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1. Introduction 
 

In recent years, effective Steel-Concrete Composite 

(SCC) structural components are developed for special 

purpose applications (Liew and Sohel 2009, Yan et al. 

2014).  Mainly, SCC components are used in structures 

which experience suddenly applied dynamic loads. Those 

structures should exhibit both enormous ductility and 

support rotation maintaining the structural integrity. 

Effective performance of SCC system is mainly based on 

the composite action achieved by means of shear 

connectors (Luo et al. 2012, Tomlinson et al. 1989, 

Bowerman et al. 2002, Liew et al. 2009, Leekitwattana, 

2011).  

Laced Steel-Concrete Composite (LSCC) system is one 

such SCC system developed by the authors (Anandavalli et 

al. 2012). In LSCC, the top and bottom steel cover plates 

are connected using lacings and cross-rods as shown in Fig. 

1. Lacings transfer the force between steel cover plate and 

in-filled concrete. Welding is avoided in LSCC by specific 

arrangement of lacings being tucked into the perforations in 

the cover plate at suitable places. During experiments under 

four point bending, LSCC beams found to exhibit large  
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deformation with rotation of about 13° at the supports 

which is about four times as in the case of Laced 

Reinforced Concrete components (Anandavalli et al. 2012). 

In addition to this, LSCC system found to possess 

enormous ductility. Thirumalaiselvi et al. (2017) 

demonstrated the superior blast performance of LSCC. 

Hence, use of LSSC components is proposed to be extended 

to other special applications such as concrete based offshore 

structures, nuclear power plants and blast and impact 

resistance protective structures. Following certain 

assumptions, first hand estimation of the LSCC beam 

capacity has been derived analytically (Thirumalaiselvi et 

al. 2017). However, there is a need to estimate the load and 

deflection capacities of such a novel system for special 

applications.  

In the current study, Finite Element (FE) analysis is 

carried out using the general purpose finite element 

software to obtain the limiting capacity of LSCC beams 

under monotonic loading. Soil-shell-link approach proposed 

by (Anandavalli et al. 2011) for composite panels has been 

adopted for the modelling of LSCC beam using appropriate 

nonlinear material models. The FE model is then validated 

using the available experimental response of the LSCC 

beam subjected to monotonic loading. However, FE 

solutions are found to be computationally expensive for 

LSCC beams due to their complex geometry. Recently, 

various researchers have carried out studies towards the 

development of cost-efficient alternate models based on 

machine learning algorithms in the different areas of 

structural engineering-concrete technology (Yan and Shi 

2010, Altun et al. 2008, Topçu and Sarıdemir 2008, Kumar 

et al. 2013, Toghroli et al. 2016, Gajewski et al. 2017,  
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Fig. 1 Isometric view and Cross-section of LSCC system 

 

 

Fig. 2 Loading arrangement on LSCC beam 

 

 

Fig. 3 Test set up 

 

 

Babanajad et al. 2017, Prem et al. 2017), fracture 

mechanics (Yuvaraj et al. 2013), materials (Abuomar et al. 

2015, Bheemreddy et al. 2013, Gandomi and Alavi 2012, 

Verma et al. 2017, Prem et al. 2018, Singh et al. 2018), and 

geotechnology (Samui 2012 , Samui et al.  2014, 

Viswanathan et al. 2015, Mozumder et al. 2017). In this 

paper, the popular algorithms like Support Vector 

Regression (SVR) (Vapnik 2000), Minimax Probability 

Machine Regression (MPMR) (Strohmann and Grudic 

2002), Relevance Vector Machine (RVM) (Tipping 2001) 

and Multigene Genetic Programing (MGGP) (Searson et al. 

2010) are chosen to evaluate the displacement and load 

capacity of LSCC beam. The machine learning algorithms 

are implemented in the MATLAB software. The training 

and the testing data for the algorithms are obtained from the 

validated nonlinear FE model. The relevant input 

parameters to the algorithms are obtained through 

parametric study. Based on the parametric study, the inputs 

which are found to significantly influence the response of 

the LSCC beam are angle of lacing (LA) and thickness of 

cover plate (PT). In addition to these two parameters, length  

 

Fig. 4 Load-displacement response of LSCC beams 
 

 

(L) and width (b) of the LSCC beam are taken as the inputs 

for the algorithm. The outputs of machine learning 

algorithm are the ultimate load, failure load, displacement 

at ultimate and failure loads. The results obtained from the 

algorithms are found to effectively predict the response of 

the LSCC beams. Since, the concept of LSCC is new, 

development of models for prediction of its response will 

certainly be useful. Further, development of such alternate 

models gains significance as conventional laboratory 

experiments cannot be conducted at large deformation 

range while development of FE model is found to be cost- 

and time-prohibitive. 
 

 

2. Experimental investigations 
 

LSCC beam having cross-section of 300 mm×150 mm 

and length of 2.4 m is chosen for the present study. Cover 

plates are made of 3 mm thick cold formed steel provided 

with 50 mm lip on each side. Average yield and ultimate 

stress of cold formed steel are 210 MPa and 300 MPa. Two 

beam specimens, one with 45° lacing angle (labelled as 

LSCC-45) and other with 60° lacing angle (labelled as 

LSCC-60) are fabricated. The cover plate assembled with 

lacings and cross rods is shown in Fig. 1. Lacings and cross 

rods are made of mild steel whose average yield and 

ultimate stress are found to be 400 MPa and 540 MPa, 

respectively. Diameter of lacing and cross rod is 8 mm and 

10 mm, respectively. 

