis (2012)

_ . _osingl
Vp(x)—cl[smélx —SinhﬁzL Slnhézxj

2 2
H H mo;
where : §1=‘/—ﬁ+ {ﬁj +?" (12b)

z

2 2
& = H°+ (Ho] +mmZp
El, El, El,

while w,, are given by the relation
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4_4
p'nEl 2prt
@Zp:\/ Tt p=123.. (12¢)

Introducing (12a) into (9b) and Following the procedure
of §7.1 we conclude to the system

L
f (t)jpyv dX—(C,0, +Mb, )jvpdx

.. c, -
z 2 _ 0 _
Rp+m Rp+0‘)Zp p = 0

mj VZdx

0

(12d)

L
HJ.V dx

,Tivade
J‘ de 0p=1

0

In order to solve the above system of Eq. (12d), we use
the Laplace Transformation with initial conditions

R(0) =R(0) =0. We set

LR, () =K (), LR,()=5-K(s), LR,(1)=5"K(s)
) } X (12¢)
Lf, () =F,(s), Log(t)=U,(s), Log(t)=s-Ug(s), Lig(t)=s"-Uy(s)

Therefore, the system (12d) becomes

DKy +0,,Ky +o b Ky 4ob K 4o+ b Ky =T,
L L
B, J' vpdxjvkdx
where: by = ——2—
2
V,dx

3
O C—y

L 2
By Vpdx]
b_u G (12f)
= j~ :
0

and finally

R,(t) =LK, (s) (12g)

7.3 The torsional motion

In order to solve Eq. (9c), we are searching for a
solution of the form

(X, 1) = > ®,()-Z, (1) (13a)
p=1

where, Z (t) are the time functions under determination
and @ (x) are functions arbitrarily chosen that satisfy the

boundary conditions. As such functions we choose the

shape functions for torsion of a single span beam, given by
the following equations

D, (x) = cl(sin KX — sinkyL

- -Sinhk ,x
Sinhk ,L

2 2
Gl Gl 1,
where: k, = |- —4d d X op.
! \/ 2E1, (ZEIWJ “El, (13b)

.~ |Gla, |Gl +,,Xm
27\ 2E1, |l 2E1, El,

are given by following the relation

while Oy

4_4 2,2
p'mEl, pnGly
Oy, = [—F+———, p=123 .. 13¢
” oL W } (13¢)
Introducing (13a) into (9¢) and following the procedure

of §7.1 we conclude to the system
a L

mogc b o0
2+ z 2, = (- [ Y 0, 2,0 (14a)
I 2 Iy ol 0
0 0
In order to solve the above system Eq. (14a), we use the
Laplace  Transformation  with  initial  conditions
Z,(00=2,(00=0. Weset
LZ,() =N, (), Lf (1) =F(s) } (145)
. . )
LZ,(t)=s-N,(s), LZ,(t)=s"-N,(s)
Therefore, the system of Eq. (14a) becomes
YorN1 +7p2Ng o+ 7Ny o7 N+ 4y, Ny = A
L L
b?BVJQde j b,dx
where: y, =——20 —0—
Iprtbédx
0
L 2
b’B,| | @ dx
u ' ] 2 o, (15a)
Yop=—— 1+ +—s+0,,)
I | @2l ¥
! :
I m,® dx
A =2 F (5)
I | 2l
! p
and finally
Z,(t)=L"N,(s) (15b)

8. The general case (coupled motion)

In this case it is z), # 0 and therefore, Eqs. (8) are valid.

From Eq. (8a), we observe that the vertical motion is
independent and therefore the equations of §7.1 are valid. In
order for the solution of the problem of coupled lateral-
torsional motion to apply the Lagrange’s equations, we
consider the potential energy of the system.
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We call K the kinetic energy, D the dynamic one, F the
dissipation energy and € the work of the external forces.

