Structural Engineering and Mechanics, Vo!. 66, No. 2 (2018) 249-262
DOI: https://doi.org/10.12989/sem.2018.66.2.249
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Abstract. In this paper, reaction of functionally graded (FG) thick nanoplates resting on a viscoelastic foundation to a moving
nanoparticle/load is investigated. Nanoplate is assumed to be thick by using second order shear deformation theory and small-
scale effects are taken into account in the framework of Eringen’s nonlocal theory. Material properties are varied through the
thickness using FG models by having power-law, sigmoid and exponential functions for material changes. FG nanoplate is
assumed to be on a viscoelastic medium which is modeled using Kelvin-Voight viscoelastic model. Galerkin, state space and
fourth-order Runge-Kutta methods are employed to solve the governing equations. A comprehensive parametric study is
presetned to show the influence of different parameters on mechanical behavior of the system. It is shown that material variation
in conjunction with nonlocal term have a significant effect on the dynamic deformation of nanoplate which could be used in
comprehending and designing more efficient nanostructures. Moreover, it is shown that having a viscoelastic medium could play
an important role in decreasing these dynamic deformations. With respect to the fresh studies on moving atoms, molecules, cells,
nanocars, nanotrims and point loads on different nanosctructures using scanning tunneling microscopes (STM) and atomic force
microscopes (AFM), this study could be a step forward in understanding, predicting and controlling such kind of behaviors by
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showing the influence of the moving path, velocity etc. on dynamic reaction of the plate.
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1. Introduction

Nowadays composite materials are widely being used in
different engineering subjects in both macro and small-scale
structures. Functionally graded (FG) materials are a class of
composites with the ability of gradual variation of some
particular physical characteristics in at least one direction
from a material to another which could be defined in a
functional form. This practical property of FG materials led
to using them in different systems such as diodes, sensors,
heat conductors, electronic devices (EI-Wazery and El-
Desouky 2015), biomedical and orthopedic (Sola et al.
2016). Accordingly, in order to be able to design an
efficient system using FG plates, it is necessary to fully
understand the behavior of FG materials in different
mechanical conditions. Many researchers studied the
behavior of this class of composite materials in different
mechanical conditions (Xiong and Tian 2017, Beldjelili et
al. 2016, Bouderba et al. 2013, 2016, Bousahla et al. 2016,
Akbas 2017, Meftah et al. 2017, Hebali et al. 2016, Houari
2016, Uysal 2016, Sallai et al. 2015, Hashemi and Khaniki
2016a, Arefi 2015, Talha and Singh 2010, Chikh et al.
2017, Fahsi et al. 2017, Hamidi et al. 2015, Menasria et al.
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2017, Tounsi et al. 2013, Zidi et al. 2014).

