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1. Introduction 
 

In the recent decade, attempts to improve meta-heuristic 

methods using various ideas have been increased. 

Accordingly, some researchers have introduced new 

powerful meta-heuristic algorithms, while others have 

applied a combination of several methods to create a new 

algorithm. The latter approach is more popular than the 

former because the resulted mixed algorithm attempts to 

inherit the strengths of its parents and simultaneously 

resolve their issues. For example, Soleimani and Kannan 

(2015) considered improving closed-loop supply chain 

network optimization processes. Indeed, two popular meta-

heuristic algorithms were deemed to develop a new 

elevated hybrid algorithm: The Genetic Algorithm (GA) 

and Particle Swarm Optimization (PSO). Later, a new 

hybrid method, which combines the extensive area search 

ability of the GA and the local search capacity of the PSO, 

was introduced by Wanga et al. (2015). Mostly these hybrid 

methods are established, based on some well-developed 

meta-heuristic methods, such as Simulated Annealing (SA) 

(Kirkpatrick et al. 1983), Big Bang–Big Brunch (BB-BC) 

(Erol and Eksin 2006), and Symbiotic Organisms Search 

(SOS) (Cheng and Prayogo 2014). 

Epitropakis et al. (2012) developed a hybrid framework 

that combines PSO and the Differential Evolution 

Algorithm (DEA). Additionally, Wang et al. (2013) 

proposed a hybrid PSO algorithm, called DNSPSO, which  
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employs a diversity enhancing mechanism and 

neighborhood search strategies to achieve a trade-off 

between exploration and exploitation abilities. Recently, a 

hybrid Harmony Search PSO with global dimension 

selection for improving the performance of PSO has been 

presented by Ouyang et al. (2016).  

Giftson Samuel and Christober Asir Rajan (2015) 

presented two optimization methods: A Hybrid Particle 

Swarm Optimization based on Genetic Algorithm, and a 

Hybrid Particle Swarm Optimization based on Shuffled 

Frog Leaping Algorithm for solving the long-term generator 

maintenance scheduling problem. Besides, Nayanatara et al. 

(2016) presented a hybrid algorithm which, includes Fuzzy-

Genetic Algorithm (FGA). This method is used to optimize 

the Distributed Generation (DG) parameters in a 

deregulated power system. A new hybrid optimization 

technique was proposed by Kelner et al. (2008) that merges 

GA with a local search strategy based on the Interior Point 

method. Moreover, Tuba and Bacanin (2014) introduced 

modifications to the Seeker Optimization Algorithm to 

control exploitation/exploration balance and hybridized it 

with the elements of the Firefly Algorithm that improved its 

exploitation capabilities.  

An efficient hybrid optimization strategy was used for 

determining the parameters of radial basis function neural 

networks by Wu et al. (2015). This method incorporates the 

adaptive optimization of PSO into GA, namely HPSOGA. 

Cheng et al. (2016) presented a new variant of the Harmony 

Search (HS) algorithm. While retaining Harmony Memory 

and pitch adjustment functions, this variant replaces the HS 

algorithm randomization function with Global-best PSO 

search and neighborhood search. Also, Shao et al. (2016) 

presented a hybrid discrete optimization algorithm based on 
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shows that the hybrid method is successful in the global as well as local search. 
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Teaching-Probabilistic Learning mechanism (HDTPL), 

which consists of four components: discrete teaching phase, 

discrete probabilistic learning phase, population 

reconstruction, and neighborhood search. Besides, Ma et al. 

(2014) proposed several hybrid evolutionary algorithms by 

combining some recently developed algorithms with a 

biogeography-based hybridization strategy.  

A new hybrid heuristic approach that combines the 

Quantum PSO technique with a local search method to 

solve the Multi-Dimensional Knapsack Problem was 

proposed by Haddar et al. (2016). Besides, Hoseini and 

Shayesteh (2013) proposed a hybrid algorithm including 

GA, Ant Colony Optimization (ACO), and Simulated 

Annealing (SA) for increasing the contrast of images. The 

effect of elite pool in three hybrid population-based meta-

heuristics was investigated by Jaradat et al. (2016). This 

method consists of an elite pool of a hybrid Elitist-Ant 

System, a hybrid Big Bang-Big Crunch optimization and a 

hybrid Scatter Search. Jeslin Drusila Nesamalar et al. 

(2016) presented a Hybrid Nelder-Mead-Fuzzy Adaptive 

PSO (HNM-FAPSO) for a Multi-Line Congestion 

Management (MLCM) problem. Also, the objective of 

hybridizing the Nelder–Mead (NM), Fuzzy Adaptive PSO 

(FAPSO) is to blend their unique advantages as well as their 

efficacy. Liu et al. (2016) introduced two hybrid methods 

with two different strategies to combine limited memory 

BFGS (L-BFGS) with Greedy Diffusion Search (GDS).  

Some new hybrid methods have been developed and 

utilized in the optimal design of structures. For instance, 

Kaveh and Talatahari (2009c) have introduced a new hybrid 

approach, based on PSO, ACO and HS to optimize truss 

structures. Also, Cheng and Prayogo (2017) have developed 

a new Fuzzy Adaptive Teaching-Learning-Based 

Optimization method (FATLBO) for the optimal design of 

different types of structures. Furthermore, some other 

methods have been developed by Li et al. (2009), Prayogo 

et al. (2018), Kaveh, A. and Shahrouzi, M. (2008), Rahami 

et al. (2011), Kaveh and Laknejadi (2013), Kaveh and 

Mahdavi (2013), Kaveh and Javadi (2014) and Kaveh and 

Ilchi Ghazaan (2018).  

Asil Gharebaghi et al. (2017) have introduced a new 

meta-heuristic method, based on the concept of Star Graph 

(SG). The method has been applied to some constrained and 

unconstrained engineering problems. Although the meta-

heuristic algorithms are good in the global search process, 

they need to be improved when a local search is required. In 

this article, the local search ability of SG is improved using 

Path Projection method. Ultimately, the resulted hybrid 

method is utilized in the optimal design of truss and frame 

structures. 