Two-point load test is conducted on both the LSCC 

beam specimens under displacement control mode. The 

specimen is loaded at the rate of 0.04 mm/s. The schematics 

of the loading are shown in Fig. 2. The specimens are tested 

with simply supported boundary conditions. The actual 

testing set-up is shown in Fig. 3. For further details about 

the experiment, the readers are advised to refer 

(Anandavalli et al. 2012). Load displacement of LSCC 

beams at the mid-point is shown in Fig. 4. During 

experiment, both the beams were found to possess large 

deformation and ductility. However, the test was 

discontinued to avoid the risk of support rod slipping at 

such large deformation. As the experiment has been stopped 

abruptly due to safety issues, the ultimate capacity could 

not be ascertained. 
 

 

3. Finite element analysis 
 

Thirumalaiselvi et al. (2016) explains the detailed finite  
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Fig. 5 Stress-strain behaviour of cold-formed steel 

 

 

Fig. 6 Stress-strain behaviour of mild steel 

 

 

element (FE) studies carried out on LSCC beam specimens. 

However, for the sake of continuity, details about FE 

analysis will be explained in this section. Solid-shell-link is 

used to model LSCC system using solid element for 

concrete core, shell for steel plates and link for shear 

connectors (Anandavalli et al. 2011). Two point loading 

with simply supported boundary conditions are applied as 

shown in Fig. 2. 

Concrete damaged plasticity (CDP) model is used to 

represent complete inelastic behaviour of concrete. The 

stress-strain relationship of concrete and steel is needed for 

the FE analysis of LSCC beams. Stress-strain relationship 

of concrete in compression is modelled using empirical 

relationship given by Attard and Setunge (1996). Pre-

cracking tensile stress-strain behaviour is assumed to be 

linear while post-cracking behaviour in tension is modelled 

based on the relation proposed by Guo and Zhang (1987). 

Nonlinear behaviour of steel is modelled using plasticity 

model available in the software. Material behaviour of steel 

cover plate is employed based on the nominal stress-strain 

behaviour of cold formed steel (as shown in Fig. 5). Bi-

linear stress-strain behaviour (Fig. 6) is adopted to model 

the lacings and cross rods. 

Surface to surface contact interactions adopting friction 

formulation in tangential direction (with the coefficient of 

friction as 0.4) and hard contact in normal direction is used 

to model the interaction between the steel cover plates and 

concrete. Contact constraints are enforced using penalty 

method. Node to surface interaction is given between nodes 

of crossrods and steel plate. Lacings are connected with 

cross rods at intersecting nodes and embedded in concrete. 

The classical coulomb friction model is adopted to 

characterize the frictional behaviour between the surfaces. 

Friction is defined as 

 

Fig. 7 FE model of LSCC beam 

 

 

Fig. 8 Load-displacement behaviour of LSCC-45 beam 

 

 

Fig. 9 Load-displacement behaviour of LSCC-60 beam 

 

 

𝜏𝑡𝑖𝑚 =  𝜇P (1) 

where 𝜏𝑙𝑖𝑚  = limiting shear stress, 𝜇  = coefficient of 

friction and P = normal contact pressure. 

Convergence study is carried out in arriving at the final 

FE mesh. The final mesh having elements of size 25 mm 

with aspect ratio 1 which is shown in Fig. 7 is chosen for 

the analysis. 

The static response of LSCC under four point bending is 

obtained using nonlinear static analysis. Newton-Raphson 

solution technique is used. Load-displacement behaviour 

and critical stages of failure are obtained from the analysis. 

FE model developed is validated with the results obtained 

from experiments available in Anandavalli et al. (2012). 

Load-displacement values of LSCC-45 and LSCC-60 beam 

obtained using FE analysis are shown in Figs. 8 and 9, 

respectively. 

In Figs. 8 and 9, the points A, B, C show the critical 

stages of loading noticed in FE results. Point A denotes the 

point at which yielding of bottom cover plate initiated for a 

tensile strain of 0.0059 in case of LSCC-45 beam and 
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0.00541 in case of LSCC-60 beam. Ultimate loading stage 

is denoted by point B. At this stage, crushing of concrete 

occurs in the compression zone in shear span region for a 

strain of about 0.0035. In experiment also, similar results 

were reported. Point C denotes the failure stage. At this 

stage, strain values in lacings and cross rods are much lesser 

than its ultimate values. Results obtained using FE model 

and experiments are found to match well. Hence, the 

validated FE model is used further in the present study for 

the generation of wide range of dataset. 

 

 

4. Background on machine learning algorithms 
 

Machine learning is the computation process of 

constructing patterns from data. Algorithms based on 

machine learning are useful where it is difficult to model 

the complex behaviour of the system or where 

computational efficiency is the prime requirement. The 

powerful capabilities of the models based on machine 

learning can be seen by applying to a simulation where the 

factors/variables affecting the output are known but the 

exact relationship between the variables and output is not 

well known. This section reviews four different machine 

learning algorithms which are widely used and so adopted 

in present study. 

 

4.1 Support vector regression (SVR) 
 

SVR is a supervised learning model established by 

Vapnik (2000) to predict the output (y) for the known input 

(x). The main principle of SVR is structural risk 

minimization. The nonlinear SVR problem is written as 

𝑦 = 𝑓(𝑥) = 〈𝑤, 𝜙(𝑥)〉 + 𝑏 (2) 

where w and b represents the function parameters, 〈, 〉 
denotes the inner product, and 𝜙(𝑥) is the transformation. 

SVR uses a penalty function which predicts the actual 

values of the target as close as possible with a precision ε. 

