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1. Introduction 
 

One of the most important goals of civil engineers is to 

reduce the response of the structures against dynamic loads 

like wind and earthquake (Bitaraf et al. 2010). Structural 

control in civil engineering has been proposed for more 

than four decades to improve the performance of the 

structures under earthquake excitation (Korkmaz 2011). 

An adaptive control system is a control system with 

adjustable parameters, including a mechanism for adjusting 

these parameters (Housner et al. 1997). The Simple 

Adaptive Control Method (SACM) is a direct control 

method (Ozbulut et al. 2011) proposed by Sobel et al. 

(1982) and developed by Barkana and Kaufman (1993). In 

recent years, many researchers have implemented this 

method to control the response of structures under 

earthquake excitation. Bitaraf et al. (2010) studied the 

application of SACM to control the response of buildings 

with MR dampers subjected to earthquake. Ozbulut et al. 

(2011) used SACM to control the response of base isolated 

structures against near-field earthquakes. Amini and 

Javanbakht (2014) used SACM to control seismically 

excited structures with MR dampers. Bitaraf and Hurlebaus  
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(2013) studied SACM to control a seismically excited 20-

story non-linear building. It should be noted that the 

abovementioned researchers used two-dimensional building 

models. 

SACM makes the controlled structure follow the 

behavior of a reference model. This method allows it to 

control structures with a lot of uncertainties (Bitaraf et al. 

2010). 

On the other hand, torsional motions have caused severe 

damages to asymmetric buildings in the past earthquakes 

(Amin Afshar and Amini 2012). Several researchers have 

studied the control of asymmetric buildings (Yoshida and 

Dyke 2005, Singh et al. 2002, Yoshida et al. 2003) but, they 

have used conventional linear equations of motion and they 

did not consider the non-linear inertial coupling terms in 

dynamic equations of motion. However, if these non-linear 

inertial coupling terms are considered, the building 

response may be quite different, and phenomena such as 

jumping, hysteresis and saturation may occur (Amin Afshar 

and Amini 2012). In this paper, the non-linear coupling 

terms in the dynamic equations of motion are considered 

and this type of non-linearity is called rotational (inertial) 

non-linearity.  

The purpose of this study is to inspect the effectiveness 

of SACM to control the response of asymmetric buildings 

with rotational non-linearity under seismic excitation. 

SACM is used in a manner that is appropriate for 

rotationally non-linear buildings. Furthermore, the 

performance of SACM is compared with Linear Quadratic 

Regulator (LQR) algorithm. Here, two numerical examples, 

a five-story building and a fifteen-story building are 
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presented. If rotational non-linearity is considered in the 

stated numerical examples, the response of the modeled 

buildings will be different from the conventional linear 

approach. Active Tuned Mass Damper (ATMD) is used to 

improve the performance of these buildings under 

earthquake excitation. 

 

 

2. Non-linear differential equations of motion 
 

As shown in Fig. 1, a single-story building with a rigid 

diaphragm is subjected to earthquake excitation in X and Y 

directions. The floor center of mass is represented by C.M., 

and C.R. denotes the center of stiffness of the story. As seen 

in Fig. 2, two coordinates systems are defined. The first 

coordinates system is the global XYZ, which is fixed on the 

ground, and the second coordinates system is the local 

rotary xyz, which is attached to the floor center of mass. 

Based on the Amini and Amin Afshar (2011) approach, the 

non-linear equations of motion in the local xyz coordinates 

system are as follows 
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In the above equations, ex is the eccentricity between the 

story center of mass and center of stiffness in x direction. 

Also, it is assumed that C.R. lies on the X axis. The 

parameter ex can be calculated by 

1
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j yj

j
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where kyj denotes the stiffness of the jth element resisting in 

Y direction and the parameter N represents the number of 

resisting elements in Y direction. 

In Eqs. (1)-(3), the parameter m is the total mass of the 

floor and r is the floor radius of gyration about the center of 

mass, 
gXu and 

gYu  are the earthquake accelerations in X 

and Y directions, ux and uy are displacements of the floor 

center of mass in the x and y directions, and θ is the 

torsional rotation of the floor about the z axis. Also, Kx and 

Ky are the sum of the story resisting elements stiffness in x 

and y directions. The parameter KθR is the torsional stiffness 

of the story about C.R., and can be calculated by 

2 2

1 1

( )
M N

R xj j yj j x

j j

K K y K x e
 

     
(5) 

where Kxj is the stiffness of the jth resisting element in X 

direction and the parameter M represents the number of 

resisting elements in X direction. Also, Cx, Cy and Cθ are 

damping coefficients. 

