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1. Introduction 
 

In recent years, some different material compositions 

are used in structural elements such as beams and plates for 

the purpose of optimizing the mechanical responses of such 

structures. Due to the abrupt transitions in material 

properties, local stress concentrations are induced. To 

diminish these stresses the transition between different 

materials should be made gradually. Finally, this idea leads 

to the concept of functionally graded materials (FGMs) 

which are often made from a pair of ceramic-metal by 

supposing variable properties throughout the gradient 

directions. Hence, FGMs obtained broad potential 

applications for various systems and devices including 

aerospace, aircraft, automobile and defense structures and 

most recently the electronic devices.  

With the growing application of FGMs in the structural 

components, several beam theories are developed to 

anticipate mechanical responses of these structures. The 

classical beam theory or Euler-Bernoulli beam theory 

(EBT) is known as the simplest theory which is only 

applicable for slender beams and should not be applied for 

thick beams and hence, the buckling loads and natural 

frequencies of thick beams are overestimated in which 

shear deformation effects are prominent. To overcome the 

imperfections of EBT, the first order shear deformation 

theory or Timoshenko beam theory (TBT) is suggested so 

that the shear deformation influence is considered in this 

theory. But, a disadvantage of this theory is to need a shear 

correction factor to properly demonstration of the  

                                                      

Corresponding author, Ph.D. 

E-mail: febrahimy@eng.ikiu.ac.ir 

 

 

deformation strain energy. To prevent using the shear 

correction factors, several higher-order shear deformation 

theories have been developed including the third-order 

shear deformation theory proposed by Reddy (2007), the 

generalized beam theory proposed by Aydogdu (2009), 

sinusoidal shear deformation theory of Touratier (1991) and 

exponential theory of Karma (2003). By verifying zero 

transverse shear stresses at the upper and lower surfaces of 

the beam, these theories have the potential to capture both 

the microstructural and shear deformation effects.  

To develop higher order theories for mechanical analysis 

of FG structure, several works are performed. Kadoli et al. 

(2008) implemented a displacement field based on higher 

order shear deformation theory to study the static behavior 

of FG metal–ceramic beams under ambient temperature. 

Simsek (2010) analyzed fundamental frequency of FG 

beams having different boundary conditions within the 

framework of the classical, the first-order and different 

higher-order shear deformation beam theories. Mahi et al. 

(2010) presented exact solutions to study the free vibration 

of a beam made of symmetric functionally graded materials 

based on a unified higher order shear deformation 

theory. Thai and Vo (2012) studied bending and free 

vibration of functionally graded beams using various 

higher-order shear deformation beam theories. Neves et al. 

(2012) proposed a quasi-3D sinusoidal shear deformation 

theory for the static and free vibration of functionally 

graded plates. Larbi et al. (2013) presented an efficient 

shear deformation beam theory based on neutral surface 

position for bending and free vibration analysis of 

functionally graded beams. Vo et al. (2014) investigated 

static and vibration analysis of functionally graded beams 

using refined shear deformation theory. Nguyen et al. 

(2015) studied vibration and buckling of functionally 
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graded sandwich beams by a new hyperbolic higher-order 

shear deformation theory. In another study, Vo et al. (2015) 

provided a finite element model for free vibration and 

buckling analyses of functionally graded (FG) sandwich 

beams by using a quasi-3D theory in which both shear 

deformation and thickness stretching effects are included. 