Moreover, by the improvements done in engineer
designing, nanoplates and nanobeams became an important
element in many systems with application in nanosensors,
small magnetic memories, NEMS/MEMS devices,
oscillators, Metamaterials etc. Nano-sized FG materials
such as FG nanoplates benefits from both advantages of
material property variation and the practical behavior of
nanosize materials. Decreasing the dimensions into
micro/nano scales changes the mechanical behavior in
materials which could not be followed using classical
continuum theories. Such kind of extraordinary behavior in
nanoscale materials led to using nanosctructures in different
fields of mechanical, chemical and electronic studies.
Accordingly, to be able to describe and predict the behavior
of nano/micro scale materials, different theories (Mindlin
and Eshel 1968, Lomakin 1966, Eringen 2002) were
presented in which the Eringen's differential nonlocal
elastic theory is one of the most practical models among
them all. In this non-classical continuum theory, it is
assumed that stress at a point is a function of strains in all
points in the continuum model depending on a nonlocal
coefficient. Many researchers used non-classical elasticity
theories to describe the behaviors of small-scale structures
in static (Chaht et al. 2015, Rajaskaran and Khaniki 2017,
Barati et al. 2016, Nguyen et al. 2017) and dynamic
(Tahouneh 2017, Arani et al. 2017, Hashemi and Khaniki
2016b, Khaniki et al. 2017, Khaniki and Hashemi 2017a, b,
¢, d, Moradi-Dastjerdi and Momeni 2016, Bounouara et al.
2016, Khaniki 2018) conditions. Accordingly, nano-scale
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structures were also analyzed in different conditions using
nonlocal elastic theory (Bouafia et al. 2017, Bounouara et
al. 2016, Besseghier et al. 2017, Zemri et al. 2015, Ahouel
et al. 2016, Mouffoki et al. 2017, Belkorissat et al. 2015,
Amar et al. 2017, Khetir et al. 2017, Chaht et al. 2015).
One of the most appearing dynamic conditions in which
small-scale plates and beams face with, is being under a
moving load or mass. By being able to use scanning
tunneling microscopes (STM) and atomic force
microscopes (AFM) to move atoms, molecules, cells,
nanocars, nanotrims, etc. on surfaces, it is essential to
understand the behavior of the underneath structure. For the
sake of understanding this type of mechanical behavior,
some studies modeled the moving mass/load on small-scale
structures. Kiani (2011a, b, 2013) investigated the reaction
of nanoplates with respect to moving nanoparticle.
Kirchhoff, Mindlin and higher order plate theories were
used to model the nanoplate and the boundaries were
assumed to be simply supported. Nanoparticle was assumed
to move with a constant velocity on a linear and circular
path. Using Laplace transform method, deformations were
achieved for different nonlocal parameters and timelines.
Bakhshi Khaniki and Hosseini-Hashemi (2017e) analyzed
the dynamic response of double layered orthotropic thin
plates under a moving nanoparticle. Each plate was
assumed to be under an inplane load and the nanoparticle
was assumed to move in linear and circular paths.
Governing equations were solved using a conjunction of
integral convolution and Laplace method. Shahsavari et al.
(2017) investigated the mechanical reaction of single
layered nanoplates under the moving concentrated load
coupled by a visco-Pasternak foundation in a hygro-thermal
environment. Shahsavari and Janghorban (2017) also
studied the time-dependent bending and shearing responses
of single layered nanoplates under a moving load. Nonlocal
elasticity theory, two-variable refined plate theory and
Hamilton's principle were used to reach the governing
equations and solved by using state-space and Navier
methods Ghorbanpour Arani et al. (2015) studied the
dynamic response of an embedded poly-vinylidene fluoride
(PVDF) nanoplates under a moving nanoparticle on an
arbitrary elliptical path. It was assumed that nanoplate was
on an elastic foundation and under biaxial loading.
Nanoplate was modeled after Kirchhoff plate theory and the
elastic medium was modeled by Pasternak foundation.
Based on Eringen’s nonlocal theory, energy method and
Hamilton’s principle, equations of motion were derived and
by using Galerkin method the closed-form solutions were
achieved. Nami and Janghorban (2015) studied the dynamic
analysis of isotropic nanoplates subjected to moving load.
The movement of load was assumed to be in a straight
simple line on x axis with constant velocity. Second order
shear deformation was used to reach the equations and it
were solved using state space method. Effects of aspect
ratio, nonlocal parameter and velocity parameter on
maximum deflection of nanoplate were studied. Hosseini
Hashemi and Bakhshi Khaniki (2017a, b) studied the
dynamic behavior of multi-layered micro/nanobeam
systems with respect to a moving nanoparticle. Coupling
between layers were modeled by Winkler theory for elastic
and Kelvin-Voigt theory for viscoelastic models and
moreover, nanobeams were modeled by Euler-Bernoulli
beam theory while nanoparticle was assumed to move in a
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Fig. 1 Schematic representation of FG nanoplate resting on
a viscoelastic foundation carrying a moving nanoparticle

straight line with constant velocity. Equations of motion
were solved using Galerkin and Laplace transform methods.
Analytical solutions were presented for low-layered
systems and numerical results were achieved for high-
layered ones. Also, effects of having a medium under the
model was studied. Parametric study was presented to show
the influence of the number of layers, viscoelastic coupling,
nonlocal parameter etc. on dynamic deflection of each
layer.

To the best knowledge of the authors, there have been
no studies done in order to comprehend the dynamic
behavior of FG nanoplates with or without foundation
under a moving load or nanoparticle. Previous studies on
material varying structures have shown that using higher
order shear deformation theories could lead to more
accurate results (Abualnour et al. 2018, Meziane et al.
2014, Yahia et al. 2015, Belabed et al. 2014, Bellifa et al.
2016, Bennoun et al. 2016, Bourada et al. 2015, Draiche et
al. 2016, Hebali et al. 2014, Mahi and Tounsi 2015, Saidi et
al. 2016). In this study, by using second order shear
deformation theory, dynamic response of different types of
FG nanoplates resting on viscoelastic foundation is
investigated while the nanoparticle/load passes through. An
arbitrary linear path is used to model the nanoparticles
movement and furthermore, a comprehensive parametric
study is presented to fully understand the effects of different
designing and natural parameters on dynamic behavior of
the system. Accordingly, Fig. 1 shows a schematic
representation of FG nanoplates resting on a viscoelastic
medium with a nanoparticle moving on the top surface.
Movement of this nanoparticle which could be an atom,
molecule, nanocar, nanotrim or a concentrated force could
be done using STM and AFM systems.