The ε-insensitive penalty function is adopted which is 

expressed as 

𝐿1
𝜀(𝑓(𝑥), 𝑦) = {

0   𝑓𝑜𝑟 |𝑓(𝑥) − 𝑦| < 𝜀 

|𝑓(𝑥) − 𝑦|   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

Following minimization expression is used by by 

varying C 

Ω =
1

2
||𝑤||2

2 + 𝐶∑𝐿1
𝜀 (𝑦𝑛, 〈𝑤, 𝜙(𝑥𝑛)〉 + 𝑏)

𝑁

𝑛=1

 (4) 

The minimization problem can be written as (Vapnik 

2000) 

𝑚𝑖𝑛
𝑤 ∈ ℝ𝑛, 𝑏 ∈ ℝ

||𝑤||2
2 + 𝐶∑(𝜉𝑛

2 + 𝜉𝑛
2)

𝑁

𝑛=1

 (5) 

subject to(〈𝑤, 𝜙(𝑥𝑛)〉 + 𝑏) − 𝑦𝑛 ≤ 𝜀 + 𝜉𝑛 ,   

𝑦𝑛 − (〈𝑤, 𝜙(𝑥𝑛)〉 + 𝑏) ≤ 𝜀 + 𝜉𝑛 , 

𝜉𝑛 , 𝜉𝑛 ≥ 0 𝑛 = 1,… , 𝑁 

where 𝜉𝑛and 𝜉𝑛represent the upper and lower bounds on  

 

Fig. 10 Graphical representation of SVR 

 

 

output. Method of Lagrange multipliers are used to solve 

the above mentioned quadratic optimization problem: 

𝑓(𝑥) = ∑(𝛼𝑛 − �̌�𝑛)𝐾(𝑥, 𝑥𝑛)

𝑙

𝑛=1

−
1

2
∑(𝛼𝑛 − �̌�𝑛)[𝐾(𝑥𝑟 , 𝑥𝑛)

𝑙

𝑛=1

+ 𝐾(𝑥𝑠, 𝑥𝑛)] 

(6) 

where 𝛼 and �̌�  are the Lagrange multipliers, 𝑥𝑟  and 𝑥𝑠 
are two typical support vectors, l is the number of support 

vectors and K(,) is a kernel function. Presently, radial basis 

function defined in the following equation is used. 

𝐾(𝑥, 𝑥𝑛) = exp {−
(𝑥 − 𝑥𝑛)

𝑇(𝑥 − 𝑥𝑛)

2𝛾2
} (7) 

The entire process of the proposed model based on SVR 

is summarised graphically as shown in Fig. 10. The model’s 

performance depends only on the values of the parameters 

like C,  and γ which makes the model to be problem-

specific. The model is not limited by the number of input 

variables or any such aspect. 

The following observations about SVR are worth 

noting:  

i. Even in the presence of bias, the appropriate selection 

of the model hyperparameters makes SVR robust.  

ii. SVR linearizes by means of kernel function 

transformation. Hence, the model accuracy is independent 

of the selection of linearization function. 

iii. SVR required tuning of the model parameters and 

the results obtained are non-probabilistic. 

 

4.2 Relevance vector machine  
 

RVM is based on Bayesian formulation having identical 

SVR functional form (Tipping 2001). The outputs of RVM 

can be written as 

𝑦(𝑥) = ∑𝑤𝑛

𝑁

𝑛=1

𝐾(𝑥, 𝑥𝑛) + 𝑤0 (8) 

where 𝑤0 is bias, 𝑤𝑛 are the model weights and 𝐾(𝑥, 𝑥𝑛) 
is a kernel function 

The likelihood of the dataset assuming 𝑝(𝑡|𝑥)  as 

Gaussian 𝑁(𝑡|𝑦(𝑥), 𝜎2) is given by (Tipping 2001) 
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𝑝(𝑡|𝑤, 𝜎2) = (2𝜋𝜎2)−𝑁/2 exp {−
1

2𝜎2
‖𝑡 − 𝛷𝑤‖2} (9) 

where  Φ  is the N x (N+1) design matrix with Φ𝑛𝑚 =
𝐾(𝑥𝑛 , 𝑥𝑚−1)  with Φ𝑛1 = 1 , 𝑡 = (𝑡1, … , 𝑡𝑛)  and 𝑤 =
(𝑤0, … , 𝑤𝑛). The hyperparameters (𝛼𝑖) are used for each 

weight towards avoiding severe over fit issue and providing 

sparse properties. Applying Bayes’ rule, the weights can be 

evaluated as (Tipping 2001) 

𝑝(𝑤|𝑡, 𝛼, 𝜎2) = (2𝜋)− 
𝑁+1

2 |Σ|−
1

2 exp {−
1

2
(𝑤

− 𝜇)𝑇Σ−1  (𝑤 − 𝜇)} 

Σ = (Φ𝑇𝐵Φ + 𝐴)−1and μ = ΣΦ𝑇𝐵𝑡 

(10) 

where 𝐴 = 𝑑𝑖𝑎𝑔(𝛼0, … , 𝛼𝑁) and 𝐵 = 𝜎−2𝐼𝑁.  

The marginal likelihood for the hyperparameters is 

descried by Tipping (2001) 

𝑝(𝑡|𝛼, 𝜎2) = (2𝜋)− 
𝑁

2 |B−1

+Φ𝐴−1Φ𝑇|−
1

2 exp {−
1

2
𝑡𝑇(𝐵−1

+Φ𝐴−1Φ𝑇)−1𝑡} 

(11) 

The values of 𝛼 and 𝜎2 maximizing the likelihood of 

hyperparameters are determined. The salient features of 

RVM worth noting are: 

i. RVM has less sensitivity to the hyperparameters. The 

output of RVM is probabilistic in nature. 

ii. RVM provides sparse models. The sparse model has 

few relevance vectors which makes interpretation at lesser 

cost. 

iii. RVM is not suitable for larger datasets since training 

included the highly nonlinear optimization problem.  
 

4.3 Minimax probability machine regression  
 

MPMR was proposed for classification problems by 

Lanckriet et al. (2003) and was later extended to regression 

by Strohmann and Grudic (2002). 