Also, Atmane et al. (2015) applied an efficient beam theory 

to study the effects of thickness stretching and porosity on 

mechanical responses of FGM beams resting on elastic 

foundation. Also, Mahi and Tounsi (2015) presented a new 

hyperbolic shear deformation theory applicable to bending 

and free vibration analysis of isotropic, functionally graded, 

sandwich and laminated composite plates. Recently, 

Kulkarni et al. (2015) proposed an analytical solution for 

bending and buckling analysis of functionally graded plates 

using inverse trigonometric shear deformation theory. 
In addition, fast growing progress in the application of 

structural elements such as beams and plates with micro or 
nanolength scale in micro/nano electro-mechanical systems 
(MEMS/ NEMS) and nanosensors, due to their outstanding 
chemical, mechanical, and electrical properties, led to a 
provocation in modelling of micro/nano scale structures. 
Recently, nanotechnology is concerned with fabrication of 
functionally graded materials (FGMs) and engineering 
structures at nanoscale, which enables new generation of 
materials and devices with innovative properties. Small 
scale beams are the basic structures used in several 
applications such as nanoelectromechanical systems 
(NEMS), nano-probes, atomic force microscope (AFM), 
nanoactuators and nanosensors (Sedighi et al. 2016). For 
convince designing of nanostructure, the size and length-
scale effects and the atomic forces should be included in 
mathematical formulation. It is clear that all of the above-
mentioned studies on the mechanical behavior of FG 
structures using higher order theories are conducted with 
ignorance of small size influences. Recent experimental 
results indicate that when the size of the structures reduces 
to nano scale, the influences of small scale play a notable 
role in mechanical responses of such nanostructures. The 
defect of the classical continuum theory is that it does not 
take into account the size effects in micro/nano scale 
structures. So, Eringen’s nonlocal elasticity theory is 
proposed to overcome this problem which includes small 
scale effects with good accuracy to model micro/nano scale 
devices and systems. Based on the nonlocal constitutive 
relations of Eringen, a number of studies have been carried 
out to predict the mechanical responses of nanobeams 
(Hosseini and Rahmani 2016). Eltaher et al. (2012) 
presented a finite element analysis for free vibration of FG 
nanobeams using nonlocal EBT. Based upon nonlocal 
Timoshenko and Euler beam theories, Simsek and Yurtcu 
(2013) investigated bending and buckling of FG nanobeam 
by analytical method. Also, Rahmani and Pedram (2014) 
Analysed the size effects on vibration of FG nanobeams 
based on nonlocal TBT. It is worth mentioning that on the 
basis of higher order beam theories, some studies are 
performed to investigate buckling and free vibration of FG 
nanobeams (Rahmani and Jandaghian 2015, Zemri et al. 
2015, Rahmani et al. 2017, Ebrahimi and Barati 2016a, b, c, 
d, 2017a, b). Also, it can be useful for the readers to take a 
look at the other recent works dealing with mechanical 
answers of the small structures (Ebrahimi and Dabbagh 

2017a, b, c, d, e, 2018, Ebrahimi and Heidari 2017, 
Ebrahimi and Daman 2017, Ebrahimi et al. 2016, 2017, 
Ebrahimi and Karimiasl 2017). Within recent years, another 
size-dependent theory has been developed for mechanical 
analysis of tiny structures, called nonlocal strain gradient 
elasticity. For more information about this theory, more 
curious readers are referred to other articles dealing with the 
mechanical characteristics of small size elements (Ebrahimi 
and Haghi 2017, Ebrahimi and Barati 2017c, d, e, 2018).  

In this article, various higher-order shear deformation 

beam theories such as parabolic, sinusoidal, hyperbolic, 

exponential as well as inverse trigonometric shear 

deformation theory for buckling and free vibration of size-

dependent FG nanobeams resting on elastic foundation are 

developed. These theories provide a constant transverse 

displacement and higher-order variation of axial 

displacement through the depth of the nanobeam so that 

there is no need for any shear correction factors. Material 

properties of FG nanobeam are assumed to change 

continuously along the thickness according to Mori-Tanaka 

model. From Hamilton’s principle the governing equations 

of motion are derived and Navier type solution method is 

used to solve the equations. Numerical and illustrative 

results are presented to show the effects of the shear 

deformation, gradient index, nonlocality and elastic 

foundation parameters on the buckling and free vibration of 

FG nanobeams. 