This paper consists of five sections, which are described 

after a brief description of the basis of the method. 

 
 

2. Basics of the hybrid method 
 

The meta-heuristic methods, including PSO, have a 

good capacity to solve the engineering optimization 

problems. But in the local convergence, they may get into 

trouble because of the fast diversity reduction (Wang et al. 

2013). To improve the performance of these methods some 

different hybrid approaches have been developed. As 

aforementioned, in some cases, two or more meta-heuristic 

methods are combined (Soleimani and Kannan 2015, 

Ouyang et al. 2016, Nayanatara et al. 2016, Wu et al. 2015, 

Cheng et al. 2016, Shao et al. 2016, Jaradat et al. 2016, 

Jeslin Drusila Nesamalar et al. 2016, Kaveh et al. 2015, 

Abbasnia et al. 2014). In other cases, a classic method is 

joined with a meta-heuristic algorithm (Wang et al. 2015, 

Epitropakis et al. 2012, Tuba and Bacanin 2014). In some 

other cases, the new hybrid method is created by adding a 

new part to an available meta-heuristic method. Mostly, the 

new part is not independent of the main algorithm (Wang et 

al. 2013). This part is applied only to reinforce the local 

search ability in the meta-heuristic algorithm. The presented 

method in this article contains this pattern to improve the 

capability of some meta-heuristic methods.  

Although the simultaneous usage of constraints and 

fitness function to identify the optimal results is common in 

the classic methods, it has not been sufficiently addressed in 

meta-heuristic methods. In these methods, the application of 

constraints is limited to the penalty function, while 

constraints consist of valuable information for the local 

search procedure. In other word, unlike meta-heuristic 

methods, the interaction between fitness function and 

constraints is the basis of classic methods. As an example, 

in Linear Programming, the agents move on the border of 

constraints to reach the final result (Luenberger 1973).  

In the case of violation of constraints in meta-heuristic 

methods, the penalty of fitness function stops the progress 

of the agent. Therefore, the global search ability of meta-

heuristics is stronger than their local search. Thus, if the 

information of constraints is utilized to determine the search 

path, more convergence rate could be reached in the meta-

heuristic methods. This method is independent of the global 

search procedure, and it can be utilized as a practical tool 

along with meta-heuristics.  

This article utilizes the concept of Gradient Projection 

Method (Rosen 1960, Rosen 1961) to employ constraints 

and fitness function simultaneously, but some new practical 

features are applied to improve the procedure. Gradient 

Projection Method has been based on the gradient 

calculation of the fitness function and constraints. In the 

first step of this method, active constraints are determined 

using Lagrangian function. In the next step, the projection 

of the gradient of fitness function on the border of the active 

constraints is determined. The resulted projection is applied 

as a direction of the local search. Identification of 

constraints and gradient vector projection on constraints’ 

border are the primary functions of this method. Similar to 

the other classical methods, in Gradient Projection Method, 

there are limitations in the calculation of the gradient of the 

fitness function and constraints.  
In this article, the concept of the gradient projection is 
utilized with a different aspect, so that imposed limitations, 
such the gradient calculation, are eliminated. Accordingly, 
the gradient vector is replaced with a new meta-heuristic 
vector, and the determination of active constraint and the 
projection process are changed into some new and low-cost 
methods. In the one hand, the concept of gradient projection 
is preserved; on the other hand, limitations and the cost of 
the process are decreased.  
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(a) (b) 

Fig. 1(a) The local search in interaction with the global 

search (meta-heuristics), (b) the flowchart of the presented 

local search 
 
 

The presented method is inspired by Gradient Projection 

Method, while the costly functions such the gradient 

calculations are removed and some low-cost features are 

replaced. In Gradient Projection method, a matrix 

containing the gradient vectors of constraints should be 

generated. It makes some difficulties in calculation process, 

but in the present work, some simple geometric vectors are 

replaced instead of the gradient vectors. Although, in both 

methods, the movement along the constraints’ border is 

utilized as a basic concept of the local search, the present 

method is more compatible with the implicit nonlinear 

constraints.  

As it was mentioned before, the presented method can 

be utilized as the main tool in the exploitation stage of some 

meta-heuristic methods. For this purpose, in the case of 

constraint violation, as shown in Fig. 1(a), the present 

method can be applied to perform a more accurate local 

search. The utilized information may consist of the vector 

of location, the fitness function and constraints value of 

agents. The presented method, as depicted in Fig. 1(b), gets 

the input data and suggests a new location based on the 

fitness function and constraints of the problem.  

In this article, Star Graph method is selected to be used 

as a global search engine in Fig. 1(a). The capability of this 

method in the optimal design of different structures has 

been previously demonstrated (Asil Gharebaghi et al. 

2017). However, it is desired to know whether or not SG is 

capable of being used in companion with Path Projection 

method to make a hybrid algorithm. In the present work, the 

global features of SG, and local capabilities of Path 

Projection are used to enhance the rate of convergence. 

Finally, the presented hybrid method is examined for weight 

optimization of structures, as well.  

3. The local search algorithm 
 

In this section, the algorithm is described in detail. In 

the case of constraint violation in a meta-heuristic method, 

the information of current and previous step of an agent can 

be utilized in the following algorithm. This local search 

algorithm will correct the path and suggest a new feasible 

location for the agent. The flowchart of this algorithm, as 

shown in Fig. 1(b), consists of four primary functions. The 

details of the algorithm are described as following:  

Step 1: Neighbors Selection. In the first step, a set of 

agents is selected as the neighbors of the ith agent. A random 

selector determines the neighbors using a cumulative 

weighted function (G). The weight function is calculated 

using Eq. (1). Later, the cumulative weighted function could 

be computed from Eq. (2). 

max

max min

1

,
j j

j jNn

t

t

w F F
w

F F
w






 




 

(1) 

Where, Fmax and Fmin are the maximum and minimum of 

the fitness function value in all the agents of the search 

space. The cumulative weighted function G is an array, 

which its jth element includes the sum of the weight of the 

jth agent and all previous agents in the global numbering 

system. This array can be mentioned as Eq. (2) 

1 1 1
,

j j j
G G G 


    (2) 

For the selection of each neighbor of the ith agent, the 

minimum integer value of j should be considered in such a 

way that rand ≤ Gj. Where, rand is a random number 

generator with a uniform distribution in a range of [0, 1]. 