8.1 The potential energy of the system

8.1.1 The kinetic energy
The kinetic energy is produced by the lateral-torsional
motion of the deck and it is given by the following

expression
mL 2 L 2
<=5 I(5) e ][5 o (162
0 0

8.1.2 The dynamic energy

The dynamic energy is caused by the stresses of the
deck and the moments produced by the hangers. Thus, from
the deck we have

L L
D, = ;j[EI N =B,z 0" - 2H0" + BHjudx]-udx+
0 0

) (16b)
+ [(B10" 1,20 - Gl ¢ ) pdx
0

while from the moments of the hangers we get
L

L
m; = —bZBVJ'(pdx Falzy + a)BHJ'de and
0 (16¢)
1L 1L "
D, == [m;odx =,j(_b By [@dX + (z)y + @)By, judxj @dx
20 20 0
Therefore, the total dynamic energy will be

D=D, +D, (16d)

8.1.3 The dissipation energy
The dissipation energy of the system will be

L L
1 . 1 .
F:EIczudeJrEJ.cq,cpzdx (16e)
0

0

8.1.4 The work of the external forces
Finally, the work produced by the external forces is

L
QZI(py'U+mx'(P_CzooU_mboU)dX (1619)
0

8.2 The solution of the equations of the problem

We are searching for a solution of the form

vk, )= D Vy (OR, (1)

(17)
o0 = Y @, (IR, ()

where Ry(t) are the time functions under determination and
Vi(x), ®n(x) are functions arbitrarily chosen that satisfy the
boundary conditions. As such functions we choose the
shape functions given by (12b) and (13b) respectively.

8.2.1 The kinetic energy
Introducing expressions (17) into eq (l6a) we have

m r .
K=?£[zn:van] dx + 12X I(Zcp R ] dx =
m" m
=—IZV§R§dx+—jZankaandx
2 on 2 on k
L L
12 1S 02R2dx 4 2 [T 20,0,R Ry X
2 on 2 on k

From the above equation, we obtain successively

oK _mJ'kav R dx+1 JZ@ ® R, X

0 k=1 0 k=1
After differentiation and taking into account the
orthogonality conditions of V,and @ we obtain

d [ oK s
dt[aR J R J‘(mV 15,2 dx (18a)

In addition

=0 (18b)

8.2.2 The dynamic energy
Introducing (17) into (16d) and taking into account the
orthogonality conditions we get

El,Y V, R, —El,zy Y R,
1? ' ' D V,R,d
- L : X
29 —2HOZV'n'Rn+BHjZVandx r

on
EIWZCD R, -El,zy Y Vy R,

= " Y ®R,d

+ —Glecann Zn: i
n

L
) —bZBVchDandx
+= or

L
O oz + a)BHJ.ZVandx

on

From the above equation we get

o‘—.l—

Y @R dx
n

oD
R,

—E,R jv dx—El zMZ{ kj(cb Vy + DLV, )dx}

K=
+2HDJ.[V",Zv;,andx
0 n

L L L
+B, [V, 0 T VR, dx + E1,R [ ) dx
I ’ (18¢c)
+G|dj[q>‘chb‘"R"]dx
0 n

- bZBV_L[dbpdsz“d"Rndx

ZM ) [.[Vpdxj.zmnR"dx+.[® dijvandx
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8.2.3 The dissipation energy
Introducing Eq. (17a) into Eq. (16e) we obtain

L 2 L 2
F= ;cz'!.(ZVan] dx +;c¢‘([[Z(DHRnJ dx
which concludes to the following relation
oF : ¢ 2 t 2
R: Rp[cz‘(l:vpdx+c¢!‘¢>pdx] (18d)

8.2.4 The work of the external forces
Introducing Eq. (17a) into Eq. (16f) we obtain

L L
Q:jpy(x)fy(t).Zvandx+jmx(x)fx(t).2q>andx
0 n 0 n

L
— [y (1) + mie(1)1[ 3 VoRydx
on

From the above we obtain

L L
a0
=, =fy(t)£py(x)vpdx+fx(t)£mx(x)®pdx

(18e)

L
—[e0(t) + mijo(t)]JVpdx
0

8.2.5 The Lagrange’s equations
Applying the Lagrange’s equations

+ +—=
oR oR R R, (193)
for p=1ton

and taking into account Eq. (18a) to (18¢) we obtain
RVJE(mVPZ+Ipx®ﬁ)dx+RpT(c1V,f+c(r®ﬁ)dx