 

Fig. 1 Asymmetric plan of a single-story building; 

 structure elements (beams and columns) 
 

 

Fig. 2 Global (XYZ) and local (xyz) coordinates systems 

 

 

Now for a multi-story building, the equations of motion 

for the ith floor can be expressed as 

1 1 1 1 0i i i i i i i i i

i i i i i i i i i iM a C U K U C U K U         (6) 

The above equation is derived in the rotary xiyizi system 

of coordinates. As shown in Fig. 3, the xiyizi system of 

coordinates is located on the base of the building and it 

rotates about the zi axis by an angle θi. The variable θi is the 

total rotation of the ith floor about the zi axis. Also, as seen 

in Fig. 3, the XYZ system of coordinates is fixed on the 

ground. In Eq. (6), Mi represents the mass matrix of the ith 

floor, and can be expressed as the following 3×3 matrix 
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In the above formula, mi is the total mass of the ith floor 

and ri is the ith floor radius of gyration about the center of 

mass. Also, in Eq. (6), i

ia  denotes the total acceleration of 

the ith floor center of mass in the local xiyizi coordinates 

system, which is given by (Beer et al. 2013) 
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In above equation, 
i

xiu  and i

yiu  are displacements of 

the ith floor center of mass in xi and yi directions and θi is 

the torsional rotation of the ith floor about the zi axis (see 

Fig. 3); 
XgU  and 

YgU  are the ground translational 

accelerations in X and Y directions; 2 i

yi iu   and 2 i

xi iu   are 

known as Coriolis components of the acceleration; i

yi iu   

and 
i

xi iu   denote the tangential components of the 

acceleration; 
2i

xi iu   and 2i

yi iu   are the centrifugal 

components of the acceleration. In Eq. (6), 
i

iK  is the 

stiffness matrix of the ith story and is defined in the 

directions of the xiyizi coordinates system. The matrix
i

iK  

can be expressed as 

0 0

0

0
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(9) 

where 
i

xi
K and 

i

yi
K  are the ith story total stiffness in the 

xi and yi directions. As seen in Fig. 4, the parameters 
i

xi
K

and 
i

yi
K  are defined in the local xiyizi coordinates system. 

The parameter 
i

i
K


 is the torsional stiffness of the ith story 

about the ith story center of stiffness. Also, exi is the 

eccentricity between the center of mass and center of 

stiffness of the ith story in xi direction. 

Furthermore in Eq. (6), i

iC  is the damping matrix of 

the ith story and is defined in the directions of the xiyizi 

coordinates system. Matrix i

iC  can be expressed as 
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where 
i

xi
C , 

i

yi
C  and 

i
C


 are the ith story damping 

coefficients, which are defined in the directions of the local 

xiyizi coordinates system (see Fig. 4).  

If UXi and UYi denote the displacements of the ith floor 

center of mass in X and Y directions (see Fig. 3), and θi 

denotes the ith floor rotation about the zi axis, the 

relationship between  , ,
T

Xi i YiU U and , ,
T

xi i yiu u  
vectors can be expressed as 

cos 0 sin

0 1 0

sin 0 cos

i

xi i i Xi

i

i i i

i

yi i i Yi

i i

u U

U

u U

Q U

 

 

 

     
    

     
        


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where 
iQ  is the rotation matrix about the zi axis by an 

angle θi.  

Moreover, the vector 
1

1

i

iU 


 is defined by 

1 1
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Also in Eq. (6), 
i

i
U  and 

1

i

i
U


 are defined by 
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In the above equations, 
1

i

i
U


 denotes the i-1th floor 

displacement vectors. Furthermore, 1

i

i
U

  is the i+1th floor 

displacement vector. The vectors 
1

i

i
U


 and 

1

i

i
U


, are 

defined in the xiyizi coordinates system. The relationship 

between 
1

i

i
U


and 

1

1

i

i
U



  can be expressed in the following 

equation 
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where 
1i 
 is defined as follows 

1 1i i i      (16) 

Also, in Eq. (15), 1i

iQ   is the rotation matrix about the 

zi axis by an angle 
1i 
. 

Matrix 
1

i

iK 
can now be derived from Eq. (6). The 

vector 
1

1

i

iF 


 is defined by 

1 1
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i i i

i i iF K U 

    (17) 

Vector 
1

1

i

iF 


, denotes the force of the resisting elements 

in i+1th story, which is exerted to the i+1th floor. It should 

be noted that vector 
1

1

i

iF 


is defined in the xi+1yi+1zi+1 

system of coordinates. Evidently the reaction of 
1

1

i

iF 


 is 

exerted to the ith floor. To define the vector 
1

1

i

iF 


 reaction 

in the xiyizi coordinates system, the xi+1yi+1zi+1 coordinates 

system can be rotated about the zi axis by an angle 
1i  . 

