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1. Introduction 
 

Since Frahm (1909) invented the tuned mass damper, it 

is widely used as a passive device to control vibration level. 

It is an auxiliary component introduced to the mechanical 

structures to attenuate the vibrations of the main structure 

by dissipating the vibratory energy. To improve its 

efficiency, Ormondroyd and Den Hartog (1928) proposed 

the first theoretical approach on the TMD. Brock (1946) has 

extended this optimality to an analytical solution for the 

optimal damping rate. In addition, various recent studies 

have been carried out to increase the efficiency of absorbers 

(Liu and Liu 2005, Lee et al. 2006). In order to improve the 

efficiency of this device, a friction element is integrated into 

the TMD based on the reliability of the energy dissipation 

friction (Hartung et al. 2001, Lopez et al. 2004). Louroza et 

al. (2005) studied the effect of the mass ratio and the 

friction force on the frequency response of a vibratory 

system with a FTMD; their works show that the friction 

absorber is more effective in reducing vibration than the 

mass absorber. 

The vibration reduction by FTMD needs the 

understanding of the excited system. Systems with FTMD 

are classified as non-linear system due to discontinuous 

behavior of the motion; this behavior is nonlinear relatively 

to velocity and to friction force. The motion balance 

between two cases; stick motion and slip motion. In the 

stick motion case, the main system and the FTMD are stick  
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and the steady-state amplitudes are determined by the 

resolution of a system with one degree of freedom. While in 

the slip motion case, the system is linear and the steady-

state amplitudes can be determined by the equivalent 

viscous damping method. The equivalent viscous damping 

method is an approximation method of friction. It consists 

on replacing the Coulomb friction damping by a linear 

viscous damping such as the latter which dissipated the 

same quantity of energy dissipated by the dry friction. 

Jacobson (1930), determined the equivalent viscous 

damping of friction damping, its results are compared by 

Den Hartog's work (Den Hartog 1931), and they are valid at 

resonance frequencies. Tan and Rogers (1995) used this 

method to study a system with several degrees of freedom 

in the slide regime. Recently, Fang et al. (2012) studied the 

effect of friction damping on the optimal parameters of 

TMD with a harmonic ground excitation system. 

The identification of the optimum parameters leads to 

the best design of the TMD and increases its efficiency to 

industrial applications. The optimization consists on finding 

the optimum parameters of the TMD as a function of the 

main mass parameters. The researchers proposed several 

methods to find these parameters. Den Hartog (1956) 

proposed a method for optimizing the parameters of a mass 

absorber and reducing the sensitivity of the main mass 

response to the variation of the excitation frequency such 

that the two resonance peaks of the frequency response are 

equal. Pennestri (1998) used a method to minimize the 

maximum of the frequency amplitude based on an objective 

function with six equations and seven unknowns. For a 

system with several degrees of freedom, Son et al. (2015) 

used a pendulum and spring-mass absorbers to reduce the 
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vibration of 2 degrees of freedom system. They used fixed 

point and genetic algorithms to determine the optimal 

absorber parameters. Ghosh and Basu (2007) used the 

‘fixed-point’ theory to develop a closed-form expression for 

the optimum tuning ratio. The expression for the optimal 

tuning ratio is a function of the structural damping and the 

mass ratio. Lu et al. (2017) proposed an approach to design 

a multiple tuned mass dampers by using the transfer 

function to obtain the optimum stiffness and damping for 

each TMD.  

However, the most of the previous studies FTMD 

optimization represent parametric studies constructed from 

a numerical resolution of the differential equations of 

motion. Louroza et al. (2005) studied the effect of the mass 

ratio and the friction force on the frequency response of a 

vibratory system with a FTMD. Gewei and Basu (2011) 

studied the effect of the increase of the friction coefficient 

on the amplitude of the vibrations of the main mass with 

seismic excitation. Pisal and Jangid (2016) are investigated 

the response of the single-degree-of-freedom (SDOF) 

structure with TMFD under harmonic and seismic ground 

excitations. They found that the displacement of the 

principal structure attainedits minimum value at a given 

level of excitation, an optimum value of mass ratio, tuning 

frequency ratio and damper slip force. Chung et al. (2012) 

used a friction pendulum tuned mass damper to reduce the 

vibrations of Taipei 101 under white-noise wind force. They 

combined a tuned mass damper with viscous damping and 

isolation systems with friction pendulums. The most 

interesting approach has been proposed by Ricciardelli and 

Vickery (1999). They proposed a closed form expression 

for optimal FTMD parameters; tuning frequency and 

coefficient of friction at the resonant frequencies of the 

systems. Their works don’t take into account the viscous 

damping of the mass absorber. 

First, this paper examines the stick-slip behavior of one 

degree of freedom system with a friction tuned mass 

damper. In this section, the steady-state amplitudes in 

sticking case and sliding case of motion are analytically 

computed. Second, an optimization formulation of the 

FTMD parameters is presented for better design and 

industrial application. 
 

 

2. Vibratory model 
 

The main system that will be studied, illustrated in Fig. 

1, is a one degree of freedom linear system, modeled by the 

mass m1, the linear stiffness k1 and the viscous damping c1. 