2. Problem formulations

By using second order shear deformation theory,
displacement terms in each direction could be written as
(Panyatong et al. 2016)

u=u’+x0 + X0,
V=V X + X, (1)
wW=w(X,X,)

In which u° and v° are the inplane displacements of
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middle plane in x; and x, directions, ¢@,.¢,.y; and
1, are the rotations of transverse normal to x; and X, axis
and w describes the transverse deflection of nanoplate.
Strain equations due to Eq. (1) could be presented a

&y = gfl + ZK1°1 +7° Kll1
_ou. 0 200
o 0% 2
&y, = &9y + 2K, + 27K,
VLo 0y,
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_.0 1 ow
Vs = Va3t 202 —‘//1"'&"'22'//2

2

Vs =Y+ =P +%+22¢2
2

in which &;, &, are the normal strains in x; and x,
directions and y;,, Vi3 and Yy,3 are the shear strain
parameters. Equation of motion of plates with respect to
second order shear deformation theory is given as
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where g is the applied external force due to the moving
load/nanoparticles and the reaction of viscoelastic medium,
I; to Iy are the mass inertia factors and N;, M;, L;, Q;
and R; are the stress resultants defined as

“

where o is the stress parameter. In order to add the
nonlocal effects of nanoscale plates, Eringen's nonlocal
theory is presented as (Eringen 2002)

(1—,uV2)0':Cijk,g 5)

in which Cjj; is the fourth-order elasticity tensor, u is the
material constant which is defined as (eyay/l) where ag
and [ are internal and external characteristic size and e, is
a constant number depending on the material. Furthermore,
by using the principle of virtual displacements and Eq. (2)
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to Eq. (5), equations of motion of the nonlocal second order
shear deformation theory will be derived as

(6)

(7

®)

(10)

(11)

(12)
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where A;;, By, Di;, D;; and Ej; are the material constants
defined as

h
[ ox! 1o s
I, 7£p13 dx;, i=12...5
1 3
{N.M,_.L}= Ia', {1.33,:(3:}0{:(3. I=%X.%,.5%, (13)
‘T‘ 2
{Q:R}= j;crl {1.13.13:}0'13. = X%, X%,
3

Material parameters are computed with respect to the
material variation function. In this study, three kinds of FG
materials will be discussed which includes sigmoid,
exponential and power law material variation types and
accordingly, the material parameters are computed for each
model separately.

2.1 Sigmoid material variation model

Material properties for sigmoid FG materials are
assumed to be as

(14)
E(x)=(E —E,,)[l—%[h_;xiJ }-%—E,, 0<x s%
1( h+2x, ho
plx)=(p fp,,)[z[. P J }pb —SEx <0
: (15)
p(x ):[pr_pb)[l_%{h_h_x"] }+pa 0<x sg

where E and p are Young’s modulus and density terms of
materials. Using Eq. (16) and Eq. (17), Aq,to E;; will be
calculated as
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2.2 Exponential material variation model

In the same way, material properties for exponential FG
materials are
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in which @ is the exponential model index and the material
parameters A;qto Ez; are presented as
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2.3 Power law material variation model

For power law functionally graded nanoplates, material
properties are
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where P is the power-law model index and the parameters
Aqqto Es3 are calculated as
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3. Solution procedure

By using Galerkin’s method, deflections in nanoplate
could be defined in mode shapes and accordingly, by
having simply supported boundary condition for all edges,
transverse deflections are expressed as
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where U, V, W, ®&;, ¥; are the deflection parameters
which only depends on the time variable t and n; and m;
are the number of terms used to model the expansion series
in which in this study for having a higher accuracy it is
assumed to be 30. The external force applied on the plate is
written as q = q, — q,, Where q,, is the applied force due
to the moving nanoparticle while q,, is the viscoelastic
medium reaction force which could be defined using Dirac
terms in series form as

Gy =m,95(% =%, )5(x, -y, )=

am,g &

oL > > sin(ax, )sin(ax, )sin( By, )sin(Bx,)
x =y J=li=l (37)
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Zi Ky W (t)sin (ax, )sin(Bx, )+C,W (t)sin (ax,)sin(8x,)
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in which m,, x, and y, are the mass and instance
position of nanoparticle, L, and L, are the length of the
nanoplate in x; and x, directions and Ky, and Cj are
the stiffness and damping parameters of Kelvin-Voigt
viscoelastic foundation. By having mass inertia and
material constants for different type of FG nanoplates, Eq.
(6) to Eq. (12) could be written in matrix form by using Eq.
(36) and Eq. (37) as
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in which [A;;], [§;;] and [k;;] are the coefficient matrices
and {Fi ]-} is the force vector defined as