The following equation can thus be written 
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where vector 
1

i

iF 
 is the reaction of the vector 

1

1

i

iF 


 

which is defined in the xiyizi coordinates system. On the 

other hand, in Eq. (6) vector 
1

i

iF 
 is defined by 

1 1 1

i i i

i i iF K U     (19) 
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Fig. 3 Rotary xiyizi coordinates system is located on the base 

of the building, and rotates about the zi axis by an angle θi; 

CMi denotes the ith floor center of mass 
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Fig. 4 The stiffness and damping of the ith story are defined 

in local xiyizi system of coordinates; CRi denotes the ith 

story center of stiffness 

 

 

According to Eqs. (17)-(19), the term 
1 1

i i

i iK U  can be 

expressed as 
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
 can therefore, be obtained by the following 

equation 
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T
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   (21) 

The same procedure can be used to derive 1

i

i
C

 , and it 

can be calculated by 
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T
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where 
1

1

i

iC 


 is the i+1th floor damping matrix defined in 

xi+1yi+1zi+1 coordinates system. 

 

 

3. Simple adaptive control method 
 

The controlled structure (plant) output in SACM is 

compared with the reference model output (Bitaraf and 

Hurlebaus 2013), and the objective of this method is to 

reduce the difference between output of the controlled 

structure (plant) and reference model (Ozbulut et al. 2011). 

Furthermore, the order of the reference model state in 

SACM can be less than the order of the plant state. The 

state space equations of a non-linear plant can be 

represented by (Bitaraf and Hurlebaus 2013) 

( ) ( ) ( ) ( ) ( ) ( , )p p p p p p p i px t A x x t B x u t d x t    (23) 

0( ) ( ) ( ) ( ) ( ) ( , )p p p p p p p py t C x x t D x u t d x t    (24) 

Here, the non-linear behavior of the structure is caused 

by taking the non-linear inertial coupling terms in the 

dynamic equations of motion into consideration. Also, the 

behavior of the reference model can be represented by 

(Bitaraf and Hurlebaus 2013) 

( ) ( ) ( ) ( ) ( )m m m m m m mx t A x x t B x u t   (25) 

( ) ( ) ( ) ( ) ( )m m m m m m my t C x x t D x u t   (26) 

In above equations Ap and Am are state matrices, Bp and 

Bm are input matrices, and Cp and Cm are output matrices for 

the plant and reference model (Bitaraf et al. 2012). 

Moreover, xp is the 2n×1 plant state vector and xm is the 

2nm×1 reference model state vector. Also, ym and yp 

represent the reference model output and the plant output 

(Bitaraf and Hurlebaus 2013). 

The control command is denoted by up and the input 

command is denoted by um. The control command and input 

command are m×1 vectors (Bitaraf et al. 2010). It should be 

noted that yp and ym are m-order vectors and must have an 

equal order. Also, di and d0 denote input and output 

disturbances (Bitaraf and Hurlebaus 2013). If the parameter 

Dp(xp) is very small, it may not affect the plant output but it 

can considerably change the stability characteristics of the 

plant (Bitaraf and Hurlebaus 2013, Barkana and Guez 

1990). 

The control command m×1 vector can be calculated by 

(Bitaraf et al. 2010, Bitaraf and Hurlebaus 2013) 

( ) - ( ) ( ) ( ) ( )
T

T T

p m p m mu K t y y x t u t K t r t   
 (27) 

The overall gain K(t) is  

 ( ) ( ) ( ) ( )

( ) ( )

e x u

I P

K t K t K t K t

K t K t



 
 (28) 

As written in Eq. (28), the overall gain is the sum of the 

integral gain KI(t) and the proportional gain KP(t). The 

matrices KI(t) and KP(t) can be calculated by (Bitaraf et al. 

2010) 

 ( ) ( ) ( ) ( ) ( )T

I m p SAC IK t y t y t r t T K t    (29) 

 ( ) ( ) ( ) ( )T

P m pK t y t y t r t T   (30) 

The use of the coefficient σSAC in Eq. (29) prevents the 
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integral gain from attaining very high values (Ozbulut et al. 