Indeed, to determine all the neighbors of the ith agent (Ib), 

this process should be repeated for Nb times. Nb is the 

number of neighbors, who belong to the ith agent.  

This approach is important in two aspects: first, by using 

this selection method, the probability of the selection of an 

agent with a suitable location is more than the others. As a 

result, it helps to accelerate the convergence of the 

algorithm. Second, the weighting method does not restrict 

the neighbor selection in a small local zone. Thus, all agents 

have a chance of being selected. It helps to increase the 

diversity of the method and prevents from being trapped in 

a local minimum.  

Step 2: Active Constraint and Neighboring Point 

Determination. If a meta-heuristic algorithm violates a 

single constraint, the violated constraint will be known as 

an active constraint. However, if the new result violates 

more than one constraint, the active violated constraint 

should be determined to apply for the path correction 

procedure. The new correction path will go along the border 

of the active constraint. 
Assuming that the new location of an agent violates one 

or more constraint(s), a line is drawn from the previous 
(admissible) agent to the new (inadmissible) one. The first 
violated constraint will be known as the active constraint. 
One can utilize the line equation in vector space to 
determine the corresponding active constraint. The 
schematic presentation of the process is illustrated in Fig. 2.  

In Fig. 2, the path of the ith agent violates three constraints  
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Fig. 2 The schematic presentation of the particle path and 

the active constraint determination 

 

 

g1, g2, and g3. Since the constraint g1 is the first constraint, 

which is intersected by the aforementioned line, it will be 

defined as the active constraint. This constraint probably 

has the greatest impact on the path of the agent, so it is 

especially utilized in the presented method. In Fig. 2, the 

hatched areas on the constraints border indicate the 

unauthorized or inadmissible zone of the search space.  

The intersection of the agent path and the border of the 

active constraint could be determined as a neighboring 

point of the active constraint (
0

X ). This location may be 

found by a linear interpolation on the agent path (Appendix 

A), based on the values of the active constraint in current 

and previous steps. According to Appendix A, the 

neighboring point of the active constraint (g) for the ith 

agent in steps n and n+1 (
n

X  and 
1n

X


) is as Eq. (3) 

0 0,1 0,2 0,
[ ... ]

n
X x x x  (3) 

The neighboring point is a location near to the active 

constraint. Analytical results indicate that the accuracy of 

this location has a limited impact on the final result of the 

method. Hence, a conservative assumption could be 

considered in the calculation of this location, so that the 

neighboring point is located in the valid zone of search 

space and near to the active constraint. Therefore, the 

previous relation can be changed to the following 

conservative equation 

1

* 0

0 0 1

0

n n

n n i

i i n n

i

X X
X X X X

X X







    



 (4) 

Where, the factor  can be equal to 0.95, conservatively.  

Step 3: Vectors 
f

V  and 
c

V  Determination. Two new  

 

Fig. 3 The neighboring point 
*

0
X  and the vectors 

f
V  

and 
c

V  

 

 

Fig. 4 The weighted directed graph of ith agent 

 

 

vectors are introduced herein to define the correction path 

of the ith agent using corresponding neighbors. First, a 

vector to assess the fitness function devaluation 
f

V  and 

the second vector, which is almost perpendicular to the 

active constraint, is 
c

V . These vectors are not an exact 

definition of the gradient estimation; however, they could 

be a numerical primary estimation of the nature of the 

problem in the border of the active constraint.  

In the determination of these vectors, a weighted 

directed graph including the ith agent and its neighbors is 

utilized. Each edge of the graph has a weight corresponding 

to the fitness function value (f) and the active constraint 

value (g) of its nodes. The vectors 
f

V  and 
c

V  are the 

resultant of the directions of these weighted edges. A typical 

graph of the ith agent, which consists of nodes (agents) N1, 

N2, N3, and N4 is shown in Fig. 4.  

In this figure, the vector R  indicates the resultant of 

the weighted directions of the edges of the graph. The 

weighting function H, according to the definition of the 

graph, is as Eq. (5) 

, ,

, ,

, ,

1 1

,
b b

f j g j

f j g jN N

f t g t

t t

W W
H H

W W
 

 

 

max max

, ,
,

f j g j

j j

f g
W W

f g
   

(5) 
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Fig. 5 The determination of the vector T  using 
f

V  and 

c
V  

 

 

Where, fmax and gmax are the maximum of the fitness 

function and the active constraint value of the neighbors of 

the ith agent (Ib), respectively.  

Vectors 
f

U  and 
g

U , which show the direction of the 

edges of the graph can be described by Eq. (6) 

,

,

( )

( )

n n

i j

f j j i
n n

i j

n n

i j

g j i j
n n

i j

X X
U Sign f f

X X

X X
U Sign g g

X X


  




  



 
(6) 

Where, Sign(x) indicates the sign of variable x, 
n

i
X  is 

the location of the ith agent in the nth iteration and 
n

i
X  is 

the norm of the vector 
n

i
X . Vectors 

f
V  and 

c
V  can be 

calculated by applying the weighting function to the 

previous equations as 

*

*,

, , , ,
*

1
,

, .
b

N

f i

f i f i f j f j

j
f i

V
V V H U

V 

 

*

*,

, , , ,
*

1
,

, .
b

N

c i

c i c i g j g j

j
c i

V
V V H U

V 

   

(7) 

Where, the index i refers to the corresponding vectors of 

the ith agent.  