R, [ @1,V 1L, )ik
0
n L e . “ o, L . .
7E|ZzMz{Rkj(mpvk+a)kv‘,)dx}uHojv,,ZVHR"dx
k=1 0 0 n
L . . L L
+6ly[®, Y @,R,dx+By, [V,dx[ T V,R dx
T o

0 0
L

—bQBV'L[d)deIZ"’,\RndX*' (19b)

0 on

a(zy +a) & B R &
By [Vo0x[ 2 @Ryt [@,0x] 3 VR, | =
0 on 0 on
L L
= fy(t)'[pyvvdx +f, (t)jmx(l)de
0 0

L L
—czbn(t)jvpdx—mﬁﬂ (t)jvpdx
0 0

with: p=1 to n

In order to solve the above differential system (19b) we
use the Laplace Transformation setting

LR, (1) =G, (s)
fo(t) = UX(S)

Lf, (1) =u, (s) (20a)
Loy (1) =U, (s)
From the above and with initial conditions
R,(0)=R,(0)=0 we obtain
LR, (1) =5-G,(s)
LR, (t)=s%G,(s) (20b)

Lo, () =s-U,(s)
LD, (t)=s%-U,(s)

Therefore, the system of Eq. (19b) becomes

ApGy+ ARG, + + ARG, + P + ALG =B
with p=1ton and:
L o L L .
A =Bl 2y [ (Vi + BV, Jix-+ 2H, [V, Vi
0 0
L o L L L L
+G|dj®p®kdx+BHJ.Vpdx'[dex—bZBVId)pdx'[d)kdx
0 0 0 0 0
azy+a), (Fo, Pk
+ M2 BH{J'VpdxchkdmIQPdXIdeX]
0 0 0 0
L L
A, =5 -J'(mvp2 1502 )dx 45 f(czvg +,0% )dx (20¢)
0 0
L "2 "2 L oo
+[(BLV, "+ B0, )ix-261,2,, [0,V dx
0 0
Lo, Lo, L 2 L 2
+2H, [V, b+ Gl [0 dx+ By [V | ~b7By [@,dx
0 0 0 0
L L
+a(zy +a)BHJ.Vpde.chdx
0 0
L L L L
ap=uy(s)[pyvpdx+ux(s)jmxcppdx-cysuo(s)jvpdx-mszuo(s)jvpdx
0 0 0 0

Solving the above system, we get the functions G, (s)

and, therefore

R,(H)=L"G,(s) (20d)

9. Numerical results and discussion

Let us consider a simply supported footbridge with span
length L=40 m and width b=3 m. The bridge is made from
structural steel (isotropic and homogeneous material) with
modulus of elasticity E=2.1x10%kN/m?, shear modulus
G=0.8x10%kN/m?, moments of inertia 1,=0.001 m*, ,=0.030
m*, 14 =0.0005 m*, warping constant I, =0.100m®, mass per
unit length m=200 kg/m, damping coefficient f=0.05 and
rotational mass inertia Ipx =1000 kgm?.

A cable system such as the one shown in Fig. 2 is
applied on this bridge, with the following characteristics:

E.=9-10°kN/m? | cable’s diameter d=4 cm or cable’s
cross-section required F, =12-10*m® (by considering a
allowed tension 5000 dN/cm?) | different f,, varying from 5
to 15m. Particularly the values f,=5,10, and15m will be

study, which correspond to
H, = 60000, 30000, and 20000 dN , respectively.

In order to evaluate the cables’ influence under the most
unfavorable loading cases on the bridge’s behavior, we will
study firstly the bridge without cables.

9.1 Bridge without cables
The equations for free and forced motion corresponding

to this case are given in the Appendix.
In this section, the behavior of a pedestrian bridge under
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Fig. 7 The loading of a military force
Table 1 Characteristics of human crowd loading
v

(m/sec) 0.5 1.0 1.4 1.5 20 25 3.0 35 40 5.0 6.0

T (sec) 1.10 1.00 0.90 0.70 0.50 0.35 0.30

k\i:gu?f walking Light jogging jogging running

. ¢=075 h=007 ‘" /=150 h=025
Stride h=015
p=1.213 p=1.071 p=0.983

Equation P, = %'[1+ (1+8)- V'CgOSOLi|A|:1+ CcoSs [%t]} ......