2011). The positive definite matrices T and T control 

the rate of adaptation. The proportional gain is used to 

improve the convergence rate of the plant output to the 

reference model output. The integral gain is essential to 

make the system stable (Bitaraf et al. 2010).  

In this research and in SACM, it is assumed that the 

input earthquake excitation is unknown. If the input 

command um is zero, there is no need to know the input 

excitation. In this case, the model state vector can be 

calculated as follows (Bitaraf and Hurlebaus 2013) 

m mm

m

m m m

X dt y dtX
x

X X y

    
      

        

   (31) 

where
mX and 

mX  are displacement and velocity of the 

reference model. 

In this study, the reference model is a structure having 

the output in a specified range. The behavior of the 

reference model is explained by (Bitaraf et al. 2010, Bitaraf 

and Hurlebaus 2013) 

max

max max

if

if

m p p

m p

y y y Y

y Y y Y

 

 
 (32) 

where Ymax denotes the maximum acceptable value for the 

output of the reference model. The value of Ymax can be 

equal to or greater than zero (Bitaraf et al. 2010). If the 

output of the plant is less than Ymax, the difference between 

the plant and reference model output is zero, and if the plant 

output is more than Ymax, the objective of SACM is to 

reduce the difference between the plant and reference model 

output (Bitaraf and Hurlebaus 2013). In this paper, the 

output of the plant is the velocity of each controlled degree 

of freedom (Bitaraf et al. 2010, Bitaraf and Hurlebaus 

2013). 
 

 

4. Linear quadratic regulator algorithm 
 

The performance of the SACM will be compared with 

the well-known LQR algorithm. To use the LQR algorithm, 

the equations of motion are derived in state space form. The 

plant state space equations are given by Eqs. (23)-(24). In 

Eq. (23), the parameter xp(t) is defined by 

     

     

1 2

1 2

( ) , ,..., ,

, ,...,

f

f

TT T n

p

T
TT T n

x t U U U

U U U







 
(33) 

As mentioned in Section 2, 
iU  is the displacement 

vector of the ith floor which is defined in the global XYZ 

coordinates system (see Fig. 3). Also, nf is the number of 

the modeled building stories. 

Now, in Eq. (23), the matrices Ap, Bp and di will be 

derived. These matrices will be derived according to Eq. 

(6). Based on Eqs. (11), (13) and (15), in Eq. (6), the term 
i i

i iK U  can be expressed as 

   
    

1

1 11

1 1

1

ii i i i i i i i

i i i i i i i ii

T Tii i i i i

i i

K U K U U K U Q U

K Q U Q Q U



 

 



   

 

 (34) 

The matrix K+ is defined as follows 

1

1

2

2

0 0 0

0 0 0

0 0 ... 0

0 0 0 f

f

n

n

K

K
K

K



 
 
 

  
 
 
 

 
(35) 

Also, the matrices q, q- and q+ are defined by 

 

 

 

1

2

0 0 0

0 0 0

0 0 ... 0

0 0 0 f

T

T

T
n

Q

Q
q

Q

 
 
 
 
 
 
 
  

 
(36) 

2

1

3

2

1

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
f

f

n

n

Q

q Q

Q





 
 
 
 

  
 
 
 
 

 
(37) 

 

 

 

2

1

3

2

1

0 0 0 0

0 0 0 0

0 0 0 ... 0

0 0 0 0

0 0 0 0 0

f

f

T

T

T
n

n

Q

Q

q

Q





 
 
 
 
 

  
 
 
 
 
 

 

(38) 

As mentioned in Section 2, 
i

iK , 
iQ , 

1i

iQ 
 are 3×3 

matrices. It is obvious that K+, q, q- and q+ are 3nf×3nf 

matrices. The following equation can be derived from Eq. 

(34) 

     

       

1 1 2 2

1 1 2 2

1 2

, ,....,

, , ,

f f

f f

f

T
TT T n n

n n

T
TT T n

K U K U K U

K q q q U U U 

  
  

    
  

 
(39) 

Based on Eqs. (11), (15) and (21), the term 
1 1

i i

i iK U 
 

in Eq. (6) can be expressed as 

    

        

1 1

1 1 1 1 1

1 1

1 1 1 1 1 1

1

( )

( )

i i

i i

T
i i i i T i i

i i i i i i

T T T
i i i i T i i i i

i i i i

K U

Q K Q Q U U

Q K Q Q Q U Q U

 

    

 

     





 



 
(40) 
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The following equation can be derived from the above 

equation 

     

     

     

1 11 1 2 2

2 2 3 3
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f f

f f

f

T
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T
TT T n

K U K U K U

q K q q q q

U U U

 