The aim of the MPMR is to find the hyperplane which 

distinguishes the two classes. MPMR poses the regression 

problem as the maximization of the minimum probability of 

the outputs within some specified bounds of the true 

regression function. Mathematically, if the hyperplane is 

assumed to be of the following form 

𝑎𝑇𝑧 = 𝑏, 𝑎, 𝑧 ∈ 𝑅𝑛𝑎𝑛𝑑 𝑏 ∈ 𝑅 (12) 

where 𝑅𝑛 is a n-dimensional space, 𝑧 is random vector, 

and 𝑎, 𝑏 are constants. The MPMR optimization problem 

can be written as 

max
𝛼,𝑏,𝑎

𝛼 (13) 

Subject to: inf 𝑃𝑟{𝑎𝑇𝑥 ≥ 𝑏} ≥ 𝛼 

       inf 𝑃𝑟{𝑎𝑇𝑦 ≤ 𝑏} ≥ 𝛼 

Lagrangian of the problem is formulated and by 

substitution of variables the final optimization takes the 

following form (Lanckriet et al. 2003) 

min
𝑎
√𝑎𝑇∑ 𝑎

𝑥
+ √𝑎𝑇∑ 𝑎

𝑦
 (14) 

Subject to: 𝑎𝑇(�̅� − �̅�) = 1 

where 𝑥, 𝑦 are the random vectors, �̅�, �̅�  are the means 

and ∑𝑥 , ∑𝑦  are covariance matrices. When the kernel 

functions are used to map data to higher dimensional space 

from the original sample space, the transformed 

optimization problem can be written as (Strohmann and 

Grudic 2002) 

min
𝛾
{‖

𝐾𝑥

√𝑁𝑥
‖

2

+ ‖
𝐾𝑦

√𝑁𝑦
‖

2

} (15) 

Subject to:  𝛾𝑇(�̃�𝑥 − �̃�𝑦) = 1 

      𝛾 = [𝛼1𝛼2… 𝛼𝑁𝑥𝛽1𝛽2…𝛽𝑁𝑦]
𝑇

 

      𝑎 =∑𝛼𝑖𝜙(𝑥𝑖)

𝑁𝑥

𝑖=1

+∑𝛽𝑖𝜙(𝑦𝑖)

𝑁𝑦

𝑖=1

 

      𝐾𝑥 = 𝐾𝑥 − 1𝑁𝑥�̃�𝑥 

      𝐾𝑦 = 𝐾𝑦 − 1𝑁𝑦�̃�𝑦 

�̃�𝑥, �̃�𝑦 ∈ 𝑅
𝑁𝑥+𝑁𝑦  and 

  [�̃�𝑥]𝑖 = 
1

𝑁𝑥
∑𝐾(𝑥𝑗 , 𝑧𝑖)

𝑁𝑥

𝑗=1

, [�̃�𝑦]𝑖 = 
1

𝑁𝑦
∑𝐾(𝑦𝑗 , 𝑧𝑖)

𝑁𝑦

𝑗=1

 

       𝑧𝑖 = {
𝑥𝑖 𝑖 = 1,2, … , 𝑁𝑥

𝑦𝑖−𝑁𝑥 𝑖 = 𝑁𝑥 + 1,𝑁𝑥 + 2,… ,𝑁𝑥 +𝑁𝑦
 

where (𝑁𝑥 , 𝑁𝑦)are the number of points in class (𝑥, 𝑦), 1𝑘 

is a k-dimensional column vector of ones, 𝐾(𝑧1, 𝑧2) =
𝜙(𝑧1)

𝑇𝜙(𝑧2) is a kernel function, 𝐾𝑥  contains the first 

𝑁𝑥 rows of the Gram matrix K (square matrix consisting of 

the elements 𝐾𝑖𝑗 = 𝐾(𝑧𝑖 , 𝑧𝑗)) and 𝐾𝑦 contains the first 𝑁𝑦 

rows of the Gram matrix K. The data is classified into by 

shifting the regression data to ±𝜖. 

𝑢𝑖 = (𝑦𝑖 + 𝜖, 𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑁) 

𝑣𝑖 = (𝑦𝑖 − 𝜖, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑁) 
(16) 

where N is a number of datasets 

Using the above two classes, the classification boundary 

is obtained by solving the optimization problem described 

by Eq. (14). The classification boundary is given by 

∑𝛾𝑖𝐾(𝑧𝑖 , 𝑧)

2𝑁

𝑖=1

+ 𝑏 = 0 (17) 

where 𝛾, 𝑏 are the outputs of the MPMR model. 

The following are the important features of MPMR: 
i. MPMR model assumes that the mean and co-variance 

matrix of the distribution that generated the regression data 
are known. The evaluation of the mean and co-variance 
statistics directly from the training data results in accurate 
lower probability bound.  

ii. In MPMR also, the solution is unique as it solves 
convex optimization problem. 
 

4.4 Nonlinear multigene genetic programming  
 

Genetic programming (GP) is a bio-inspired learning  
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(a) 

 
(b) 

 
(c) 

Fig. 11 GP model (Verma et al. 2017)-(a) tree structure 

(log(a+b/5)), (b) mutation and (c) crossover 

 

 

algorithm which uses the principle of Darwinian natural 

selection. GP involves the generation of the random 

population. A typical individual in the population takes the 

form of a hierarchically structured tree comprising of root, 

functional and terminal nodes connected by links (Fig. 11). 

The next step in the GP involves the selection of the 

individuals for reproduction. A new generation is created by 

generating new individuals through crossover, mutation and 

direct reproduction. The process of evolution is continued 

by computing the fitness of new generation. The output of 

the GP is the individual with best fitness value in any 

generation.  GP has the ability to predict without assuming 

any relationship between the input and the output which 

gives it an edge over other regression and neural network-

based methods. 

MGGP is a form of symbolic regression carried out 

using GP. In MGGP, the initial population consists of the 

random generated GP trees. A mathematical expression is 

coded in each of the GP tree (Fig. 12). The tree here is 

analogous to a gene. The tree is then evolved by the process 

similar to that of GP. The output of MGGP can be viewed as 

the linear combination of the lower order nonlinear 

transformations of the input variables. For more details, 

reader is advised to refer (Gandomi and Alavi 2012,  

 

Fig. 12 Multigene GP model (Verma et al. 2017) 

 

 

Searson et al. 2010).   