 

 

2. Theory and formulation 
 

2.1 Mori-Tanaka FGM beam model 
 

In this study, Mori-Tanaka homogenization technique is 

employed to model the effective material properties of the 

FG nanobeam. According to Mori-Tanaka homogenization 

technique the local effective material properties of the FG 

nanobeam such as effective local bulk modulus Ke and 

shear modulus μe can be calculated 

1 ( ) / ( 4 / 3)

e m c

c m m c m m m

K K V

K K V K K K 
=

−

− + − +
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(2) 

Therefore from Eq. (4), the effective Young’s modulus 

(E), Poisson’s ratio (v) based on Mori-Tanaka scheme can 

be expressed by 

( )
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zE
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The shear modulus G(z) of FG nanobeam with respect 

to Mori-Tanaka homogenization is defined as 

( )
( )

2(1 ( ))
zG

E z

z
=

+
 (5) 
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The material composition of FG nanobeam at the upper 

surface (z=+h/2) is supposed to be the pure ceramic and it 

changes continuously to the opposite side surface(z=-h/2) 

which is pure metal. 

 

2.2 Kinematic relations 
 

Based on the various shear deformation beam theories, 

the displacement field at any point of the beam can be 

written as 

( ) ( ), ( )b
x

sw w

x
u x z u x z f z

x
− −

 


=


 (6) 

( , ) ( ) ( )z b su x z w x w x= +  (7) 

where u is longitudinal displacement and wb, ws are the 

bending and shear components of transverse displacement 

of a point on the midplane of the beam. f(z) is the shape 

function determining the distribution of the transverse shear 

strain and shear stress through the thickness of the beam. 

Nonzero strains of the present beam model are expressed as 

follows 

2xx

2 2

2
( )b sw wu

x
z f
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x


 
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−


= −  (8) 

s
xz

w
g

x



=


 (9) 

where g(z)=1−df/dz. By using the Hamilton’s principle, in 

which the motion of an elastic structure in the time interval 

t1 < t < t2 is so that the integral with respect to time of the 

total potential energy is extremum 

0
( ) 0

t

U V K dt + − =  
(10) 

Here U is strain energy, V is work done by external 

forces and K is kinetic energy. The virtual strain energy can 

be calculated as 

( )ij ij xx xx xz xz
v v

U dV dV         = = +   (11) 

Substituting Eqs. (8)-(9) into Eq. (11) yields 
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2 20
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In which the variables introduced in arriving at the last 

expression are defined as follows 
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The first variation of the work done by applied forces 

can be written in the form 

0
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where N and q are the applied axial compressive and 

transverse load, respectively and kw and kp are linear and 

shear coefficient of elastic foundation. The variation of the 

kinetic energy can be expressed as 
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where 
2 2

0 1 1 2 2 2( , , , , , ) ( )(1, , , , , )
A

I I J I J K z z f z zf f dA=  . By 

substituting Eqs. (12), (14) and (15) into Eq. (10) and 

setting the coefficients of δu, δw and δφ to zero,
 

the 

following Euler-Lagrange equation can be obtained 
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(18) 

 

2.3 The nonlocal elasticity model for FG nanobeam 
 

According to Eringen nonlocal elasticity model (Eringen 

and Edelen 1972), the stress state at a point inside a body is 

regarded to be function of strains of all points in the 

neighbor regions. For homogeneous elastic solids the 

nonlocal stress-tensor components σij at each point x in 

solid can be defined as 

( ) ( , ) ( ) ( )ij ijx x x t x d x  


  = −   
(19) 

where tij(x’) are the components available in local stress 

tensor at point x which are associated to the strain tensor 

components εkl as 

ij ijkl klt C =  (20) 