   

  
  

    

 
  

 (41) 

Similar to Eqs. (39) and (41), the following equations 

can be derived 

     

       

1 1 2 2

1 1 2 2
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, ,....,

, , ,
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f
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T T T
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TT T n

C U K U K U

C q q q U U U 

 
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(42) 
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(43) 

where C+ is defined by 

1

1

2

2

0 0 0

0 0 0

0 0 ... 0

0 0 0 f

f

n

n

C

C
C

C



 
 
 

  
 
 
 

 
(44) 

Moreover, vector 
i

ia  in Eq. (6) can be expressed as 

 
T

i i i

ia Q U  (45) 

and following equation can be derived 

     

     
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(46) 

where M+ is defined by 

1

2

0 0 0
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0 0 ... 0
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fn
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

 
 
 
 
 
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(47) 

Now, in Eq. (23), matrix Ap(xp) can is expressed as 

21 22

3 3 3 30
( )

f f f fn n n n

p p

p p

I
A x

A A

  
  
  

 (48) 

According to Eqs. (6), (39), (41)-(43) and (45), 
21pA  

and 
22pA  are expressed as 

   

     

21

1
1

pA q M K q q q

q K q q q q


   

   

     


     


 (49) 

   

     

22

1
1

pA q M C q q q

q C q q q q


   

   

     


     


 (50) 

It is obvious that matrix Ap is not constant through the 

excitation, and matrix 3 3f fn nI  , is the identity matrix.  

Moreover, in Eq. (23), the matrices Bp(xp) and di(xp, t) 

are given by 

 
1

0
( )p pB x

M D




 
 
  

 (51) 

 
1

0
( , ) ( )i pd x t f t

M




 
  
  

 (52) 

In the above equations, D is the control device location 

matrix, and f is the external loading vector which is given 

by following 3nf×1 matrix 

1 1 2

2

(t) ,0, , ,0

, ,..., ,0,
f f

Xg Yg Xg

T

Yg n Xg n Yg

f mU mU m U

m U m U m U

   

  


 (53) 

The objective function in the LQR algorithm is defined 

by (Khansefid and Ahmadizadeh 2015) 

0

( ( )) ( ) ( ( )) ( )

t

T T

p p p pJ x t Qx t u t Ru t dt     (54) 

where Q is the positive semi-definite weighting matrix of 

displacement and R is the positive definite matrix of the 

control force. The control forces in the LQR algorithm are 

calculated in a manner that minimizes the objective 

function. In this algorithm, the control command vector, 

up(t) is calculated by (Nazarimofrad and Zahrai 2016) 

11
( ) ( ) ( )

2

T

p p pu t Gx t R B P x t 
   

 
 (55) 

In above equation, G is the control gain matrix and 

matrix P is determined by solving following non-linear 

Riccati equation (Khansefid and Ahmadizadeh 2016) 

11
2 0

2

T T

p pPA PBR B P A P Q     (56) 

In this study, it is assumed that the control gain matrix is 

not constant through the excitation. The Riccati equation is 

solved and the control gain matrix is updated in every time 

step. Also, in Eq. (54), the matrices Q and R are assumed to  
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Table 1 Modeled buildings properties 

 
five-story building fifteen-story 

Story  

number 

Mass Kx Ky KθR ex r Mass Kx Ky KθR ex r 

(N.s2/cm) (N/cm) (N/cm) (N.cm) (cm) (cm) (N.s2/cm) (N/cm) (N/cm) (N.cm) (cm) (cm) 

1 0.1 142.1 142.1 32095 9.67 20 0.25 3869 3869 2751800 17.5 35 

2 0.1 142.1 142.1 32095 9.67 20 0.25 3869 3869 2751800 17.5 35 

3 0.1 142.1 142.1 32095 9.67 20 0.25 3869 3869 2751800 17.5 35 

4 0.1 142.1 142.1 32095 9.67 20 0.25 3869 3869 2751800 17.5 35 

5 0.1 142.1 142.1 32095 9.67 20 0.25 3869 3869 2751800 17.5 35 

6 - - - - - - 0.25 3095 3095 2201400 17.5 35 

7 - - - - - - 0.25 3095 3095 2201400 17.5 35 

8 - - - - - - 0.25 3095 3095 2201400 17.5 35 

9 - - - - - - 0.25 3095 3095 2201400 17.5 35 

10 - - - - - - 0.25 3095 3095 2201400 17.5 35 

11 - - - - - - 0.25 2321 2321 1651100 17.5 35 

12 - - - - - - 0.25 2321 2321 1651100 17.5 35 

13 - - - - - - 0.25 2321 2321 1651100 17.5 35 

14 - - - - - - 0.25 2321 2321 1651100 17.5 35 

15 - - - - - - 0.25 2321 2321 1651100 17.5 35 

 

 

Fig. 5 Earthquake records for applying to the modeled 

buildings 

 

C.M.