, 001, 01, O
01, 0 0 1, 0 I
0 01l 00 0O
Ay =(+u@+p)[1, 0 0 1; 0 1, 0 (39)
01, 00 I, 0 I,
R o1, 0 I,
0 1, 0 1, I
00 0 0000
00 0 0000
0 0 —(+u@+p*C, 0 0 0 0
¢ =|0 0 0 0000 (40)
00 0 0000
00 0 0000
00 0 0000

Ky = Ae? + AR Ky, = Ao+ Agap, Ky =
Ky, = Bya? + By B, x5 = Baf+Bap,

K5 = Dpya® + D B2, Ky, = a8 + Dygt B,

Ky = AzzﬂZ + Aasazv Ky =0,

Ky, = Bpaf+Byaf, ks = Bzzﬁz + Besazv

Ko = Dypaff + Dgsafs, k7 = Dzzﬁz + DseaZ'

Kgy = (As® + Ay ) — L+ u(a® + ) K, (41)
Ky = A, Kgs = Ay B, Ky = 2Bz,

Ky =2B, B, x4y = 110‘2 + Dseﬂz + A,

K5 = Dypafi+ Dgsafs, k45 = 110‘2 + Eesﬁz +2Bg,

Ky = Eafi+Eqaf, kes = D, 82 + Dgga® + Ay,

K = Epaff + Eqqaf, kg, = B, f° + Egga® +2B,,,

Kes = Fut” + Fy B + 4Dy, 1, = Fpaff + FsaB,

2 2
Ky =Fp 7 + Fyar” +4D,,.

|
=

0

0

4myg 1+ pu(a® + B?))sin(a x ) sin(By.)
Fi=1 Ly ’ ’ (42)
0
0
0

Using state space method, equations of motions could
be re written as

x=Ax+BU (43)
where y is the state vector defined as
n={UVWOao v oV,
N | (44)
Uvw o ¥ o,

and A and B are the state and input matrices written as

A0
—Lﬁ( Hj (45)

B={0 A'F} (46)

in order to continue the process of solving the problem,
fourth-order Runge-Kutta (RK4) method for the system of
ODE:s is used. RK4 method is a numerical solution which is
used to solve the state space equations with fixed size time
steps. This method describes the solving process as

w=/si(tx)

4 i,j=1.14 47

n+1Zi:nZi+ZCanp ( )
p=1

in which ™ and "' describes the steps that variables are

presented and ¢, and K, are the RK4 coefficients and

slopes defined as

¢ =7/6, "K;=/(" an)

c,=7/3, "Ky :fl(nt"'g’ nZJ +%HK1ij
[ (48)

T a

n n. Tﬂ
c,=71/3, "K; =/, t+2, Zj+§ sz)

Co=7/6, "Ky=/("t+7, "7, +7"Ky;)
where K, is the increment slope at the beginning of the
interval which is also known as Euler method’s slope,
K, and K; are the slopes at the midpoint and K, is the
slope at the end of the interval. With respect to the
formulation of this study, f; is also defined as
/i =Ax+Bu i, j=1..14 (49)

In this case the nanoparticle is assumed to move linearly
on the FG nanoplate with a constant velocity, instance
position of the moving mass according to the time domain
could be written in non-dimensional form as a function of
time as
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Fig. 2 Non-dimensional natural frequency parameter with
respect to different nonlocal terms (a) Exponential FGM
model (b) Sigmoid FGM model (c¢) Power-law FGM model

V cos(0)
= ¢
LX
Vv sin(6’)t (50)
P Ly

Table 1 Non-dimensional maximum transverse deflection
versus velocity of thin isotropic square plate

4 15.6 31.2 62.4 93.6 124.8 156 250

T 0.125 0.25 0.5 0.75 1 1.25 2

Present study ~ 1.0357 1.1326 1.2614 1.5824 1.7075 1.7206 1.5487

Ghafoori and
Asghari (2010)
Ghafoori and
Asghari (2010)
Taheri and Ting

1.048 133 1.275 1573 1.702 1714 1.539

1.063 1412 1.201 1.643 1.743 1.737 1.556

(1989) 1.049 1121 1.266 - 1.703 - 1.540
Taheri (1987) 1.042 1.082 1.266 - 1.662 - 1.518
Yoshida and
Weaver (1971) 1.055 1112 1.252 - 17 - 1.54
Filho (1966) - i1 1.24 - 1.68 - 1.54
Kadivar and
Mohebpour 1.052 1.133 1.265 1.571 1.692 1.717 1.535
(1998)
Kadivar and
Mohebpour 1.063 1.151 1.281 1.586 1.704 1727 1.524
(1998)
Kadivar and
Mohebpour 1.063 1.151 1.281 1.585 1.704 1.727 1.542
(1998)
Meirovitch
(1967) 1.025 1121 1.258 1.572 1.701 1.719 1.548