The concept of Eq. (19) is that the nonlocal stress at any 

point is weighting average of local stress of all points in the 

near region that point, the size that is related to the nonlocal 

kernel ),(  xx −  . Also xx − is Euclidean distance 

and τ is a constant as follows 

0e a
l

 =  (21) 

which indicates the relation of a characteristic internal 

length, (for instance lattice parameter, C-C bond length and 

granular distance) and a characteristic external length, l (for 

instance crack length and wavelength) using a constant, e0, 

dependent on each material. The value of e0 is 

experimentally estimated by comparing the scattering 

curves of plane waves and atomistic dynamics. According 

to (Eringen and Edelen 1972, Eringen 1983) for a class of 

physically admissible kernel ),(  xx − it is possible to 
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represent the integral constitutive relations given by Eq. 

(19) in an equivalent differential form as 

0
2(1 ( ) ) kl kle a t−  =  (22) 

where 2 is the Laplacian operator. Thus, the scale length 

e0a considers the influences of small scale on the response 

of nano-structures. The magnitude of the small-scale 

parameter relies on several parameters including mode 

shapes, boundary conditions, chirality and the essence of 

motion. So, for a material in the one-dimension case, the 

constitutive relations of nonlocal theory can be expressed as 

2
2

0 2
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where σ and ε are the nonlocal stress and strain, respectively 

and E is the Young’s modulus. For a nonlocal FG beam, 

Eqs. (23) and (24) can be written as 
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where 2

0( )e a = . Integrating Eqs. (25) and (26) over the 

beam’s cross-section area, we obtain the force-strain and 

the moment-strain of the nonlocal refined beam theory can 

be obtained as follows 
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In which the cross-sectional rigidities are defined as 

follows 
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The nonlocal governing equations of higher order shear 

deformable FG nanobeams in terms of the displacement can 

be derived by substituting for N, Mb, Ms and Q from Eqs. 

(27)-(30), respectively, into Eqs. (16)-(18) as follows 
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3. Solution procedures 
 

Here, on the basis the Navier method, an analytical 

solution of the governing equations for buckling and free 

vibration of a simply supported FG nanobeam is presented. 

To satisfy governing equations of motion and the simply 

supported boundary condition, the displacement variables 

are adopted to be of the form 

1
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where 
n

L


 = and (Un, Wbn, Wsn) are the unknown Fourier 

coefficients to be determined for each n value. Substituting 

Eqs. (36)-(38) into Eqs. (33)-(35) respectively, leads to 
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4. Numerical results and discussions 
 

Through this section, the influences of FG composition, 

shear deformation, nonlocality and slenderness ratio on the 

natural frequencies and buckling loads of the FG nanobeam 

as shown in Fig. 1 will be figured out. The FG nanobeam is 

a combination of Steel and Alumina (Al2O3) where their  
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Fig. 1 Geometry and coordinates of functionally graded 

nanobeam resting on elastic foundation 

 

Table 1 Shape functions 

Beam theory f(z) 

Parabolic (Reddy 2007) 

3
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(Kettaf et al. 2013) 
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Cotangential inverse 

trigonometric  

(Kulkarni et al. 2015) 

1

2

4
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z r

z h r

−− + =
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Table 2 Material properties of FGM constituents 

Properties Steel Alumina (Al2O3) 

E 210 (GPa) 390 (GPa) 

ρ 7800 (kg/m3) 3960 (kg/m3) 

ν 0.3 0.24 

 

 

properties are given in Table 1. The following dimensions 

for the beam geometry is considered: L (length) = 10000 

nm, b (width) = 1000 nm (Eltaher et al. 2012, Rahmani and 

Pedram 2014).   