Table 2 Maximum and minimum deflection w for various
load speeds

v (m/sec) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

maxw (m) 0.177 0.178 0.195 0205 0210 0221 0224 0.238
minw (m) 0.115  0.129 0.153 0.167 0.190 0203 0212 0.225
amplitude (m) 0.062 0.049 0.042 0.038  0.020 0.018 0.012 0.013

the action of human crowd and seismic loadings is studied
in order to identify the most unfavorable intervals of
frequency and speed of a human crowd loading.

Although the human crowd load depends on many
random factors, i.e., Musse and Thalmann (1997), Lee and
Hughes (2006), there is a load that is the most dangerous
one and, simultaneously, can be expressed by a simple
mathematical formula, Akopov and Beklaryan (2012) and
Dagbe (2012). This is the case of a military force marching
with rhythmic step that produces vertical, lateral and
torsional vibrations. The military force can be walking or
jogging with some speed v with the characteristics given in
Table 1.

The walkers, the joggers or the runners have not a

w L 2

0.175

0.125

0.075

0.025

(b)
Fig. 8 Deflections at the middle of the bridge for (a)
v=0.5and (b) v=4 m/sec

w

0.2 /

0.15

0.1

I I I L. v

1 2 3 4

Fig. 9 Maximum and minimum deflections at the middle of
the bridge

Table 3 Maximum and minimum angles of rotation

v (m/sec) 0.5 1.0 1,5 2.0 2,5 3.0 3.5 4.0

max ¢ (m) 0.45 026  0.18 0.06  0.025 0.025 0.018 0.017

ming (m) -040 -0.24 -0.10 -0.08 -0.035 -0.033 -0.020 -0.018

Amplitude  0.85 0.50  0.28 0.14  0.060 0.058 0.038 0.035
(rad/deg®)  48.7°  28.6° 16.0° 5.1° 3.4° 3.3° 2.2° 2°

continuous contact with the deck. This kind of loading can
be approximated by the equation

2
po(x,t):po(x)-%{lwtcos (?ntﬂ, where T is the

contact period of the marching military force depending,
according to the Table 1, on the speed v as given by
Wollzenmuller (2010). On the other hand, one must
evaluate and take into account the impact phenomenon
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Fig. 10 Rotation angles at the middle of the bridge for (a)
v=0.5 and (b) v=4 m/sec
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Fig. 11 Maximum and minimum rotation angles at the
middle of the bridge

appearing when someone runs. This causes an increase of
the loading, depending on the speed, on the stride of the
runners and mainly on the coefficient of restitution. This
last varies from 0.88 to 0.92 as shown by Elert (2006).
Thus, the acting load can be written as:
P, =P, (X, t)+(@+€)-m-v-cosa, where a is shown in Fig. 6,
and m the mass of the runner. Therefore, the finally acting
loading will be

P, :%-{1+(1+s)-$]{1+cos (Z—T”tﬂ Q1)

We will limit our research up to speed value of 4 m/sec.
The final loading, except of the vertical motion,
produces also a torsional one, caused by the torsional
moment M; which depends on the eccentricity of the
distributed load p,. The worst loading case is shown in Fig.

-0.05

-0.1

Fig. 12 Influence of angle 6 for f;=5 m. without cables
(black), 8=10° (red), 6=15° (green), 6=20° (blue)

-0.05 f L

-0.1 b

Fig. 13 Influence of sag f, for 8 =10°.without cables (black),
fo=5 m (red), f7=10 m (green), =15 m (blue)

6, where the distributed load is moved on the left half of the
deck. The studied cases are shown in Fig. 7.

9.1.1 The vertical motion

Applying the formulae given in the Appendix for a
range of speeds from 0.5 to 4 m/sec, we obtain the Table 2,
where the maximum and minimum deflections w are
shown.