Esen (2013) 1.045 1.350 1.273 1572 1.704 1716 1.542

Table 2 Non-dimensional natural frequency parameter for
sigmoid square FG nanoplate on elastic foundation

§=05 S$=2

K 0 10 50 100 0 10 50 100

O 0.30837 0.30946 0.31765 0.32632 0.27987 0.28136 0.28932 0.29921

Panyatong
et al. (2016) 0.3086 0.3104 03178 0.3268 0.2806 0.2827  0.2907  0.3005

o 0.61102 0.61338 0.61754 0.62245 0.56195 0.56298 0.56712 0.57215

Panvalong - 6139 06148 06184 06229 05624 05634 05673 05722
et al. (2016)

O 0.81914 0.81845 0.82241 0.82483 0.75476 0.75246 0.75584 0.76193

Panyatong
etal. (2016) 0.8193  0.8200 0.8227 0.8260 0.7549  0.7557 0.7585 0.7621

Table 3 Non-dimensional natural frequency parameter for
exponential square FG nanoplate on elastic foundation

=01 P=2

K 0 10 50 100 0 10 50 100

wyq 0.17254 0.17691 0.18989 0.20047 0.19154 0.19578 0.20989 0.22516

Panyatong
etal. (2016) 0.1753  0.1786  0.1909  0.2053  0.1937 0.1972 0.2107  0.2264

wyq 0.34985 0.35012 0.35489 0.36542 0.38321 0.38489 0.39025 0.39978

Panyatong
etal. (2016) 0.3515 0.3531 0.3594 0.3670 0.3845 0.3862 0.3930  0.4014

[ 0.47013 0.47058 0.47651 0.48089 0.50995 0.51123 0.51569 0.52357

Panyalong g 4714 04726 04772 04829 05122 05134 05185 05248
et al. (2016)

where V is the velocity of the nanoparticle and 6 is the
angle of the path with x axis.

4. Results and discussion

In this study, dynamic response of FG nanoplates resting
on a viscoelastic medium carrying a moving nanoparticle is
obtained for different paths and different type of FG
materials. In order to verify the current methodology,
different types of verifications are done. First, the plate is
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Table 4 Non-dimensional natural frequency parameter for
power law square FG nanoplate on elastic foundation

Table 5 Non-dimensional maximum transverse deflection
versus nonlocal parameter for Power law FG nanoplate

P=05 P=2 Maximum non-dimensional deformation parameter (W, /Ws.)
K 0 10 50 100 0 10 50 100 t P u=0 p=01 u=03 u=05 p=07
[ 0.32613 0.32097 0.33469 0.34267 0.26628 0.26912 0.27813 0.28786 0 0.024657 0.177861 0.476060 0.760532 1.032961
Panyat
etZT.)/(aZ(.;II%) 03282 03299 03365 03445 02671 02694 02783  0.2890 05 0037998 0.265760 0.701308 1106671 1486675
2% 0.65231 0.65321 0.65589 0.66054 0.52794 0.52874 0.53422 0.53947 02T 1 0.051570 0.34946 0.909142 1.418392 1.886109
Panyat
etzrl'}’?zgqg) 0.6547 0.6555 0.6587 0.6627 0.5305 05316 0.5360 0.5415 2 0.071090 0.469573 1199588 1.844862 2421887
2% 0.87525 0.87565 0.87781 0.87994 0.70688 0.70798 0.71189 0.71584 4 0.083751 0.566478 1.435325 2.189563 2.849409
P t
et;’l‘}’(azg’l‘%) 08752 08758 08782 08812 07081 07089 07121 0.7162 0 0.050232 0.190047 0.456798 0.704200 0.934398
0.5 0.079768 0.295650 0.690914 1.044113 1.361192
: . 0.111874 0.403557 0.919970 1.362943 1.747874
assumed to be at macro scale by neglecting the nonlocal 04T 1
terms. Material properties are also assumed to be isotropic 2 0157873 0553947 1223307 1768592 2223780
by defining the same properties for the first and second 4 0180806  0.637949 1303710 1094534  2.485719
mater}a}ls Qf FG plate. Resu!ts are achieved for different 0 omIa2 0199495 085105 075763 1015003
velocities in different timelines and compared to those
: : : : : : : 0.5 0.081991 0.310268 0.741264 1.141038 1.513732
obtained in previous literatures which is presented in Table
1. Accordingly’ lt can be seen that results are ln a good 06T 1 0.115311 0.425731 0.997634 1.512692 1.980989
agreement with previous works on macro-scale problems. 2 0163365 0580174 1347467 2005063  2.582080
Also, in order to verify the n‘late.rlal Varlatlgn modeling, 4 0187366 0682009 1550197 2296630 2.943007
natural frequency parameter which is defined in Panyatong
: . : . 0 0.026392 0.184779 0.499413 0.806146 1.104959
et al. (2016) is calculated for different power law, sigmoid
and exponential functionally graded plates and the results 0.5 0040970 0278145 0745878  1.195459 1626571
are compared to those presented in previous studies. Table 2 08T 1 0056092 0369212 0980685 1560388  2.107224
presents it for sigmoid functionally graded mate.rlals, tablF: 3 5 0078149 0501765 1316932 2071827 2766875
denotes the frequency parameters for exponentially varying
) ) . . 4 0092102 0605736 1581338 2467668  3.267397
material properties for different exponential parameters and
furthermore, table 4 presents it for power law FG materials 0 0000001 0000026 0000893 0001522 0.003750
for different power law indexes. Verification is also done 0.5 0000004 0000112 0001372  0.005066  0.011879
for different nor}local parameters and the results are r 1 0000013 0000305 0003311 0011404  0.025615
compared to previous studies (Panyatong ef al. 2016, Jung s ooooss  0ow0ms  000lr 0025860 0055462
and Hn 2013, Salehipour et al. 2015, Ansari et al. 2015) and ' ' ' ' '
4 0000056 0001187 0012131 0039542  0.084703