TMD

T
M

D

Y

Z

X

 

Fig. 6 Locations of the installed ATMDs on top floor of the 

building 

 

 

be constant throughout the excitation.       

 

 

5. Numerical studies 
 

In order to investigate the effectiveness of SACM two 

building models, a five-story building and a fifteen-story  

Table 2 Considered cases for applying earthquake 

excitation 

Case Earthquake record 
Earthquake arrival angle with 

respect to X direction (β) 

case 1 El Centro 30 

case 2 El Centro 45 

case 3 El Centro 60 

case 4 El Centro 90 

case 5 Kobe 30 

case 6 Kobe 45 

case 7 Kobe 60 

case 8 Kobe 90 

case 9 Chi-Chi 30 

case 10 Chi-Chi 45 

case 11 Chi-Chi 60 

case 12 Chi-Chi 90 

 

 

building, are considered. Both of the studied buildings are 

scaled models. Table 1 illustrates properties of the modeled 

buildings. The damping ratio of the modeled buildings is 

assumed to be 0.5% in the first three natural vibration 

modes. 

According to Fig. 5, three of the earthquake records that 

are commonly used in structural control (Ozbulut et al. 

2011) are considered for being applied to the modeled 

buildings (1940 El Centro, 1995 Kobe and 1999 Chi-Chi). 

Also, these earthquake records are scaled to have a 

maximum acceleration of 0.1 g. For inspecting the SACM 

effectiveness, different cases are considered. These cases 

are listed in Table 2. 

For example, in case 1, the El Centro earthquake is 

applied to the modeled buildings, and the earthquake arrival 

angle is 300 with respect to X direction.  

ATMDs are used to control the response of the modeled 

buildings. As shown in Fig. 6, two ATMDs are installed on 

the top floor of the modeled buildings, and the force of each 

ATMD is applied to the mass center of the top floor. The 

control force of the first ATMD is applied in X direction and 

the control force of the second ATMD is applied in Y 

direction. 

Table 3 illustrates the values of the R, Q, T, T and σ for 

the modeled buildings. The selected plant output for the 

SACM is 

[ , ]
top floor top floor T

p X Yy U U  (57) 

where 
top floor

XU  and 
top floor

YU  are the velocities of the 

top floor center of mass in X and Y directions. Vector Ymax in 

SACM is selected to be (Bitaraf and Hurlebaus 2013) 

max [0,0]TY   (58) 

To compare the SACM performance with the LQR 

algorithm, the following performance indices are defined 

 
1

max ( )

max ( )

X

top floor

top floor

X unctrl

U t
J

U t
  (59) 
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2

max ( )

max ( )

top floor

top floor

unctrl

t
J

t




  (60) 

3

max ( )

max ( )

Y

top floor

top floor

Y unctrl

U t
J

U t
  (61) 

4

max ( )

max ( )

X

top floor

top floor

X unctrl

U t
J

U t
  (62) 

5

max ( )

max ( )

top floor

top floor

unctrl

t
J

t




  (63) 

6

max ( )

max ( )

Y

top floor

top floor

Y unctrl

U t
J

U t
  (64) 

7

max ( )TMD

X

total

F t
J

W
  (65) 

8

max ( )TMD

Y

total

F t
J

W
  (66) 

where ( )
X

top floorU t  and ( )
Y

top floorU t  are displacements 

of the top floor center of mass in X and Y directions. The 

variable 
top floor

( )t is total rotation of the top floor about 

the Z axis. Also ( )TMD

XF t  and ( )TMD

YF t  are the applied 

control forces in X and Y directions. The variables 

( )
top floor

X unctrlU t  and ( )
top floor

Y unctrlU t  are the top floor 

displacements of the uncontrolled building in X and Y 

directions. The variable ( )
top floor

unctrl t  is the top floor 

rotation of the uncontrolled building about the Z axis. Also, 

Wtotal is the total weight of the building.  
 

5.1 Five-story building  
 

In the five-story building, the saturation limit of the 

actuators is selected to be 2% of the building’s total weight. 