Also, for better presentation of the results the following 

dimensionless quantities are adopted 

2 4 2
2 ρ A

ˆ ωL , , ,
E I

c
cr w w p p

c c c c

L L L
N N K k K k

E I E I E I
 = = = =

 
(41) 

where I=bh3/12 is the moment inertia of the beam’s cross 

section. For the verification purpose, in Table 3 the non-

dimensional frequency of simply supported FG nanobeam 

using third order or parabolic shear deformation theory with 

various nonlocal parameters and gradient indexes are 

compared with the results presented by Ebrahimi and Salari 

(2015). It can be observed from Table 3 that the result of 

nonlocal third higher beam theory are smaller than those of 

nonlocal Euler beam theory. This is attributed to the fact 

that Euler-Bernoulli beam model is unable to capture the 

influence of shear deformation. 

The variations of the dimensionless frequencies and 

buckling loads of FG nanobeam resting on elastic 

foundation for various beam theories are presented in 

Tables 4-6. It is observed that all of the presented beam 

theories provide approximately a same result for buckling 

and free vibration of FG nanobeams and only some 

negligible differences exist. According to these tables, it  

Table 3 Comparison of the non-dimensional frequency of a 

Mori-Tanaka based FG nanobeam without elastic 

foundation (L/h=20)  

µ Gradient index 

 0 0.2 1 5 

 

EBT 

(Ebrahimi 

and Salari 

2015) 

Present 

RBT 

EBT 

(Ebrahimi 

and Salari 

2015) 

Present 

RBT 

EBT 

(Ebrahimi 

and Salari 

2015) 

Present 

RBT 

EBT 

(Ebrahimi 

and Salari 

2015) 

Present 

RBT 

0 9.8594 9.82957 8.5788 8.55411 6.9131 6.89566 5.8869 5.86719 

1 9.4062 9.37769 8.1844 8.16086 6.5953 6.57866 5.6163 5.59746 

2 9.0102 8.98289 7.8399 7.81730 6.3176 6.30170 5.3798 5.36182 

3 8.6603 8.63410 7.5354 7.51376 6.0723 6.05701 5.1709 5.15362 

4 8.3483 8.32302 7.2639 7.24305 5.8536 5.83878 4.9846 4.96794 

 

Table 4 The variation of the first three non-dimensional 

frequencies of FG nanobeam for various beam theories 

(Kw=Kp=0, L/h=20) 

µ Beam theory Mode 1 Mode 2 Mode 3 

0 

 p=0.2 p=1 p=5 p=0.2 p=1 p=5 p=0.2 p=1 p=5 

Parabolic 8.55411 6.89566 5.86719 33.8128 27.2447 23.1588 74.6504 60.1073 51.0165 

Sinusoidal 8.55415 6.89568 5.86719 33.8134 27.2451 23.1588 74.6535 60.1092 51.0166 

Exponential 8.55426 6.89577 5.86725 33.8152 27.2465 23.1598 74.6621 60.1158 51.0217 

Hyperbolic 

(1) 
8.55411 6.89566 5.86719 33.8128 27.2448 23.1588 74.6504 60.1074 51.0168 

Hyperbolic 

(2) 
8.55413 6.89567 5.86718 33.8131 27.2449 23.1587 74.652 60.1081 51.0161 

Cotangential 8.55459 6.89603 5.86748 33.8202 27.2505 23.1634 74.6861 60.1351 51.0389 

1 

Parabolic 8.16086 6.57866 5.59746 28.6304 23.069 19.6093 54.3251 43.7417 37.1261 

Sinusoidal 8.1609 6.57868 5.59746 28.6309 23.0693 19.6093 54.3274 43.7431 37.1262 

Exponential 8.16101 6.57876 5.59752 28.6325 23.0705 19.6101 54.3337 43.7479 37.1299 

Hyperbolic 

(1) 
8.16086 6.57866 5.59747 28.6304 23.069 19.6093 54.3251 43.7418 37.1263 

Hyperbolic 

(2) 
8.16088 6.57866 5.59745 28.6307 23.0692 19.6092 54.3263 43.7423 37.1258 

Cotangential 8.16132 6.57901 5.59774 28.6367 23.0739 19.6132 54.3511 43.762 37.1424 