respectively presented in Fig. 2 which are in a great
agreement.

After verifying the current formulation, to understand
the effects of different material, motion and scale
parameters, parametric study is presented. Material of the
FG nanoplate is assumed to vary from aluminum (Al) to
alumina (Al,03), therefore for the power law and sigmoid
varying materials, properties are defined as Ejpo, =
380Gpa , Ey =70Gpa , pu,o, = 3.800 kg/m® |
Pary0, =2.707 kg/m3, 9 = 0.3 and for exponential model
of FG materials E, = 70Gpa, py =2.702 kg/m3, 9 =
0.3. Other geometrical parameters are assumed to be L, =
L, =10nm for the lengths and h =2nm for the
thickness of nanoplate. Moreover, for the viscoelastic
foundation, elastic and damping parameters are defined as

4
c= CwLx/Ail =10
Deflection of FG nanoplate is presented in nondimensional
form by dividing the deflection on the maximum static
deflection of isotropic plate with a concentrated mass in
middle of the plane which is written as

. oMry Ny . M . Nr
SIn(——)sIn(——)sIn(——X;)sIin(—X
g o SCSNCDSICEE XS x,)

R G

4
k= Kol ! Ay =100 and

Accordingly, the number of terms in the series
expansions in Eq. (36), Eq. (37) and Eq. (51) is chosen as
n; =m; = 30 in which convergence of the results are
seen.

4.1 Influence of the material variation on the dynamic
deformation

As mentioned before, three types of material variation
for FG model are proposed and formulated. In this section,
for all three kinds of FGM, effect of material variation on
the maximum dynamic deflection of nanoplate is calculated
for different nonlocal parameters. Dynamic deflection is
proposed in non-dimensional form by diving it on the
maximum static deflections of isotropic aluminum thin
plate under a static load in the middle. In Table 5, this
influence is obtained for power law FG nanoplate with
different power law index and nonlocal parameter.
Viscoelastic foundation is used and the stiffness and
damping parameters are defined as k = 100 and c = 10.

Accordingly, it can be seen that for all the power index
parameters, increasing the nonlocal parameter leads to a
higher maximum deflection in FG nanoplates and
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Table 6 Non-dimensional maximum transverse deflection
versus nonlocal parameter for Sigmoid FG nanoplate

Maximum non-dimensional deformation parameter (W, /Ws.)