The key features of MGGP observed are: 

i. The solution obtained from MGGP is not unique. So, 

the solution corresponds to local minimum. 

ii. MGGP is helpful in developing empirical relation 

between the inputs and the outputs. 

 

 

5. Data generation  
 

The data is generated for the machine learning 

algorithms by carrying out FE analysis of the validated 

model for a range of sensitive parameters. The sensitive 

parameters which influence the response of LSCC beams 

were identified by authors in their previous studies 

(Thirumalaiselvi et al. 2016) by carrying out parametric 

analysis. The sensitive parameters are lacing angle (LA), 

cover plate thickness (PT), width (b) and length (L) of the 

beam. The depth of the beam could be another parameter 

which can influence the response of LSCC. Similar to the 

case of conventional RC beam, the depth of LSCC is 

directly proportional to the load and inversely to 

displacement capacity. Since the relationship is well known, 

the depth is kept at a constant value of 150 mm keeping in 

view the objective of the present study. The results of the 

FE analysis are given in Table 1 for different configurations 

of LSCC beams 

 

 

6. Model applications 
 

The models described in section 3 are used for 

predicting the load and displacement at ultimate and failure 

stages of LSCC for different configurations. The following 

relationships are assumed 

𝑃𝑢
𝑃𝑓
Δ𝑢
Δ𝑓}
 

 
= 𝑓(𝐿𝐴, 𝑏, 𝐿, 𝑃𝑇) (18) 
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Table 1 Numerically predicted responses of LSCC beams 

SNo 

Inputs Outputs 

LA (°) b (mm) L (mm) PT (mm) Pu(kN) Pf (kN) ∆u (mm) ∆f(mm) 

Training dataset 

1 30 300 2400 2 99.3 89.11 111.018 279.5 

2 30 300 2400 4 167.67 151.1 84.5 260.67 

3 30 300 2400 5 202.8 189.7 89.285 303.17 

4 30 400 2400 3 169.3 158.65 115.8 200.12 

5 30 400 2400 5 256 240.76 114.6 308.4 

6 30 300 1800 4 223.5 206 59.3 218.6 

7 30 400 1800 3 226.24 209.29 74.5 157.58 

8 30 400 1800 4 282.5 261.4 80.83 216.73 

9 30 400 1800 5 327.15 313.66 127.48 295.2 

10 30 300 1500 4 262.55 245.62 66.08 156.81 

11 45 300 2400 2 97.2 87.67 143.51 214.73 

12 45 300 2400 4 167.94 158.42 90.61 173.83 

13 45 300 2400 5 204.32 191.14 89.87 209.08 

14 45 400 2400 3 167.05 155.45 137.22 207.2 

15 45 400 2400 4 211.06 199.12 98.34 192.9 

16 45 300 1800 2 129.53 118.28 91.62 144 

17 45 300 1800 3 176.98 165.9 61.53 130.53 

18 45 300 1800 5 271.55 257.75 64.09 184.45 

19 45 400 1800 3 223.32 208.46 87.9 138.64 

20 45 300 1500 2 155.5 120.8 68.3 105.4 

21 45 300 1500 3 211.81 198.9 40.28 106.53 

22 45 400 1500 3 268.1 251.34 61.66 102.26 

23 60 300 2400 2 97.15 97.06 259.56 274.493 

24 60 300 2400 4 169.9 162.75 108.88 210.66 

25 60 400 2400 2 121.27 121.05 206.01 229 

26 60 400 2400 4 214.65 202.4 137.3 213.8 

27 60 400 2400 5 259.35 249.12 107.5 210.6 

28 60 300 1800 2 129.34 127.9 144.36 163.03 

29 60 300 1800 4 226.15 217.35 60.77 127.066 

30 60 300 1800 5 274.28 267.67 60.72 145.59 

31 60 400 1800 4 285.86 271.9 79.2 130.35 

32 60 400 1800 5 344.49 329.92 70.2 166.56 

33 60 300 1500 2 214.3 146.2 56.46 87.7 

34 60 400 1500 3 269.6 251.9 76.14 108.43 

35 60 400 1500 5 399.06 388.34 91.24 203.68 

Testing dataset 

36 30 300 2400 3 133.3 121.1 87.37 257.8 

37 30 400 2400 2 125 116.6 159.5 224.13 

38 30 400 2400 4 212.5 198.8 95.9 235.5 

39 30 300 1800 2 133.3 117.4 70.16 200.72 

40 30 300 1800 3 177.5 160.8 52.26 191.9 

41 30 300 1800 5 262.3 249 78.2 297.77 

42 30 300 1500 3 213.2 193.44 41.5 130.4 

43 45 300 2400 3 132.6 122.63 96.67 177.03 

44 45 400 2400 2 121.64 119.3 158.94 244.7 

Table 1 Continued 

45 45 400 2400 5 255.57 239.37 95.28 242.3 

46 45 300 1500 4 267.27 250.78 46.73 142.5 

47 45 400 1500 4 336.2 317.76 60.57 144.77 

48 45 300 1800 4 223.94 211.88 51.7 121 

49 45 400 1800 4 281.5 267.76 66.33 133.53 

50 60 300 2400 3 133.91 126.67 125.55 186.67 

51 60 300 2400 5 206.9 201.33 97.69 216.3 

52 60 400 2400 3 168.72 159 174 218.23 

53 60 300 1800 3 178.17 167.92 72.49 117.77 

54 60 400 1800 3 224.62 209.67 101.09 145.69 

55 60 300 1500 3 154.3 199.97 76.62 106.69 

 

 

Fig. 13 Flow chart for hyperparameters optimization using 

SOS (Verma et al. 2017) 

 

 

The dataset obtained from the FE simulations is used for 

developing models based on machine learning using 

different algorithms. Out of 55 datasets, 35 are used for 

training while 20 are used for testing the model. The dataset 

is normalized to have a value between 0 and 1. Since 

machine learning algorithms are applied for the first time to 

predict the response of LSCC beam, the basis for the 

selection of the parameters is not available in the literature. 