In the diagram of Fig. 8 one can see the deflections of
the middle of the bridge for speed v=0.5 m/sec (Fig. 8(a))
and v=4 m/sec (Fig. 8(b)).

From the above results we ascertain that for the studied
range of speeds the deflections of the middle of the bridge
differ slightly, while the deflections’ amplitude is greater as
the speed is lower (see and diagram of Fig. 9).

9.1.2 The torsional motion

Applying the formulae given in the Appendix for a
range of speeds from 0.5 to 4 m/sec, we obtain the Table 3,
where the maximum and minimum angles ¢ are shown.

In the diagram of Fig. 10 are shown the rotation angles
of the middle of the bridge for speed v=0.5 m/sec (Fig.
10(a)) and v=4 m/sec (Fig. 10(b)).

From the above results we ascertain that for the studied
range of speeds the rotation angles of the middle of the
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Fig. 15 Influence of angle # for f;=5 m without cables
(black), 8=10° (red), =60° (green), 8=70° (blue)
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0.005 [

0.0025 F

-0.0025 F

-0.005 L

Fig. 16 Influence of angle 8 for f;=5 m. 6=10° (red), 6=20°
(green), =40° (blue)

bridge depend considerably on the speed v, while the
rotation angles’ amplitude is greater as the speed is lower
(see and diagram of Fig. 11).

9.2 Bridge with cross-section of double symmetry

Studying the behavior of a bridge without cables, we
conclude to the plots of Fig. 9 (for vertical motion) and of
Fig. 11 (for torsional motion).

We select to study the lateral motion for
v=15m/sec, T=110sec , and the torsional one for

v=1.0m/sec, T =1.00sec .

9.2.1 The vertical motion
Applying the equations of §7.1 we will study the
influence of angle # and of sag f,. Studying the influence of

N A [/ A Y \PAVAVAS

: n 15“*’“'2[0!0\'%,&

-0.05

Fig. 17 Rotation angles of the middle of the bridge for f,=5
m. without cables (black), and =10° (red)

L 2

0.004
0.002 F
oA | ] .
5 1

o T TTRETY T

(a)
L 2
0.008 n
0.006
0.004
0.002
) €
B e o o
5 10 15 2 2’5“

(b)
Fig. 18 Influence of zm and a for 6=10° and f;=5. zm=0.5 m,
0=0 and (b) zv=1.0 m, ¢=2.0 m

angle 6 (Fig. 2) of the cables for f,=5 m, we obtain the plots
of Fig. 12. We observe that even for small values of the
angle 0 the decrease of the deformations is considerable.

Particularly, for 6 = 10°, the decrease amounts to ~40%,
for 6 = 15°, the decrease amounts to ~55%, while for § =
20°, the decrease amounts to ~75%.

For 8 = 10°, we are studying the influence of f, (Fig. 2)
gathering the plots of Fig. 13. We see that the influence of
the sag f, is also considerable.

Particularly, for f, = 5 m, the decrease amounts to ~40%,
for f, = 10 m the decrease amounts to ~75%, while for f, =
15 m the decrease amounts to ~90%.

9.2.2 The lateral motion
It is assumed that the above bridge is subjected to an
earthquake action, where the ground motion is given by:

v, =a-t-e ¥t sinQt, with o =0.05, k=050, Q=12sec’,
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L )
¢

Fig. 19 Finite element model of the bridge with L=40 m,
6=20°, f,=10 m and z,,=0.5 m
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. \
< ~ .
(b)

Fig. 20 Stress and deformed states due to (a) concentric
load and (b) eccentric load with e=1.5 m

which gives the accelerogram shown in Fig. 14.

In order to study the influence of the cables’ system on
the bridge’s behavior, we apply the equations of §7.2,
considering three cases:

a) fo=5mand 8=10°D)f, =5 mand 8= 60° and c)
fo=5mand 6="70°.

We find out that for small values of 8 the effect is very
strong (decrease of deformations ~95%), while for values
greater than 8 = ~65°, this effect decreases dramatically (for
6 = 60° the decrease is ~65% and for 8 = 70° the decrease is
~45%).