2 

Parabolic 7.8173 6.3017 5.36182 25.2759 20.3661 17.3118 44.8003 36.0725 30.6168 

Sinusoidal 7.81733 6.30172 5.36181 25.2764 20.3664 17.3118 44.8022 36.0736 30.6169 

Exponential 7.81744 6.3018 5.36187 25.2777 20.3674 17.3125 44.8073 36.0776 30.6199 

Hyperbolic 

(1) 
7.8173 6.3017 5.36182 25.2759 20.3661 17.3118 44.8003 36.0725 30.6169 

Hyperbolic 

(2) 
7.81731 6.30171 5.36181 25.2762 20.3662 17.3117 44.8013 36.073 30.6166 

Cotangential 7.81773 6.30204 5.36208 25.2815 20.3704 17.3152 44.8217 36.0892 30.6302 

 

 

must be noted that as the gradient index increases the 

dimensionless frequencies and buckling load reduce. The 

reason is that increasing the gradient index results in 

reduction of the rigidity of the beam. Similar to gradient 

index, nonlocal parameter has a decreasing influence on 

stiffens of the beam and hence the dimensionless 

frequencies and buckling reduce. Therefore, nonlocality and 

gradient index have a notable effect on the mechanical 

responses of size-dependent FG nanobeams. Also, it is 

found that when the Winkler and Pasternak parameters 

increase the non-dimensional frequency and buckling load 

increase due to the stiffening effect of foundation 

parameters on the FG nanobeam structure. 

Figs. 2 and 3 demonstrate the influence of shear 

deformation and slenderness ratio on the variation of the  
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Table 5 The variation of the first three non-dimensional 

frequencies of FG nanobeam for various beam theories 

(Kw=25, Kp=5, L/h=20) 

µ 
Beam 

theory 
Mode 1 Mode 2 Mode 3 

  p=0.2 p=1 p=5 p=0.2 p=1 p=5 p=0.2 p=1 p=5 

0 

Parabolic 11.6455 9.81165 8.61547 36.3538 29.6845 25.4800 76.9517 62.3212 53.1149 

Sinusoidal 11.6430 9.80882 8.61203 36.3490 29.6792 25.4734 76.9452 62.3131 53.1036 

Exponential 11.6403 9.80590 8.60846 36.3453 29.6748 25.4676 76.944 62.3096 53.0970 

Hyperbolic 

(1) 
11.1894 9.30439 8.06717 36.8022 30.0105 25.7578 78.9815 64.1312 54.9342 

Hyperbolic 

(2) 
11.6442 9.81018 8.61365 36.3513 29.6817 25.4764 76.9483 62.3168 53.1084 

Cotangential 11.7067 9.87498 8.68707 36.5196 29.8511 25.6633 77.2972 62.6618 53.4818 

1 

Parabolic 11.3577 9.58911 8.43119 31.585 25.898 22.2945 57.4346 46.7233 39.9438 

Sinusoidal 11.3550 9.58606 8.42748 31.5791 25.8914 22.2864 57.4234 46.7106 39.9279 

Exponential 11.3521 9.5829 8.42362 31.5738 25.8855 22.2789 57.4158 46.701 39.9151 

Hyperbolic 

(1) 
10.8487 9.03185 7.83601 31.8485 26.0237 22.3599 59.1176 48.1061 41.2610 

Hyperbolic 

(2) 
11.3563 9.58752 8.42923 31.582 25.8946 22.2901 57.4288 46.7165 39.9350 

Cotangential 11.4225 9.65626 8.50721 31.7795 26.0941 22.5109 57.8868 47.1739 40.4338 

2 

Parabolic 11.1113 9.39882 8.27367 28.573 23.5148 20.2938 48.5103 39.619 33.9594 

Sinusoidal 11.1084 9.39555 8.26970 28.5658 23.507 20.2843 48.4954 39.6027 33.9397 