In such situations, an independent optimization problem 

with model parameters as the design variables should be 

solved. In the present study, Symbiotic Organism Search  
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Table 2 Parameters used in SVR 

Parameter 

Values 

𝑃𝑢 𝑃𝑓 Δ𝑢 Δ𝑓 

Loss function Quadratic Quadratic Quadratic Quadratic 

Kernel 

function 

𝐾(𝑥𝑖 , 𝑥) 

Radial basis function 

𝑒
−
(𝑥𝑖−𝑥)

𝑇
(𝑥𝑖−𝑥)

2𝛾2  

Radial basis function 

𝑒
−
(𝑥𝑖−𝑥)

𝑇
(𝑥𝑖−𝑥)

2𝛾2  

Radial basis function 

𝑒
−
(𝑥𝑖−𝑥)

𝑇
(𝑥𝑖−𝑥)

2𝛾2  

Radial basis function 

𝑒
−
(𝑥𝑖−𝑥)

𝑇
(𝑥𝑖−𝑥)

2𝛾2  

C 50 1100 2200 1100 

𝛾 2.8 3 3.2 1 

 

Table 3 Parameters used in RVM 

Parameter 

Values 

𝑃𝑢 𝑃𝑓 Δ𝑢 Δ𝑓 

Kernel function 

𝐾(𝑥𝑖, 𝑥) 

Radial basis 

function 

𝑒
−
(𝑥𝑖−𝑥)

𝑇
(𝑥𝑖−𝑥)

2𝛾2  

Radial basis function 

𝑒
−
(𝑥𝑖−𝑥)

𝑇
(𝑥𝑖−𝑥)

2𝛾2  

Cubic 
(𝛾((𝑥𝑖 − 𝑥)

𝑇(𝑥𝑖

− 𝑥))
2

3 

Laplace 

𝑒
−
(𝑥𝑖−𝑥)

𝑇
(𝑥𝑖−𝑥)

𝛾  

𝛾 2.3 2.3 2 5 

 

Table 4 Parameters used in MPMR 

Parameter 

Values 

𝑃𝑢 , 𝑃𝑓 , Δ𝑢, Δ𝑓 

Kernal function 

𝐾(𝑥𝑖 , 𝑥) 
Polynomial 
(𝑥𝑖𝑥

𝑇 + 1)𝑝1 

𝑝1 2 

𝜖 0.0055 

 

Table 5 Parameters used in MGGP 

Parameter 
Values 

𝑃𝑢 , 𝑃𝑓, Δ𝑢, Δ𝑓 

Function set x,+,-,tanh,sin,cos,exp 

Population size 200 

Number of generation 200 

Maximum number of genes 2 

Maximum tree depth 5 

Tournament size 3 

Elitism 0.05 

Crossover events 0.85 

Mutation events 0.1 

Direct reproduction 0.05 

Ephemeral random constants [-10 10] 

 

 

(SOS) algorithm which was developed by Cheng and 

Prayogo (2014) is used for optimization of the model 

parameters. The objective function is taken as the 

maximization of the coefficient of determination (R2) for 

the training dataset. The flow chart for the procedure 

followed is shown in Fig. 13. The values of the parameters 

obtained are given in Tables 2 to 5 for different algorithms. 

Out of the four machine learning algorithms, MGGP is the 

only one which gives an explicit relation between the inputs 

and the outputs in the form of a mathematical expression. 

The expressions obtained for 𝑃𝑢, 𝑃𝑓 , Δ𝑢  and Δ𝑓using 

MGGP are given in Table 6. These expressions hold good, 

when the values of input parameters are chosen within the 

range taken in the present study. The outputs obtained from  

Table 6 Mathematical expression obtained for LSCC 

responses using MGGP  

Response parameter Mathematical expression 

𝑃𝑢 
0.53𝑃𝑇 − 0.09𝐿 − 0.17 tanh(tanh(𝐿)) + 0.09𝑏. 𝐿 − 0.17𝐿. 𝑃𝑇

− 0.11 cos((𝐿 − 1.05)(𝐿𝐴 − 𝐿)) 𝑒cos(𝑏) + 0.49 

𝑃𝑓 
0.18𝑏 + 0.17𝑒𝑃𝑇 + 0.17 tanh(𝑃𝑇) + 0.04𝑃𝑇(𝐿𝐴 + 𝑒𝑏 + 1.91)

− 0.07 sin(sin(𝐿) (𝑃𝑇 + 𝑒𝑏 + 2𝑒𝑃𝑇)) − 0.003 

Δ𝑢 
0.17 tanh(𝑏 − 𝑃𝑇 + tanh(𝐿) (𝐿 − 𝑃𝑇)) − 0.29 cos(𝐿𝐴 − 2𝑃𝑇 + tanh(𝐿))

+ 0.2 cos(𝑏) tanh(𝐿) (𝑒𝐿𝐴 + tanh(𝑏)) + 0.3 

Δ𝑓 

0.09(𝐿𝐴 + 𝑏. 𝑃𝑇)(cos(𝐿𝐴) + 𝑏. 𝑃𝑇) − 1.49𝑒tanh(𝐿𝐴+cos(𝑃𝑇))

+ 0.2 cos(𝑃𝑇) (3.9𝐿 − sin(𝐿))

− 0.2𝑒sin(𝐿)(0.25𝑏 + tanh(𝑃𝑇))
+ 0.08𝐿𝐴(𝐿 + 𝑃𝑇 + 6.47) + 3.41 

 