Step 4. The New Direction and Step Length 

Determination. In this article, the path of the agent is 

determined based on two principles: first, the agent moves 

along the border of the active constraint; second, it moves 

in a direction, which decreases the fitness function value.  

The active constraint and the neighboring point have 

been determined so far. Herein, a correction path, which is 

based on the mentioned rules and vectors 
f

V  and 
c

V  is 

introduced. The path selection in an N-dimensional system 

could be partly difficult; however, the new suggested 

geometric method can solve the problem quickly.  

 

Fig. 6 The suggested path of ith particle in the local search 

process 

 

 

As it has been depicted in Fig. 3, it is considered that the 

neighboring point 
*

0
X  is located close to the active 

constraint g1 and vectors 
f

V  and 
c

V  are determined 

according to the fitness function and the active constraint 

value of the neighbors. The determination of path which 

moves along the border of the active constraint and 

decreases the fitness function is illustrated in Fig. 5. The 

vector T  can be defined using a right triangle, which 

consists of 
c

V and a scaled version of 
f

V . At this point, 

the value of the scale is unknown. To have a clear view, in a 

three-dimensional search space, the vector T  is the 

projection of the vector 
f

V  on the plane that is normal to 

the vector 
c

V . It is noted that the vector 
f

V could 

decrease the fitness function and the vector 
c

V  is almost 

normal to the active constraint. To form the right triangle, 

the scale factor α can be calculated from Eq. (8) 

2

.

f

t

c f

V

V V

   (8) 

Where, the dot sign (.) indicates the inner product and 

f
V  shows the norm of the vector 

f
V . Accordingly, the 

path vector T  can be expressed using Eq. (9) 

.
f c

T V V   (9) 

Also, the new suggested location of the ith agent (

1

,

n

new i
X


) can be computed as 

1 *

, 0
. ,

n

new i

T
X X S S

T



    (10) 

Where,  is the step length that is defined in Eq. (11). 
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Fig. 7 The geometry of 72-member space truss 

 

 

,

1

.
b

N

i j
f j

j

H X X 


    (11) 

In which,  is a random number generator with a 

uniform distribution in the range of [0, 1]. The final path of 

the ith agent has been shown in Fig. 6.  

In Fig. 6, the point 
*

0
X  acts as a mediator and exerts 

the effects of the constraints on the path of the agent. After 

the determination of the new modified location of the agent, 

if it is in a valid search space and the fitness function is 

decreased, the results will be recorded; otherwise, the 

process will return to the global search procedure.  

The presented method has used some simplifying 

assumptions, which definitely results in a computational 

error, especially in 
c

V  and 
f

V . Thus, the new path may 

not be parallel to the border of the active constraint. 

However, the numerical results show that the movement in 

the near of the borders satisfactorily meets the requirements 

of the algorithm.  
 

3.1 The Kuhn-Tucker conditions 
 
To control the possibility of convergence, the path 

correction process should satisfy Kuhn-Tucker conditions 

(Hanson 1981). The presented method is subjected to check 

whether or not it satisfies Kuhn-Tucker conditions. In the 

case of failure, the method should get the agent far from the 

border of the constraints. As a result, approaching to the 

borders will decrease the chance of finding the solution. In 

such circumstances, to solve the problem, one can replace 

the vector 
g

g

V
S

V
  in Eq. (10). This approach helps to 

improve the convergence of the method and prevents the 

agent from searching in a wrong direction. This approach is 

implemented to solve the numerical problems of the article.  
 

 

4. Numerical problems 
 

In this section, some practical constrained optimization  

Table 1 The design load combinations of 72-member space 

truss 

Node Case 1 Case 2 

 
Px Py Pz Px Py Pz 

 
kips (kN) kips (kN) kips (kN) kips (kN) kips (kN) kips (kN) 

17 5.0 (22.25) 5.0 (22.25) -5.0 (22.25) 0.0 0.0 -5.0 (22.25) 

18 0.0 0.0 0.0 0.0 0.0 -5.0 (22.25) 

19 0.0 0.0 0.0 0.0 0.0 -5.0 (22.25) 

20 0.0 0.0 0.0 0.0 0.0 -5.0 (22.25) 

 

 

Fig. 8 Convergence graph of the 72-member space truss 

problem 

 

 

problems are presented. The problems have been taken 

from the structural engineering literature. The results of the 

present work are compared to their counterparts of other 

methods, and the efficiency of the method is approved.  
 

4.1 A 72-member space truss problem 
 

For the first example, the optimal design of a space truss 

with 72 members, as shown in Fig. 7, is considered. The 

assigned load combinations are presented in Table 1. The 

cross sections of the members are assumed as the variables 

of design. The constraints of the problem are presented as:  

i. The allowable cross section of the members is between 

0.1 to 2.5 in2.  

ii. The maximum allowable stress (tensile and 

compressive) is equal to 25.0 ksi for all groups of the 

members.  

iii. The maximum allowable node displacement in X and 

Y directions for both load combinations is restricted to 

±0.25 in (Kaveh et al. 2014).  

In Table 2, the results of the optimal design of the 

method are compared with the methods GA (Erbatur et al. 

2000), PSO (Perez and Behdinan 2007), BB-BC (Kaveh 

and Talatahari 2009b), SAHS (Degertekin 2012), CSP 

(Kaveh et al. 2014), and SG (Asil Gharebaghi et al. 2017). 