9.2.3 The torsional motion
We assume next that the above bridge is subjected to an

eccentric loading due to human crowd moving with a
velocity v. This eccentricity produces a torsional moment
M(x,t), (see Fig. 5). Therefore, the term of equation (14a)
containing the torsional moment becomes

L o vt

IMt(x,t)mp(x)dx =IMt(x,t)®p(x)dx =JMt(x,t)®p(x)dx

0 0 0

2 .
Mt:pzb and pzz&~ 1+(1+a)~v 8% 11+ cos ﬁtj
2 2 g T

, P, =200dN/m?

9.3 Bridge with cross-section of one axis of symmetry
(the general case)

In the previous sections it has been assumed that
zm=0=0 for various values of f, and 6. In this section we
proceed to estimate the influence of the distance zm
between the shear and gravity centers and of the distance a
between the hangers’ anchorage point and the gravity center
on the effectiveness of an external cable system. For this
purpose, we are employing a standard cable system with:

6=10° and f;=5 m and we study the influence of the last
term of Egs. (7) or (8c) which includes the summation
(zmta).

Applying the equations of §7.3 we obtain the plots of
Figs. 16 and 17.

From the plots of Fig. 17, we see that the effect of the
cable system is remarkable and the decrease of the rotation
angle amounts to ~90%, while from the plots of Fig. 16, we
see that for angles 6>10° the decrease of the angle ¢ is
significantly greater.

Fig. 18(a), with zv=0.5 m and a=0 gives @max=0.0112 m,
which differs slightly from the red diagram of Fig. 16
(where zy=0=0) and gives pmax=0.0115 m (difference ~3%).
Applying next the extreme values zy=1.0 m and a=2.0 m
(which are almost non-realistic for a footbridge with the
studied length), we obtain the plot of Fig. 18(b) that gives
®max=0.0097 m which compared to the one of Fig. 18(a)
with @ma= 0.0112 m shows that the influence of the
summation (zmt+a) on the effectiveness of the applied
external cables system results in a decrease of about 13% of
the @max.

Comparing both results pmax from Fig. 18 with the one
from Fig. 17, we see that the system of external cables with
zm=0=0 provides a decreasing of the maximum value of ¢
of about 90%. From the above results we ascertain that the
term zm slightly affects the rotation angles of the bridge,
while for bigger values of zu and o (approaching non-
realistic values) we see that this influence increases but in
not remarkable levels.

10. Finite elements analyses

In order to validate the analytical models presented
herein, a number of numerical analyses via the finite
element method have been performed. For this purpose, the
FEM analysis software by SOFISTIK has been employed
and the above bridge has been modeled regarding the bridge
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Fig. 21 Vertical deflection due to concentric load: (a)
analytical model and (b) finite element model

deck and the cables with the same material and cross-
sectional properties as in Section 9. Only the case with
0=20°, f,=10 m, zx=0.5 m and live load p=500 dN/m?
moving with constant velocity v=1.5m/s is considered. Both
cases of concentric and eccentric load with e=1.5 m have
been investigated.

The bridge deck has been modeled with 160 beam
elements along the longitudinal axis, while in the transverse
direction the hangers are connected to the deck-beam with
rigid link elements. A dense arrangement of hangers every
2.0 m along the length of the bridge has been considered in
the model. Both cables and hangers have been modeled
with cable elements (see Fig. 19).

The bridge models have been analyzed via non-linear
time-history analyses, where the loading history has been
manually introduced to the nodes of the deck-beam in the
form of vertical forces (for concentric load) and vertical
forces and moments (for eccentric load).

In Fig. 20, one can schematically see the stress and
deformed states of the bride at time t=25 s just before the
load reaches the end of the bridge. The model in

Fig. 20(a) corresponds to concentric load passage, while
in Fig. 20(b) to eccentric load passage.