t S u=0 n=01 n=203 u=05 n=07
0 0.041394 0.296976 0.782790 1.233655 1.652889

0.5 0.045622 0.319400 0.837191 1.313680 1.754463

02T 1 0.051569 0.349462 0.909155 1.418398 1.886111
2 0.061392 0.395034 1.015218 1.571140 2.074946

4 0.072336 0.441156 1.117954 1.715986 2.252147

0 0.084183 0.316233 0.739168 1.114708 1.449708

0.5 0.095444 0.352305 0.815000 1.220019 1577161

04T 1 0.111874 0.403559 0.919979 1.362920 1.747889
2 0.140128 0.488181 1.086286 1.582990 2.004020

4 0.173157 0.582088 1.260955 1.805748 2.255031

0 0.086534 0.332633 0.796440 1.225699 1.625947

0.5 0.098219 0.370942 0.880286 1.346506 1.776645

06T 1 0.115311 0.425733 0.997655 1.512692 1.980976
2 0.144822 0.517078 1.186752 1.773420 2.294027

4 0.179527 0.619982 1.390315 2.043666 2.608956

0 0.044539 0.310575 0.832222 1.330955 1.806409

0.5 0.049295 0.335232 0.895507 1.428992 1.935476

08T 1 0.056092 0.369212 0.980734 1.560314 2.107223
2 0.067500 0.422133 1.111760 1.759508 2.364574

4 0.080617 0.477072 1.246059 1.960046 2.619564

0 0.000005 0.000156 0.001743 0.006458 0.015299

0.5 0.000008 0.000187 0.002297 0.008283 0.019221

T 1 0.000013 0.000305 0.003308 0.011403 0.025623
2 0.000028 0.000603 0.005672 0.017928 0.038236

4 0.000054 0.001138 0.009636 0.027470 0.055110

moreover, it is obtained that increasing the power law
parameter (P) increases the deflection in FG nanoplate in all
timelines for all nonlocal parameters.

Such behavior was expected from these kind of FG
materials because as shown in Table 4 and Fig 2(c),
increasing the power law parameter caused a reduction in
natural frequency parameter which means the plate shows
more flexibility in different loading situations. These
deflection parameters are presented in different timelines
from the beginning of the movement until the nanoparticle
leaves the system. For sigmoid varying material properties,
same analysis has been done. As well as the power law FG
nanoplates, sigmoid varying results are obtained in Table 6.
Like before increasing the sigmoid varying parameter (S)
increases the maximum deflection parameter which was
also predicted due to the behavior of natural frequency
parameter in Fig. 2(b) and Table 2. Also, increasing the
nonlocal parameter causes a higher deflection in sigmoid
varying FG nanoplates. Results are fully presented in Table
6 for different timelines, sigmoid and nonlocal parameters.
Likewise, same analysis has been done for exponentially
varying properties and results are presented in Table 7.

Table 7 Non-dimensional maximum transverse deflection
versus nonlocal parameter for Exponential varying material
properties in FG nanoplate

Maximum non-dimensional deformation parameter (W, /Ws.)

t ] u=0 u=01 n=03 u=05 n=07
0.1 0.128982 0.901107 2.211706 3.265513 4.124142

0.5 0.129024 0.901235 2.211870 3.265777 4.124508

02T 1 0.129157 0.901728 2.212691 3.266712 4.125568
2 0.129689 0.903463 2.215830 3.270482 4.129608

4 0.131901 0.910565 2.228317 3.285519 4.145600

0.1 0.259692 0.920468 1.936144 2.681779 3.255042

0.5 0.259838 0.920849 1.936678 2.682495 3.255768

04T 1 0.260295 0.921998 1.938598 2.684681 3.258073
2 0.262138 0.926689 1.946150 2.693413 3.267234

4 0.269747 0.945892 1.976936 2.728776 3.304343

0.1 0.270340 0.998915 2.227365 3.228776 4.072776

0.5 0.270495 0.999364 2.228083 3.229594 4.073733

06T 1 0.270980 1.000661 2.230343 3.232263 4.076492
2 0.272941 1.005871 2.239306 3.242880 4.087768

4 0.281069 1.027459 2.276035 3.286033 4.133276

0.1 0.142517 0.972289 2.472169 3.741163 4.806577

0.5 0.142571 0.972510 2.472620 3.741707 4.807284

08T 1 0.142741 0.973059 2.473898 3.743519 4.809322
2 0.143424 0.975488 2.479296 3.750700 4.817689

4 0.146224 0.985281 2.500651 3.779786 4.851237

0.1 0.000158 0.003330 0.037961 0.120313 0.245702

0.5 0.000157 0.003323 0.037981 0.120392 0.245791

T 1 0.000159 0.003326 0.038080 0.120574 0.246110
2 0.000164 0.003364 0.038413 0.121323 0.247319

4 0.000179 0.003625 0.039752 0.124456 0.252305

4.2 Influence of the viscoelastic foundation on the
dynamic behavior

In this study, it is assumed that FG nanoplate is resting
on a viscoelastic medium which is modeled after Kelvin-
Voigt theory. In order to understand the effects of this
foundation on decreasing the deflection in the plate and
avoiding the resonance, different amounts are assumed for
both stiffness and damping parameters of foundation. As
shown in Fig. 3(a), by having constant amount for different
geometrical and natural properties of exponential FGM
nanoplate, effects of stiffness parameters are obtained for
different nonlocal parameters. In the same way, these
effects on maximum non-dimensional dynamic deformation
of sigmoid and power law FGM modeled nanoplates are
obtained in Fig. 3(b) and Fig. 3(c). It can be seen that
increasing the coupling parameter will decrease the
deflections and it has its most effect for higher nonlocal
parameters for all three FG nanoplate models. Damping
parameter is also studied for all three FG nanoplate models
and the effects are presented in Fig. 4. Increasing the
damping parameter also leads to lower deformations.
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Maximum Deformation Factor, Exponential FGM Nanoplate
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Fig. 3 Maximum non-dimensional forced deformation with
respect to stiffness coupling term ‘k’ for different nonlocal
parameters (a) Exponential FGM model (b) Sigmoid FGM
model (c) Power-law FGM model