The best-obtained result of these methods belongs to BB-

BC with 379.66 lb and an average of 13200 analyses for 20 

independent runs of the algorithm (Kaveh and Talatahari 

2009b). The optimum weight of the presented method is 

equal to 379.63 lb and an average of 13542 analyses for 20 

independent runs of the algorithm. In this case, the critical 

value of constraints is limited to 2.710-6 and no constraint 

violation is occurred. Also, the convergence graph of this 

method is presented in Fig. 8. Star Graph algorithm (SG),  
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Table 2 The comparison of optimal design results of 72-

member space truss 

Element group 

Optimal cross-sectional areas (in2) 

GA PSO BB-BC SAHS CSP SG Present work 

1 A1-A4 1.755 1.743 1.9042 1.860 1.94459 0.156089 1.8726 

2 A5-A12 0.505 0.518 0.5162 0.521 0.50260 0.553373 0.5093 

3 A13-A16 0.105 0.100 0.1000 0.100 0.10000 0.440694 0.1000 

4 A17-A18 0.155 0.100 0.1000 0.100 0.10000 0.549534 0.1001 

5 A19-A22 1.155 1.308 1.2582 1.271 1.26757 0.522068 1.2574 

6 A23-A30 0.585 0.519 0.5035 0.509 0.50990 0.519134 0.5107 

7 A31-A34 0.100 0.100 0.1000 0.100 0.10000 0.100168 0.1000 

8 A35-A36 0.100 0.100 0.1000 0.100 0.10000 0.100145 0.1000 

9 A37-A40 0.460 0.514 0.5178 0.485 0.50674 1.296045 0.5252 

10 A41-A48 0.530 0.546 0.5214 0.501 0.51651 0.520015 0.5206 

11 A49-A52 0.120 0.100 0.1000 0.100 0.10752 0.100047 0.1000 

12 A53-A54 0.165 0.109 0.1007 0.100 0.10000 0.100179 0.1002 

13 A55-A58 0.155 0.161 0.1566 0.168 0.15618 1.796383 0.1563 

14 A59-A66 0.535 0.509 0.5421 0.584 0.54022 0.503644 0.5486 

15 A67-A70 0.480 0.497 0.4132 0.433 0.42229 0.100002 0.4156 

16 A71-A72 0.520 0.562 0.5756 0.520 0.57941 0.100043 0.5713 

Best weight (lb) 383.12 381.91 379.66 380.62 379.97 379.89 379.63 

Average weight (lb) N/A* N/A* 381.85 382.42 381.56 381.70 380.20 

St. dev. (lb) N/A* N/A* 1.912 1.380 1.803 0.761 0.088 

No. of analyses N/A* N/A* 13200 13742 10500 13500 13542 

*N/A: Not available 
 

 

which is a meta-heuristic method introduced by authors, is 

applied in this article as a global search engine. The 

statistical results indicate that the best, average and standard 

deviation of results are improved utilizing the present 

method. Also, the number of required analysis is 

comparable with other methods. Although it is not 

reasonable to compare the results of a non-hybrid method 

with a hybrid algorithm, the comparison of the present 

hybrid method with non-hybrid methods shows the 

advantages of using the hybrid approach. 

In this problem, 20 independent runs of the algorithm 

are executed. The results of the best run, which approaches 

to the best final weight, are shown in Table 2. Besides, the 

convergence graph of the best run, entitled “The Best Run”, 

is shown in Fig. 8. In this figure, the convergence graph, 

entitled “The Average of Runs”, shows the average of the 

weight of different runs in each iteration. The figure shows 

that the result of the best run in some iterations can be 

worse/better than the average value. It seems that at least 

there are two reasons: the numerical approximation of 
f

V , 

c
V , which results in some local errors, and the step length, 

, which not only depends on the random variable, , but on 

f
V , and 

c
V . Such numerical approximations may arise 

some estimation errors, as was mentioned in the third step  

 

Fig. 9 Schematic of the 3-bay 15-story frame 

 

 

Fig. 10 Convergence graph of the 3-bay 15-story frame 

problem 

 

of the local search algorithm in Section 3. The best run may 

be affected by such errors, as well. However, the results 

show that the method is capable of decreasing such errors 

and approaching to a better solution in comparison with the 

other algorithms, considered in this article.  

 

4.2 A 3-bay 15-story frame problem 
 
The optimal weight design of a 3-bay 15-story frame, as 

depicted in Fig. 9, is considered as the second example 

(Kaveh and Talatahari 2012). Fig. 9 also shows the external 

forces and member grouping of the structure. The assigned 

assumptions of the model are as follows: 

i. The modulus of elasticity and yielding stress of steel 

are equal to 29 Msi (200 GPa) and 36 ksi (248.2 MPa), 

respectively.  

ii. The effective length factor of the frame members for 
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the out-of-plane action is ky=1.0 and for the in-plane action 

is 0
x

k   , which could be presented in the following 

equation (Dumonteil 1992) 

1.6 4.0 ( ) 7.5

7.5

A B A B

A B

G G G G
k

G G

  


 

 (12) 

Where, GA and GB are the ratios of the flexural stiffness 

of the columns to the stiffness of the beams at each end-

joints of the column. The whole length of the columns is 

assumed as unbraced, but the unbraced length of beams is 

equal to one-fifth of their length.  

iii. The displacement and resistance constraints are 

considered in accordance with AISC (2001) as the 

following relations: 

a. The maximum lateral displacement 

0T R
H


   (13) 

Where, 
T

  is the maximum lateral displacement, H is 

the total height of the structure. The maximum drift is equal 

to 1 / 300 .  

b. The lateral displacement between stories 

0 1, 2, ...,i

I s

i

d
R i n

h
    (14) 

Where, di is the difference between the lateral 

displacements of two stories, hi is the height of the ith story, 

ns is the total number of stories and RI is allowable relative 

drift, which is equal to 1 300 .  

c. The resistance constraints 

1 0, 0.2
2

8
1 0, 0.2

9

u u u

c n b n c n

u u u

c n b n c n

P M P
for

P M P

P M P
for

P M P

  

  

   

   








 
(15) 

Where, Pu is the axial required strength (in tension and 

compression), Pn expresses the nominal axial resistance (in 

tension and compression), 
c
  is the axial resistance 

reduction factor ( 0.9
t
   for tension and 0.85

c
   for 

compression), Mu represents the required flexural strength, 

Mn is the nominal flexural resistance and 
b
  indicates the 

flexural resistance reduction factor, which is equal to 

0.9
b
  .  