Table 7 Error indices for training dataset 

Algori-

thm 

𝑅2 RMSE MAPE 

𝑃𝑢 𝑃𝑓 Δ𝑢 Δ𝑓 𝑃𝑢 𝑃𝑓 Δ𝑢 Δ𝑓 𝑃𝑢 𝑃𝑓 Δ𝑢 Δ𝑓 

SVR 0.982 0.989 0.849 0.866 9.630 7.383 17.465 22.458 0.0335 0.0286 0.1332 0.0935 

RVM 0.978 0.993 0.802 0.813 10.388 5.763 19.215 25.863 0.0333 0.024 0.1607 0.1168 

MPMR 0.990 0.997 0.932 0.945 7.096 3.824 11.209 14.039 0.0217 0.0161 0.0854 0.0666 

MGGP 0.982 0.994 0.933 0.897 9.424 5.216 11.148 19.158 0.0279 0.0231 0.0832 0.0798 

 

Table 8 Error indices for testing dataset 

Algori-

thm 

𝑅2 RMSE MAPE 

𝑃𝑢 𝑃𝑓 Δ𝑢 Δ𝑓 𝑃𝑢 𝑃𝑓 Δ𝑢 Δ𝑓 𝑃𝑢 𝑃𝑓 Δ𝑢 Δ𝑓 

SVR 0.926 0.987 0.811 0.691 16.794 6.395 17.350 29.662 0.047 0.025 0.1598 0.1313 

RVM 0.938 0.992 0.750 0.789 15.632 5.135 19.640 24.569 0.0507 0.0237 0.1875 0.1006 

MPMR 0.910 0.991 0.846 0.831 18.390 5.547 15.723 22.509 0.0459 0.0258 0.1298 0.1093 

MGGP 0.946 0.995 0.780 0.745 14.342 4.149 18.399 27.479 0.0418 0.0202 0.1552 0.1294 

 

 

different models are compared with Finite Element Method 

(FEM) results in Figs. 14 and 15 for training and testing 

datasets, respectively. 
 

 

7. Discussion and inferences 
 

In this section, the error indices are defined in order to 

quantify the accuracy of the algorithms, followed by 

discussion and inferences drawn. 
 

7.1 Error indices 
 

In order to quantify the performance of various machine 

learning algorithms, following error indices are defined: 

i. Coefficient of determination (R2) 

𝑅2 =
∑ (𝑦𝑖 − �̅�)

2(𝑥𝑖 − �̅�)
2𝑛

𝑖=1

∑ (𝑥𝑖 − �̅�)
𝑛
𝑖=1 (𝑦𝑖 − �̅�)

 (19) 

ii. Root mean square of percentage error (RMSE) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)

2

𝑛

𝑖=1

 (20) 

iii. Mean absolute percentage error (MAPE) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝑥𝑖 − 𝑦𝑖
𝑦𝑖

|

𝑛

𝑖=1

 (21) 
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where y, x are the FEM and predicted values. 

The R2, RMSE and MAPE evaluated are shown in 

Tables 7 and 8.  
 

7.2 Discussion 
 

Based on the values of error indices, in general all the 

four methods are found to perform well for the response 

prediction of the LSCC beam. In the training phase, the  

 

 
 

values of the RMSE and MAPE for (𝑃𝑢, 𝑃𝑓 , Δ𝑓) are found to 

be least for MPMR. In case of Δ𝑢, RMSE and MAPE are 

found to be least for MGGP. Similarly, the R2 values are 

found to be highest for MPMR in case of (𝑃𝑢 , 𝑃𝑓 , Δ𝑓) and 

MGGP in case of Δ𝑢. In the testing phase, the values of 

RMSE and MAPE are found to be least for MGGP for 

predicting of (𝑃𝑢, 𝑃𝑓) and MPMR for predicting (Δ𝑢 , Δ𝑓). 

The R2 values are found to be on the higher side for MGGP 

in case of (𝑃𝑢 , 𝑃𝑓) and MPMR in case of(Δ𝑢 , Δ𝑓). Some  

 

Fig. 14 Comparison of FEM and predicted responses for training dataset 

 

Fig. 15 Comparison of FEM and predicted responses for testing dataset 

0 5 10 15 20 25 30 35
0

100

200

300

400

Training dataset

P
u
 (

k
N

)

SVR

0 5 10 15 20 25 30 35
0

100

200

300

400

Training dataset

P
f (

k
N

)

SVR

0 5 10 15 20 25 30 35
0

100

200

300

Training dataset


u
 (

m
m

)

SVR

0 5 10 15 20 25 30 35
0

100

200

300

400

Training dataset


f (

m
m

)

SVR

0 5 10 15 20 25 30 35
0

100

200

300

400

Training dataset

P
u
 (

k
N

)

RVM

0 5 10 15 20 25 30 35
0

100

200

300

400

Training dataset

P
f (

k
N

)

RVM

0 5 10 15 20 25 30 35
0

100

200

300

Training dataset


u
 (

m
m

)

RVM

0 5 10 15 20 25 30 35
0

100

200

300

400

Training dataset


f (

m
m

)

RVM

0 5 10 15 20 25 30 35
0

100

200

300

400

Training dataset

P
u
 (

k
N

)

MPMR

0 5 10 15 20 25 30 35
0

100

200

300

400

Training dataset

P
f (

k
N

)

MPMR

0 5 10 15 20 25 30 35
0

100

200

300

Training dataset


u
 (

m
m

)

MPMR

0 5 10 15 20 25 30 35
0

100

200

300

400

Training dataset


f (

m
m

)

MPMR

0 5 10 15 20 25 30 35
0

100

200

300

400

500

Training dataset

P
u
 (

k
N

)

MGGP

0 5 10 15 20 25 30 35
0

100

200

300

400

Training dataset

P
f (

k
N

)