Fig. 7 shows the time histories of the top floor displacement 

(
5 5 5, ,X YU U ) in case 1. Fig. 8 shows the time histories of 

the applied control forces in X and Y directions. SACM 

decreases the top floor displacement in both X and Y 

directions. Also, the top floor torsion about Z direction is 

significantly decreased. As seen in Fig. 7, the torsional 

response of the uncontrolled building reaches high values. 

Moreover, the results of the SACM and LQR algorithm are 

very close to each other.  

According to the Fig. 9, comparison of SACM and LQR 

algorithm performance indices, the SACM was successful 

in reducing the peak displacements and accelerations of the  

Table 3 The values of the parameters R, Q, T, T and σ in 

the modeled buildings 

five-story building fifteen-story building 

R Q T T  σ R Q T T  σ 

2 2I 

 
30 300.75I 

 
4×10-3I7×7 5×10-3I7×7 0.05 2 2I 

 
90 901.6I 

 
4×10-5I7×7 4×10-2I7×7 0.05 

 

 

Fig. 7 Time histories of the top floor displacement for the 

five-story building in case 1 

 

 

Fig. 8 Time histories of the applied control forces in X and 

Y directions for five-story building in case 1 

 

 

Fig. 9 Performance indices of SACM and LQR algorithm 

for five-story building 
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Fig. 10 Time histories of the top floor displacement for the 

fifteen-story building in case 7 

 

 

Fig. 11 Time histories of the applied control forces in X and 

Y directions for the fifteen-story building in case 7 

 

 

five-story building in all of the cases. The results of SACM 

are very close to the results of the LQR algorithm for J1 to 

J6. The results also indicate that SACM reduces the top 

floor peak displacements in X and Y directions by 88% to 

31%. Moreover, the results show that SACM decreases the 

top floor peak rotation about the Z axis by 76% to 16%. By 

using SACM, the peak acceleration of the top floor is 

decreased by 84% to 24% in X direction, and the peak 

acceleration of the top floor is decreased by 45% to 18% in 

Y direction.  

 

5.2 Fifteen-story building 
 

In the fifteen-story building, the selected saturation limit 

of the actuators was 1.6% of the building’s total weight. 

Fig. 10 shows the time histories of the top floor 

displacement (
15 15 15, ,X YU U ) in case 7. Here again, the 

results of the SACM and LQR algorithm are seen to be very 

close. Fig. 11 shows the time histories of the applied control 

forces in X and Y directions. 

Fig. 12 compares the performance indices of the SACM 

and LQR algorithm for the fifteen-story building. As 

shown, the SACM results are very close to the LQR 

algorithm results for J1, J2, J3, J5 and J6. However, the 

SACM results do differ from LQR algorithm and are far for 

the J4 parameter. In case 4, the SACM increases the top 

floor acceleration in X direction (J4). The parameter J4 in 

case 4 of SACM is 1.08. In all other cases, SACM reduces 

the top floor displacements and accelerations in X and Y 

directions. Also, in all of the cases, SACM reduced the top 

floor rotation about the Z axis. Fig. 12 results show that 

SACM reduces the top floor peak displacements in X and Y  

 

Fig. 12 Performance indices of SACM and LQR algorithm 

for the fifteen-story building 

 

 

directions by 85% to 14%. Moreover, the results indicate 

that SACM decreases the top floor peak rotation about the Z 

axis between 37% and 18%. The SACM decreases the peak 

acceleration of the top floor by 53% to 30% in Y direction. 
 

 

6. Conclusions 
 

In this study the SACM and LQR algorithm were used 

to control the response of asymmetric buildings with 

rotationally non-linear behavior. Unlike the conventional 

linear approach, the non-linear inertial coupling terms were 

considered in the motion equations. If rotational non-

linearity were considered for the modeled buildings, the 

buildings would exhibit a different response. The state 

space equations for the LQR algorithm were updated in 

each time step, and the control gain matrix was assumed to 

change through the earthquake excitation. Furthermore, the 

control gain matrix was updated in each time step. In the 

modeled buildings, the SACM and LQR algorithm were 

successful in reducing the top floor displacement and 

acceleration responses. The SACM and LQR algorithm also 

reduced the top floor torsional response in the modeled 

buildings. Unlike LQR algorithm, in SACM it was assumed 

that the input earthquake excitation is unknown. Moreover, 

in the SACM, only the velocity vector of the top floor 

needed to be measured. But in the LQR algorithm, it was 

assumed that the displacement and velocity of all degrees of 

freedom were measured in every time step. Also results of 

the SACM and LQR algorithm were very close to each 
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other in both of the modeled buildings. 