The nominal tensile strength, in agreement with the 

yielding of member section, is 

.
n g y

P A F  (16) 

Also, the nominal compressive strength is equal to 

.
n g cr

P A F  (17) 

Where 

Table 3 Optimization results obtained for the 3-bay 15 story 

frame 

El. group 
HPSAC

O 
HBB-BC ICA CSS ECBO ES-DE DSOS SG 

Present 

Work 

1 
W2111

1 

W2411

7 

W2411

7 

W2114

7 
W1499 

W1810

6 

W1610

0 

W2710

2 
W27102 

2 
W1815

8 

W2113

2 

W2114

7 

W1814

3 

W2716

1 

W3615

0 

W3215

2 

W3012

4 
W21122 

3 W1088 W1295 W2784 W1287 W2784 W1279 W1279 W1482 W1482 

4 
W3011

6 

W1811

9 

W2711

4 

W3010

8 

W2410

4 

W2711

4 

W2711

4 

W2410

4 
W27102 

5 W2183 W2193 W1474 W1876 W1461 W3090 W2193 W2162 W2162 

6 
W2410

3 
W1897 W1886 

W2410

3 
W3090 W1088 W1279 W1871 W2168 

7 W2155 W1876 W1296 W2168 W1448 W1871 W2155 W1461 W1461 

8 
W2711

4 
W1865 W2468 W1461 W1461 W1865 W1461 W1253 W1253 

9 W1033 W1860 W1039 W1835 W1430 W828 W1422 W1443 W1443 

10 W1846 W1039 W1240 W1033 W1240 W1240 W1443 W1443 W828 

11 W2144 W2148 W2144 W2144 W2144 W2148 W2148 W2144 W2144 

Best W. (lb) 95850 97689 93846 92723 86986 93315 91248 84537 83247 

Ave. W. (lb) N/A* N/A* N/A* N/A* 88410 98531 N/A* 88715 87143 

St. Dev. N/A* N/A* N/A* N/A* N/A* 3294 N/A* 3210 2240 

No. 

Analyses 
6800 9900 6000 5000 9000 10000 N/A 12000 12000 

*N/A: Not available 
 

 

2

2

(0.658 ) for 1.5

0.877
( ) for 1.5

c

cr y c

cr y c

c

F F

F F







 

 







 
(18) 

y

c

Fkl

r E



  (19) 

In the above equations, Ag is the gross area of the 

member and k is the effective length factor.  

In Table 3, the final result of the present method is 

compared with some other methods of the literature. The 

presented method gained the lowest weight of 83247 lb 

with an average of 12000 analyses in 20 independent runs 

of the algorithm. In this case, the critical value of 

constraints is limited to 7.510-6 and no constraint violation 

is occurred. Also, the convergence graph of the method is 

presented in Fig. 10. Star Graph algorithm (SG), which is a 

meta-heuristic method introduced by authors, is applied in 

this article as a global search engine. The minimum weight 

among the other methods is obtained by ECBO (Kaveh and 

Ilchi Ghazaan 2015), which is equal to 86986 lb with an 

average of 9000 analyses in 20 independent runs of the 

algorithm. Table 3 shows that a design weight of 95850 lb 

has been obtained by HPSACO (Kaveh and Talatahari 

2009a), 97689 lb by HBB-BC (Kaveh and Talatahari 

2010a), 93846 lb by ICA (Kaveh and Talatahari 2010b), 

92723 lb by CSS (Kaveh and Talatahari 2012), 86986 lb by 

ECBO (Kaveh and Ilchi Ghazaan 2015), 93315 lb by ES-

DE (Talatahari et al. 2015), 91248 lb by DSOS (Talatahari 

2016), and 84537 lb by SG (Asil Gharebaghi et al. 2017). 

The final results indicate that the best and average weight of 

the structure and the standard deviation of the results are 

improved using the present method rather than other hybrid 

and non-hybrid methods.  
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Fig. 11 Schematic of the 3-bay 24-story frame 
 

 

Fig. 12 Convergence graph of the 3-bay 24-story frame 

problem 
 

 

4.3 A 3-bay 24-story frame problem 
 

The third example deals with the optimal weight design 

of a 3-bay 24-story frame, as shown Fig. 11 (Kaveh and 

Talatahari 2012). The members of the structure are divided 

into 20 groups: 16 groups for the columns and 4 groups for 

the beams. Beam sections should be considered as 267W-

shapes; however, column sections are limited to W14. The 

modulus of elasticity and the yield stress of the material are 

29.732 Msi (205 GPa) and 33.4 ksi (230.3 MPa), 

respectively.  

The effective length factor of the members for out-of-

plane action ky, is equal to one, and for in-plane action for a 

sway frame is kx≥0. For all members, the unbraced length is 

equal to the whole length of the element. The resistance and 

displacement constraints are similar to the previous 

problem, and the design requirements should be in 

compliance with AISC (2001) specification.  