MGGP

0 5 10 15 20 25 30 35
0

100

200

300

Training dataset


u
 (

m
m

)

MGGP

0 5 10 15 20 25 30 35
0

100

200

300

400

Training dataset


f (

m
m

)

MGGP

 

 

FEM Predicted

0 5 10 15 20
0

100

200

300

400

Testing dataset

P
u
 (

k
N

)

SVR

0 5 10 15 20
0

100

200

300

400

Testing dataset

P
f (

k
N

)

SVR

0 5 10 15 20
0

50

100

150

200

Testing dataset


u
 (

m
m

)

SVR

0 5 10 15 20
0

100

200

300

Testing dataset


f (

m
m

)

SVR

0 5 10 15 20
0

100

200

300

400

Testing dataset

P
u
 (

k
N

)

RVM

0 5 10 15 20
0

100

200

300

400

Testing dataset

P
f (

k
N

)

RVM

0 5 10 15 20
0

50

100

150

200

Testing dataset


u
 (

m
m

)

RVM

0 5 10 15 20
0

100

200

300

Testing dataset


f (

m
m

)

RVM

0 5 10 15 20
0

100

200

300

400

Testing dataset

P
u
 (

k
N

)

MPMR

0 5 10 15 20
0

100

200

300

400

Testing dataset

P
f (

k
N

)

MPMR

0 5 10 15 20
0

50

100

150

200

Testing dataset


u
 (

m
m

)

MPMR

0 5 10 15 20
0

100

200

300

Testing dataset


f (

m
m

)

MPMR

0 5 10 15 20
0

100

200

300

400

Testing dataset

P
u
 (

k
N

)

MGGP

0 5 10 15 20
0

100

200

300

400

Testing dataset

P
f (

k
N

)

MGGP

0 5 10 15 20
0

50

100

150

200

Testing dataset


u
 (

m
m

)

MGGP

0 5 10 15 20
0

100

200

300

Testing dataset


f (

m
m

)

MGGP

 

 

FEM Predicted

407



 

Thirumalaiselvi, A., Mohit Verma, Anandavalli, N. and Rajasankar, J. 

 

 

Fig. 16 Comparison between models in terms of error 

indices for training and testing data 

 

 

model tends to over fit the training data and shows good 

performance in the training phase. Therefore, the 

conclusions in the present study are drawn from the error 

indices values in the testing phase. Based on the values of 

error indices obtained in the testing phase, it is suggested to 

use MGGP for predicting ( 𝑃𝑢 , 𝑃𝑓 ) and MPMR for 

predicting (Δ𝑢 , Δ𝑓). 
 

7.3 Inferences 
 

Following inferences are drawn from the present study:  

a. Principle-SVR works on the principle of structural 

risk minimization (SVR) which minimizes upper bound on 

the expected risk. RVM is identical to SVR in functional 

form. RVM assumes sparse distribution of the weights. 

MPMR works on the principle of maximization of the 

minimum probability of the outputs within specified bounds 

of the true regression function. MGGP uses to symbolic 

regression based on GP.  

b. Uniqueness of the solution-SVR, RVM and MPMR 

solves a convex optimization problem. Therefore, the 

solution obtained is always unique and global minimum. 

MGGP does not provide unique solution. The solution 

corresponds to the local minimum. 

c. Computational efficiency-RVM provides sparse 

models with fewer relevance vectors. This makes the 

interpretation lesser computationally intensive. However, a 

nonlinear optimization is carried out in the training phase of 

RVM which makes it unsuitable for large data.  

d. Probabilistic nature-Results obtained from SVR and 

MGGP are not probabilistic in nature. MPMR and RVM 

incorporate the probabilistic nature of the outputs.  

 

 

8. Conclusions 
 

The response evaluation capability of four different 

machine learning algorithms, viz., Support Vector 

Regression (SVR), Minimax Probability Machine 

Regression (MPMR) Relevance Vector Machine (RVM) 

and Multigene Genetic Programming (MGGP), for the new 

type of laced steel-concrete composite (LSCC) beam has 

been investigated in the present study. Finite Element (FE) 

model for the LSCC beam has been developed using solid-

shell-link approach. The FE model is then validated with 

experiments of LSCC subjected to monotonic loading. The 

FE simulations have been carried out over a range of 

sensitive parameters. The results obtained from the 

simulations have been used as the training and testing 

dataset for the machine learning algorithms. The 

performance of the different machine learning algorithms is 

assessed in terms of error indices. 

The following conclusions are drawn from the present 

investigations: 

i. FE analysis-In order to generate data for machine 

learning algorithms, FE analysis is carried out. Model based 

on FEM is found to provide better insight into realistic 

behaviour of LSCC beams (including yielding of cover 

plates, crushing of concrete). The results obtained from 

analysis of LSCC model subjected to monotonic loading 

compared well with those of experiments. The validated FE 

model is used further in the present study for the generation 

of wide range of dataset. 

ii. Application of machine learning algorithms-SVR, 

RVM, MPMR and MGGP are compared in terms error 

indices. MGGP is found to perform well for the prediction 

of the ultimate and failure loads in terms of R2, RMSE and 

MAPE. MPMR is found to perform better than other 

algorithms in the prediction of the displacement at the 

ultimate and failure load. However, error indices should not 

be given top priority towards selection of machine learning 

algorithm. The computational cost associated with the 

optimization and large storage space demand must be 

considered as a criteria for some of the practical 

applications. 

Finally, it should be noted that for the modeling of 

LSCC components FE analysis procedure is generally used. 

However, FE solutions are found to be computationally 

expensive for LSCC beams. Hence, towards the 

development of cost-efficient alternate models, different 

machine learning algorithms are adopted. Ductility which is 

the key parameter in blast and impact resistant design of 

structures can be obtained from the predicted values of 

displacements through machine learning algorithms. 
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