Exponential 11.1053 9.39215 8.26556 28.5593 23.4997 20.2753 48.4834 39.5888 33.9223 

Hyperbolic 

(1) 
10.5525 8.79502 7.63545 28.6552 23.4554 20.1731 49.7924 40.5855 34.8457 

Hyperbolic 

(2) 
11.1098 9.39712 8.27157 28.5693 23.5107 20.2887 48.5026 39.6104 33.9487 

Cotangential 11.1796 9.46973 8.35403 28.7928 23.7372 20.5397 49.0492 40.1584 34.5478 

 

Table 6 The variation of the non-dimensional buckling load 

of FG nanobeam for various beam theories (L/h=20) 

µ Beam theory Kw=Kp=0 Kw=25, Kp=5 

  P=0 P=0.2 P=1 P=5 P=0 P=0.2 P=1 P=5 

0 

Parabolic 9.8658 8.67766 7.2035 6.35864 17.3988 16.2107 14.7365 13.8917 

Sinusoidal 9.86442 8.67651 7.20246 6.35751 17.3974 16.2095 14.7355 13.8905 

Exponential 9.86267 8.67505 7.20115 6.35607 17.3957 16.2081 14.7342 13.8891 

Hyperbolic (1) 9.86916 8.68045 7.20603 6.36146 17.4022 16.2135 14.7391 13.8945 

Hyperbolic (2) 9.86511 8.67709 7.20298 6.35807 17.3981 16.2101 14.736 13.8911 

Cotangential 9.81071 8.63035 7.16272 6.31750 17.3437 16.1634 14.6958 13.8505 

1 

Parabolic 8.97955 7.89815 6.55641 5.78744 16.5126 15.4312 14.0894 13.3205 

Sinusoidal 8.97829 7.89710 6.55546 5.78641 16.5113 15.4301 14.0885 13.3194 

Exponential 8.97670 7.89577 6.55427 5.78510 16.5097 15.4288 14.0873 13.3181 

Hyperbolic (1) 8.98261 7.90068 6.55871 5.79001 16.5156 15.4337 14.0917 13.3230 

Hyperbolic (2) 8.97892 7.89763 6.55593 5.78692 16.5120 15.4307 14.0890 13.3200 

Cotangential 8.92941 7.85509 6.51929 5.74999 16.4624 15.3881 14.0523 13.2830 

2 

Parabolic 8.23940 7.24714 6.01599 5.31041 15.7724 14.7802 13.549 12.8434 

Sinusoidal 8.23825 7.24617 6.01512 5.30946 15.7713 14.7792 13.5482 12.8425 

Exponential 8.23679 7.24496 6.01402 5.30826 15.7698 14.7780 13.5471 12.8413 

Hyperbolic (1) 8.24221 7.24946 6.01810 5.31276 15.7752 14.7825 13.5511 12.8458 

Hyperbolic (2) 8.23883 7.24666 6.01555 5.30993 15.7719 14.7797 13.5486 12.8430 

Cotangential 8.19339 7.20762 5.98193 5.27605 15.7264 14.7407 13.5150 12.8091 

 

 

dimensionless frequency and buckling load of S-S FG 

nanobeam, respectively at gradient index p=0.2, nonlocal 

parameter µ=2 and foundation parameters Kw=25, Kp=5.  

 
Fig. 2 Variation of dimensionless frequency of FG 

nanobeam with respect to slenderness ratio for both 

classical and higher order beam theories (Kw=25, Kp=5, 

p=0.2, μ=2) 

 

 
Fig. 3 Variation of dimensionless buckling load of FG 

nanobeam with respect to slenderness ratio for both 

classical and higher order beam theories (Kw=25, Kp=5, 

p=0.2, μ=2) 

 

 

Fig. 4 Variation of dimensionless frequency of FG 

nanobeam with respect to gradient index for both classical 

and higher order beam theories (Kw=25, Kp=5, μ=1) 

 

 

Due to the fact the classical beam theory (CBT) disregards 

the effects of shear deformation, it overestimates the 

buckling and frequency results. Also, it must be mentioned 

that the differences between the classical and higher order 

beam theories is less considerable for larger values of 

slenderness ratio. Moreover, it is seen that buckling 

responses of FG nanobeams based on CBT is independent 

of slenderness ratio. 