As shown in Table 4, the problem has been examined by 

GA (Saka 1998), ACO (Camp et al. 2005), HS (Degertekin  

Table 4 Optimization results for the 3-bay 24-story frame 

El. Group GA ACO HS CSS ECBO ES-DE DSOS SG 
Present 

Work 

1 
838292194

UB 
W3090 W3090 W3090 W3090 W3090 W3090 W3090 W3090 

2 
30510225U

B 
W818 W1022 W2150 W615 W2155 W2162 W818 W813 

3 
45719182U

B 
W2455 W1840 W2148 W2455 W2148 W2148 W2148 W2455 

4 
30510225U

B 
W821 W1216 W1219 W68.5 W1045 W2155 W68.5 W68.5 

5 
30510225U

C 

W1414

5 

W1417

6 

W1417

6 

W1414

5 

W1414

5 

W1417

6 

W1417

6 
W14145 

6 
305368129

UC 

W1413

2 

W1417

6 

W1414

5 

W1413

2 

W1410

9 

W1410

9 

W1414

5 
W14132 

7 
30530597U

C 

W1413

2 

W1413

2 

W1410

9 
W1499 W1499 

W1412

0 
W1499 W1499 

8 
356368129

UC 

W1413

2 

W1410

9 
W1490 W1490 

W1414

5 
W1482 W1482 W1490 

9 
30530597U

C 
W1468 W1482 W1474 W1474 

W1410

9 
W1461 W1482 W1474 

10 
20320371U

C 
W1453 W1474 W1461 W1438 W1448 W1499 W1438 W1438 

11 
305305118

UC 
W1443 W1434 W1434 W1438 W1438 W1434 W1430 W1438 

12 
15215223U

C 
W1443 W1422 W1434 W1422 W1430 W1438 W1426 W1422 

13 
305305137

UC 

W1414

5 

W1414

5 

W1414

5 
W1499 W1499 

W1412

0 
W1490 W1499 

14 
305305198

UC 

W1414

5 

W1413

2 

W1413

2 
W1499 

W1413

2 

W1410

9 
W1499 W1499 

15 
356368202

UC 

W1412

0 

W1410

9 

W1410

9 
W1499 

W1410

9 
W1490 W1499 W1499 

16 
356368129

UC 
W1490 W1482 W1482 W1482 W1468 W1490 W1490 W1482 

17 
356368129

UC 
W1490 W1461 W1468 W1468 W1468 W1482 W1461 W1468 

18 
356368153

UC 
W1461 W1448 W1443 W1461 W1468 W1438 W1461 W1461 

19 
20320360U

C 
W1430 W1430 W1434 W1430 W1461 W1438 W1434 W1430 

20 
25425489U

C 
W1426 W1422 W1422 W1422 W1422 W1422 W1422 W1422 

Best W. 

(lb) 
251547 220465 214860 212364 201618 212492 209795 202227 201489 

Ave. W. 

(lb) 
N/A* 229555 222620 215226 209644 N/A* N/A* 212734 207170 

St. Dev. N/A* 4561 N/A* 2448 N/A* N/A* N/A* 3450 2212 

No. 

analyses 
30000 15500 13924 5500 15360 12500 7500 14000 14500 

*N/A: Not available 

 

 

Fig. 13 Schematic of the planar 200-bar truss 
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Fig. 14 Convergence graph of the planar 200-bar truss 

problem 

 

Table 5 Optimization results for the planar 200-bar truss  

Groups Members 

Optimal cross-sectional areas (in2) 

CSP TLBO SAHS SG 
Present 

work 

1 1, 2, 3, 4 0.1480 0.1460 0.1540 0.1480 0.1470 

2 5, 8, 11, 14, 17 0.9460 0.9410 0.9410 0.9460 0.9400 

3 19, 20, 21, 22, 23, 24 0.1010 0.1000 0.1000 0.1000 0.1000 

4 18, 25, 56, 63, 94, 101, 132, 139, 170, 177 0.1010 0.1010 0.1000 0.1000 0.1000 

5 26, 29, 32, 35, 38 1.9461 1.9410 1.9420 1.9460 1.9440 

6 
6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30, 31, 33, 

34, 36, 37 
0.2979 0.2960 0.3010 0.2979 0.2966 

7 39, 40, 41, 42 0.1010 0.1000 0.1000 0.1001 0.1000 

8 43, 46, 49, 52, 55 3.1072 3.1210 3.1080 3.1060 3.1059 

9 57, 58, 59, 60, 61, 62 0.1010 0.1000 0.1000 0.1010 0.1000 

10 64, 67, 70, 73, 76 4.1062 4.1730 4.1060 4.1052 4.1050 

11 
44, 45, 47, 48, 50, 51, 53, 54, 65, 

66, 68, 69, 71, 72, 74, 75 
0.4049 0.4010 0.4090 0.4049 0.4033 

12 77, 78, 79, 80 0.1944 0.1810 0.1910 0.1869 0.1921 

13 81, 84, 87, 90, 93 5.4299 5.4230 5.4280 5.4288 5.4277 

14 95, 96, 97, 98, 99, 100 0.1010 0.1000 0.1000 0.1009 0.1000 

15 102, 105, 108, 111, 114 6.4299 6.4220 6.4270 6.4288 6.4277 

16 
82, 83, 85, 86, 88, 89, 91, 92, 103, 

104, 106, 107, 109, 110, 112, 113 
0.5755 0.5710 0.5810 0.5748 0.5738 

17 115, 116, 117, 118 0.1349 0.1560 0.1510 0.1349 0.1339 

18 119, 122, 125, 128, 131 7.9747 7.9580 7.9730 7.9718 7.9718 

19 133, 134, 135, 136, 137, 138 0.1010 0.1000 0.1000 0.1010 0.1 

20 140, 143, 146, 149, 152 8.9747 8.9580 8.9740 8.9747 8.9718 

21 
120, 121, 123, 124, 126, 127, 129, 

130, 141, 142, 144, 145, 147, 148, 150, 151 

0.7064

8 
0.7200 0.7190 0.7060 0.7055 

22 153, 154, 155, 156 0.4225 0.4780 0.4220 0.4221 0.421 

23 157, 160, 163, 166, 169 
10.868

5 

10.897

0 

10.892

0 

10.866

2 
10.8665 

24 171, 172, 173, 174, 175, 176 0.1010 0.1000 0.1000 0.1010 0.1000 

25 178, 181, 184, 187, 190 
11.868

4 

11.897

0 

11.887

0 

11.866

1 
11.8665 

26 
158, 159, 161, 162, 164, 165, 168, 

179, 180, 182, 183, 185, 186, 188, 189 

1.0359

99 
1.0800 1.0400 1.0358 1.0348 

27 191, 192, 193, 194 6.6859 6.4620 6.6460 6.6858 6.6848 

28 195, 197, 198, 200 10.8111 
10.799

0 

10.804

0 
10.8111 10.81 

29 196, 199 
13.846

49 

13.922

0 
13.870 

13.845

0 
13.845 

Best W. 