 
 
References 
 
Amin Afshar, M. (2009), “Nonlinearities in asymmetric 

structures”, Ph.D. Dissertation, Iran University of Science and 

Technology, Tehran, Iran.  

Amin Afshar, M. and Amini, F. (2012), “Non-linear dynamics of 

asymmetric structures under 2:2:1 resonance”, J. Non-Lin. 

Mech., 47(7), 823-835.  

Amini, F. and Amin Afshar, M. (2011), “Saturation in 

asymmetric structures under internal resonance”, Acta 

Mech., 221, 353-368. 

Amini, F. and Javanbakht, M. (2014), “Simple adaptive control of 

seismically excited structures with MR dampers”, Struct. Eng. 

Mech., 52(2), 275-290.  

Barkana, I. and Guez, A. (1990), “Simple adaptive control for a 

class of non-linear systems with application to robotics”, J. 

Contr., 52(1), 77-99.  

Barkana, I. and Kaufman, H. (1993), “Simple adaptive control of 

large flexible space structures”, IEEE Trans. Aerosp. Electr. 

Syst., 29(4), 1137-1149.  

Beer, F.P., Johnston, E.R.J., Eisenberg, E.R. and Cornwell, P.J. 

(2013), Vector Mechanics for Engineers: Statics and Dynamics, 

10th Edition, McGraw-Hill, New York, U.S.A. 

Bitaraf, M. and Hurlebaus, S. (2013), “Semi-active adaptive 

control of seismically excited 20-story nonlinear building”, Eng. 

Struct., 56, 2107-2118.  

Bitaraf, M., Hurlebaus, S. and Barroso, L.R. (2012), “Active and 

semi-active adaptive control for undamaged and damaged 

building structures under seismic load”, Comput.-Aid. Civil 

Infrastruct. Eng., 27(1), 48-64. 

Bitaraf, M., Ozbulut, O.E., Hurlebaus, S. and Barroso, L. (2010), 

“Application of semi-active control strategies for seismic 

protection of buildings with MR dampers”, Eng. Struct., 32(10), 

3040-3047.  

Gaul, L., Hurlebaus, S., Wirnitzer, J. and Albrecht, H. (2008), 

“Enhanced damping of lightweight structures by semi-active 

joints”, Acta Mech., 195, 249-261.  

Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., 

Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, 

B.F. and Yao, J.T.P. (1997), “Structural control: Past, present, 

and future”, J. Eng. Mech., 123(9), 897-971.  

Khansefid, A. and Ahmadizadeh, M. (2015), “An investigation of 

the effects of structural nonlinearity on the seismic performance 

degradation of active and passive control systems used for 

supplemental energy dissipation”, J. Vibr. Contr., 22(16), 1-11.  

Korkmaz, S. (2011), “A review of active structural control: 

Challenges for engineering informatics”, Comput. Struct., 

89(23-24), 2113-2132.  

Nazarimofrad, E. and Zahrai, S.M. (2016), “Seismic control of 

irregular multistory buildings using active tendons considering 

soil-structure interaction effect”, Soil Dyn. Earthq. Eng., 89, 

100-115.  

Ozbulut, O.E., Bitaraf, M. and Hurlebaus, S. (2011), “Adaptive 

control of base-isolated structures against near-field earthquakes 

using variable friction dampers”, Eng. Struct., 33(12), 3143-

3154.  

Singh, M.P., Singh, S. and Moreschi, L.M. (2002), “Tuned mass 

dampers for response control of torsional buildings”, Earthq. 

Eng. Struct. Dyn., 31(4), 749-769.  

Sobel, K., Kaufman, H. and Mabius, L. (1982), “Implicit adaptive 

control for a class of MIMO systems”, IEEE Trans. Aerosp. 

Electr. Syst., 18(5), 576-590.  

Soong, T.T. and Manolis, G.D. (1987), “Active structures”, J. 

Struct. Eng., 113(11), 2290-2302.  

Yoshida, O. and Dyke, S.J. (2005), “Response control of full-scale 

irregular buildings using magnetorheological dampers”, J.   

Struct. Eng., 131(5), 734-742.  

Yoshida, O., Dyke, S.J., Giacosa, L.M. and Truman, K.Z. (2003), 

“Experimental verification of torsional response control of 

asymmetric buildings using MR dampers”, Earthq. Eng. Struct. 

Dyn., 32(13), 2085-2105.  

 

 

CC 

730

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7
http://www.sciencedirect.com/science/journal/01410296
http://www.sciencedirect.com/science/journal/02677261
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7
http://ascelibrary.org/journal/jsendh
http://ascelibrary.org/journal/jsendh