The effect of slenderness ratio on the variation of the  
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Fig. 5 Variation of dimensionless frequency and buckling 

load of FG nanobeam with respect to nonlocal parameter 

(L/h=20, Kw=25, Kp=5) 

 

 

 

Fig. 6 Variation of dimensionless frequency and buckling 

load of FG nanobeam with respect to Winkler parameter 

(L/h=20, Kp=5, Kp=5, μ=2) 
 

 

 

Fig. 7 Variation of dimensionless frequency and buckling 

load of FG nanobeam with respect to Pasternak parameter 

(L/h=20, Kw=25, μ=2) 

 

 

first dimensionless frequency of S-S FG nanobeam resting 

on elastic foundation for both classical and higher order 

beam theory at Kw=25, Kp=5 and μ=1 is plotted in Fig. 4. It 

is observable that the dimensionless frequency reduces with 

high rate for lower values of gradient index than that of 

larger gradient index. Also, it is seen that increasing 

slenderness ratio results in rise of natural frequency. In 

addition, the difference in predicted frequencies based on 

CBT and HOBTs are significant only for smaller values of 

slenderness ratio. So, for larger slenderness ratios or thin 

beams the shear deformation effect is less prominent. 

The softening impact of nonlocal parameter on the 

dimensionless frequency and buckling load of S-S FG 

nanobeams for various gradient index at L/h=20 and Kw=25, 

Kp=5 is shown in Fig. 5. Therefore, as the nonlocal 

parameter growths, the dimensionless frequency and 

buckling load reduce for all gradient indexes. So, as a 

consequence nonlocal parameter has a significant influence 

on the beam structure as well as mechanical responses of 

size-dependent nanobeams. 

The variation of the dimensionless frequency and 

buckling load of S-S FG nanobeam with respect to Winkler 

and Pasternak parameter for different gradient indexes is 

presented in Figs. 6 and 7, respectively at L/h=20. In this 

figure, it is seen that with increase of the Winkler and 

Pasternak parameter both dimensionless frequency and 

buckling load increase for all values of gradient index.  

According to these figures it is found that the influence of 

the Pasternak parameter (Kp) on the non-dimensional 

buckling load is more significant than that of the Winkler 
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parameter (Kw). So, it is very important to consider the 

shear layer of an elastic foundation in the analysis of FG 

nanostructures. 

 

 

5. Conclusions 
 

In the present work, free vibration and buckling analysis 

of size-dependent FG nanobeams embedded in two-

parameter elastic foundation is performed based on various 

higher order shear deformation beam theories in 

conjunction with Navier analytical method. To define 

material properties of FG nanobeam Mori-Tanaka model is 

considered. The nonlocal governing differential equations 

in elastic medium are derived by implementing Hamilton’s 

principle and using nonlocal constitutive equations of 

Eringen. The effects of shear deformation, small scale 

parameter, gradient index, foundation parameters and 

slenderness ratio on mechanical behavior of FG nanobeams 

are investigated. As a general consequence, all of the higher 

order theories present accurate and same results for the 

vibrational and stability analysis of FG nanobeams. It is 

observed that shear deformation influence on the responses 

of FG nanobeams is more significant for lower values of 

slenderness ratio. Also, it is indicated that with an increase 

of Winkler or Pasternak parameter, the beam becomes more 

rigid and the dimensionless frequency and buckling load of 

FG nanobeams increase. Moreover, it is found that 

nonlocality and gradient index has a notable decreasing 

effect on the natural frequency and buckling load of FG 

nanobeams. 
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