(lb)  

25467.

9 

25488.

15 

25491.

9 

25461.

05 
25452.98 

Ave. W. 

(lb)  

25547.

6 

25533.

14 

25610.

2 

25537.

87 
25482.32 

St. Dev. 
 

135.09 27.44 141.85 23.59 20.12 

No. 

Analyses  
31700 28059 19670 20000 20000 

 

 

2008), CSS (Kaveh and Talatahari 2012), ECBO (Kaveh 

and Ilchi Ghazaan 2015), ES-DE (Talatahari et al. 2015), 

DSOS (Talatahari 2016), and SG (Asil Gharebaghi et al. 

2017). The optimum weight of the present method is equal 

to 201489 lb with an average of 14500 analyses for 20 

independent runs of the algorithm. In this case, the critical 

value of constraints is limited to 1.210-5 and no constraint 

violation is occurred. The convergence graph of the method 

is presented in Fig. 12. The best result among the other 

methods belongs to ECBO (Kaveh and Ilchi Ghazaan 

2015). Its optimal weight is equal to 201618 lb with an 

average of 15360 analyses. This indicates that the best and 

average weight of the frame and the standard deviation of 

the method are improved using the results of the present 

research.  

 

4.4 A Planar 200-bar truss problem 
 

The optimal design of a planar 200-bar truss, shown in 

Fig. 13, is considered. The elements of the truss are divided 

into 29 groups as shown in Table 5. The material density 

and modulus of elasticity are considered as 0.283 lb/in3 and 

30 Msi, respectively. The stress should not exceed 10 ksi in 

the compressive or the tensile elements. There are three 

independent loading conditions: (1) 1.0 kip acting in the 

positive x-direction at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 

62, and 71; (2) 10 kips acting in the negative y-direction at 

nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 

22, 24, … , 71, 72, 73, 74, and 75; and (3) conditions 1 and 

2 acting together.  

In Table 5, the optimal results of CSP (Kaveh et al. 

2014), TLBO (Degertekin 2013), SAHS (Degertekin 2012) 

and SG (Asil Gharebaghi et al. 2017) are compared with the 

presented method. The best result, among all the other 

methods, belongs to SG with weight of 25461.05 lb, and an 

average of 20,000 analyses of the structure. However, in the 

present method, the weight of 25452.98 lb has been 

obtained using the same number of analyses. In this case, 

the critical value of constraints is limited to 1.210-6 and no 

constraint violation is occurred. The convergence graph of 

this method is presented in Fig. 14. Besides, the 

improvement of the results of Path Projection method in 

comparison with SG and the other meta-heuristic methods 

indicates the performance of the resulted hybrid algorithm.  
 

 

5. Conclusions  
 

In this article, a new hybrid method has been introduced 

to reinforce the local search ability of some meta-heuristic 

algorithms. Herein, this method is applied to a newly 

developed meta-heuristic algorithm, entitled Star Graph 

(SG). In the case of constraint violation, Path Projection 

Method suggests a new path, which effectively improves 

the convergence process. Conceptually, the classic methods 

have a significant capacity in the local search; hence, the 

hybrid classic-meta heuristic method can be successful in 

both local and global searches. Path Projection Method has 

been developed based on the concept of Gradient Projection 

Method. However, the algebraic equations have been 

replaced with some new approximated geometrical 

counterparts. Therefore, not only the capability of the 
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classic method has been maintained, but the calculation cost 

has been decreased. Also, the limitations such as difficulties 

in the gradient calculation have been eliminated. Path 

Projection Method consists of three main steps: (1) the 

identification of the active constraint, (2) finding the 

neighboring point, and (3) the determination of the direction 

and step length of the agent's movement. In this study, the 

suggested method has been applied to the optimal design of 

truss and frame structures. The results are compared with 

some hybrid and non-hybrid methods of the literature. 

Although it is not good to compare a hybrid method with a 

non-hybrid algorithm, the comparison shows that the 

presented hybrid method has a noticeable performance. In 

fact, utilizing hybrid features may improve the performance 

of non-hybrid methods. The results show that the presented 

algorithm outperforms some new hybrid method.  
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Appendix A. The root of line equation in vector 
space 
 

For simplification purpose only, if X( , , )x y z  is a 

vector in three-dimensional space, the line equation will be 

expressed as Eq. (A1) 

0
.PX U  (A1) 

0 0 0 0 1 2 3
( , , ) ( , , )x x y y z z u u u     (A2) 

Where, 
0 0 0

( , , )A x y z  is a given point on the line. The 

U is direction cosine of the line and can be defined by two 

given points (A(x0, y0, z0), B(x1, y1, z1)) 

1 0

1 2 3

1 0

1 0 1 0 1 0

1 0 1 0 1 0
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
  



  
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  

 (A3) 

To find a point on the line which satisfies 0z . Eq. 

(A3) is substituted in Eq. (A2) 

0

0

3

0
z

z
u

     (A4) 

Thus, this point can be easily obtained 

1 2

0 0 0 0

3 3

( , , ) ( , , 0)
u u

x y z x z y z
u u
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Using Eqs. (A3) and (A5) 
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Assuming that the points A and B are defined in vector 

space  
1 2

...
n

S x x x z  with 1n   variables 

1 2
...

A A A A

A n
S x x x z     (A7) 

1 2
...

B B B B

B n
S x x x z     (A8) 

Where, z can be the value of a function on the variable 

1 2
[ ... ]

n
X x x x  in the vector space. The root of 

this function (z= 0) can be expressed as Eq. (A9) 

A

A

i i

i

z
x x

m
   (A9) 

B A

i B A

i i

z z
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x x



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The index i is the counter of variables of the vector X .  
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