In Fig. 21 one can see the vertical response of the bridge
at the mid-length obtained for concentric load passage: (a)
via the analytical model presented herein and (b) via the
finite element model. From the response diagrams of Fig.
21 it has been found that the maximum amplitude of w from
the FE analysis is 0.01455 m (Fig. 21(b)), while the
maximum amplitude from the analytical model is 0.01510
m (Fig. 21(a)). Hence, there is a 3.8% difference between
the maximum amplitudes from the two analyses.
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(b)
Fig. 22 Rotation angle due to eccentric load: (a) analytical
model and (b) finite element model

RIT

In Fig. 22, one can see the rotation angle responses of
the bridge at the mid-length due to eccentric load passage.
The maximum values of the amplitudes of ¢ are 0.0187 rad
from the FE analysis (Fig. 22(b)) and 0.0173 rad from the
analytical model (Fig. 22(a)), respectively, and the
difference is almost 6.2%.

The same pattern for both numerical models is observed
also for the beam and cable forces and stresses. From the
above analyses, it can be concluded that the finite element
models are slightly stiffer than the analytical ones and can
also predict the dynamical response of the bridge with
sufficient accuracy.

11. Conclusions

From the above bridge model and the results presented
herein, one can draw the following conclusions:

* A mathematical model for the study of bridges
strengthened by external cable system for the study of its
dynamic behavior is proposed.

* A system of external cables can act as a very efficient
damping system, which can be applied in existing bridges
(especially pedestrian ones) that are facing dynamic
problems after their erection (probably due to bad design).
The exposed results:

» are the most unfavorable for the reason that the applied
loads are extremely unfavorable.

» The walking velocities v are critical for values v<I.5
m/sec, while for very low walking speeds (v<0.3 m/sec) the
torsional deformations ¢ become maximum.

» The possible applied cable system is efficient for
reduction of the vertical, lateral, and also the torsional
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motion.

e For the wvertical motion, the decrease of the
deformations amounts for about 40 to 75% for  relatively
small angles 6 while it becomes even more efficient if
combined with a proper selection of sag f,.

* For the lateral motion, as it was expected, the cable
system is remarkably effective where the lateral
deformations decrease up to 95%. Even for big values of 6,
one has a satisfactory reduction of the lateral motion
amplitudes.

* For the dynamic torsional motion, one can see that the
effect of the cable system is remarkable and the decrease of
the rotation angle amounts up to ~90%, while for angles 6 >
10° the decrease of the torsional angle ¢ is significantly
greater.

* The influence of zy is not considerable and its
presence slightly affects the rotation angles of the bridge.
For bigger values of zw and a (approaching non-realistic
values) one can see an enhanced influence but in not
remarkable levels.

* The analytical method presented herein has been
verified via the finite element method with sufficient
accuracy.

* Finally, one can ascertain that a detailed design should
take into account all combinations of the above factors
involved in the preceding analysis.
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Appendix
a. The vertical or lateral motion

The equation of motion is the same for both the above
cases

Vertical motion:  El,w  +cw+mw =p, (x)-f,(t) @
Lateral motion: El, v +co+mb=p,(x)-f, (1)

Shape functions

Vertical motion: w, (x) = nmx
(a.2)
- nmx
Lateral motion: v, (X) = %
Eigenfrequencies
: : n*n’El,
Vertical motion: o, = —_—
mL
(a.3)

: n‘n’El,
Lateral motion: ®,, = —
mL

Forced motion under the action of a distributed dynamic
load

w(x,t) = ZWn (x)-F, () (a.4)

with

L
mo, jan(x)dx 0 (a.5)
0

C —
R e

Forced motion under the action of a distributed moving
load with speed v

w(x,t) = ZWn (x)-F, () (a.6)

b(t-1) qin
f,(1)-e sin @, (t-1)dt

Fan—L1~ﬂjp¢nwamm
maynJ.an(x)dx o\ @7)
0

b. The torsional motion
Equation of motion
Elye ~Glgp +co+15d=m, (x)-f,(t)  (b.1)

Eigenfrequencies

n*n*El, +_n2nzGId b2)
O = .
! I L* L

Shape functions

sini, L
inh., L

2 2

|

with: &, =.[- Glg | |l Sla |, Zox®n (b.3)
261, \\2er, ) " EI,

2 2
P Iy (L + 12O
2El, | 2EI, El,

For the case of a distributed moving moment with speed

D, (X)=sinkx—

.Sinh2, L

90 = D @, (x)-R, (1) (b4)