Deformation parameter shows more sensitivity to damping
variation compared to stiffness parameter.

4.3 Influence of the velocity parameter on the
dynamic behavior

The velocity of the moving nanoparticle is one of the

o —— T T T T
R SN gt R L
~~*-~.__~ O Y
0.951~ -.~"$~~ 4
s
0.9+ Seeee -
o 0.85F k1
n
Q
g osr B
2
\é 0.75 B!
; 0.7+ -
--0--u=0
0.65 . o n=0.1 -
p=0.3
0.6 u=05 i
n=0.7
0.55 r r r r r r r r r
0 10 20 30 40 50 60 70 80 90 100
Viscoelastic Coupling Parameter (c)
(a)
Maximum Deformation Factor, Sigmoid FGM Nanoplate
R, e R e S
SSee——_ . TTTTEEEEEEEe- ~
R S
0.95 "*"~~~~---- 1
a4
o 09 4
n
o
2 085f 8
; 0.8+ -
-=0-- =0
4= =01
0.75} p=03 i
n=05
n=07
0.7 T T r r r r r r r
0 10 20 30 40 50 60 70 80 90 100
Viscoelastic Coupling Parameter (c)
Maximum Deformation Factor, Power-Law FGM Nanoplate
le~fe=fezcgy & T —" r r
-""L-___ VT 6 """"""""" €
-___#_\---.
0.95- B S b
T
0.9 bt

30 40 50 60 70 80 90 100
Viscoelastic Coupling Parameter (c)

(©)
Fig. 4 Maximum non-dimensional forced deformation with
respect to viscoelastic coupling term ‘¢’ for different
nonlocal parameters (a) Exponential FGM model (b)
Sigmoid FGM model (c) Power-law FGM model

most important parameters effecting the deflection in
nanoplate. Different velocity parameters are assumed for
moving nanoparticle while other parameters remained
constant. Fig. 5 shows these effects on non-dimensional
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Fig. 5 Maximum non-dimensional forced deformation with
respect to velocity of nanoparticle for different nonlocal
parameters (a) Exponential FGM model (b) Sigmoid FGM
model (c) Power-law FGM model

maximum deflection for power law, sigmoid and
exponential FG models of nanoplate while nanoparticle
passes through. It can be seen that increasing the velocity
parameter decreases the deformation in all models.
Deflection term is shown in a non-dimensional form by
dividing the results to the deflection without small scale
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effects (u = 0) and it shows its most sensitivity to velocity
variation from 5v, to 50v, and for higher velocity terms,
deflections merge to a specific amount.

4.4 Influence of the angle on the dynamic behavior

In order to obtain the influence of the path of the
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moving nanoparticle, the angle between the velocity vector
and the x axis is varied from 0 to 45 degrees and deflections
are achieved for different nonlocal parameter. By having the
same geometrical and natural properties as before, dynamic
deflection parameter is presented for FGM models in Fig. 6.

5. Conclusions

This paper presents three-dimensional dynamic behavior
of functionally graded nanoplates carrying a moving
nanoparticle/load. Second order shear deformation and
Eringen’s nonlocal theory are used to model the nanoplate.
Material variation is assumed to be through the thickness
using power law, sigmoid and exponential variation
functions. Moreover, nanoplate is assumed to be resting on
a viscoelastic medium which is modeled using Kelvin-
Voigt theory and nanoparticle is modeled as a concentrated
mass which passes through an arbitrary linear path.
Equations of motion are presented and solved using the
Galerkin, state space and fourth-order Runge-Kutta
methods and the schematic behavior of FG nanoplate in all
the three cases are presented. In order to clarify the effects
of different parameters, a comprehensive parametric study
is done by analyzing material variation methods, nonlocal
effects, stiffness and damping effects in viscoelastic
foundation, velocity and the moving path of nanoparticle
and its effects on dynamic behavior of FG nanoplate. It is
shown that adding material variation and nonlocal effects
changes the behavior of nanoplate and have a significant
effect on the dynamic deflections under a moving
nanoparticle.
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