The FTMD of mass m2 is attached to the main system, with 

k2 and c2 which are respectively the linear stiffness and the 

viscous damping of the absorber. The contact between the 

two masses is modeled by the dry friction force of Coulomb 

Fnl. The main mass is excited by a harmonic force F where 

F0 is the amplitude and Ω is the pulsation. 

The system is nonlinear due to the presence of the 

Coulomb friction force. This force is proportional to the 

sign of the relative velocity 𝑥̇1 − 𝑥̇2and the motion of the 

system balance between two states of the motion; the 

sliding motion and the sticking motion. 

The equations that describe the sliding case are as  

 

Fig. 1 One degree of freedom system with FTMD 

 

 

follows

  
    )(212212111111 tFFxxkxxcxkxcxm nl  

 
(1a) 

    021221222  nlFxxkxxcxm   (1b) 

The friction force Fnl as a constant force with varying 

signum function is written as follows 

 21 xxNsignFnl
  

 
(2) 

Where N is the normal load applied by the mass FTMD 

and μ is the friction coefficient of Coulomb. 

Furthermore, the sticking occurs if the condition in Eq. 

(3) is satisfied 

    Nxxkxxcxm  21221222


 
(3) 

In this case, the equation of motion can be written as 

follows 

   tFxkxcxmm  cos01111121


 
(4) 

To transform the equations of motion in the sliding case 

and in the sticking case to the non-dimensional form, the 

following quantities are used 
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The non-dimensional equations Eqs. (1a)-(1b) of motion 

in the sliding state are written along these lines 

      cos22 21
2

2121111 enlaa ffyyryyryyy  

 
(5a) 

    02 21
2

2122 
r

f
yyyyy nl

aa    (5b) 

Where the non-dimensional friction force is written as 

follows 

 21 yysignfnl
  

 
(6) 

The condition of the sticking motion is written hence 

   
r

yyyyy aa


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2
2122 2 

 
(7) 

If this condition is verified, the two masses stick together 

and the system have one degree of freedom. The non- 
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Fig. 2 Frequency response Y1; with FTMD in sliding case, 

without FTMD, and with FTMD in sticking case 

 

 

dimensional equation of motion is written thusly 
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3. Stick-slip behavior and steady-state responses 
  

We started by investigating the stick-slip behavior of the 

two degrees of freedom system. Fig. 2 shows changes in the 

frequency response of the main mass by the addition of the 

FTMD. The parameters used in this example are; ωa=1, r=0.1 

and ξ2=ξ1=0.01.  

Initially, the one degree of freedom system without FTMD 

has a single resonant frequency f=0.16. Then, the integration 

of the absorber modifies the frequency response of the main 

mass and the resonant frequency decreases to f=0.15. In this 

so-called sticking regime, the friction force is greater than the 

maximum inertia force acting on the absorber. However, in 

sliding regime, the friction force is less than the maximum 

inertia force acting on the absorber. The two masses are in 

pure sliding and the resonant frequencies; f1 =0.135 and f2 

=0.19, are the frequencies of a linear system with two degrees 

of freedom. 

In the slip phase of motion, the equivalent viscous 

damping method is used to determine the responses of the 

main mass and of the FTMD. The idea is to replace the non-

linear friction damping by a linear viscous damping that 

dissipates the same amount of energy during a single cycle of 

motion.  

This amount of energy equals 

  
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e dyy
d

E 
2

21


 
(9) 

For a harmonic excitation, we propose that the solutions 

sought are harmonic solutions. Where y1(τ) and y2(τ) are 

written in the flowing form 
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(10) 

Depending on Y1 and Y2 and the non-dimensional 

parameters of the system, the equivalent viscous damping rate  

 
(a) Frequency response 

 
(b) Temporal response at f=0.1 

Fig. 3 omparison between the numerical method(-) and the 

analytical method(-) (equivalent viscous damping) in the 

sliding regime 

 

 

is defined as 
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(11) 

The equivalent force to the friction force as a function of 

the equivalent damping and the relative velocity is written as 

 21 yyF ed
 

 
(12) 

The frequency response of the relative displacement Y1-Y2 

is written as follows 
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Substituting the Eq. (11) of the equivalent viscous 

damping rate in Eq. (13), and then resolving it with respecting  
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Fig. 4 Frequency responses Y1: The numerical method and 

the analytical method in the sticking case of motion 

 

 

Y1-Y2. The Eq. (13) has two solutions. Their nature depends on 

the system parameters. We take into account the real and 

positive solution.  

To obtain the responses of the main mass and of the 

FTMD, we substitute the real and the positive solution of Y1-

Y2 in Eq. (11) of the equivalent damping and from the 

equations of motion Eqs. (1a)-(1b), we can calculate the 

frequencies reponses Y1 and Y2. 

The equivalent damping method is based on linearization 

of the non- linear friction force in slip regime. From the 

example shown in Figs. 3(a)-(b), this method gives a good 

approximation to represent the responses of the vibratory 

system. 

On the other hand, the frequency response of the system in 

the sticking state is determined by Eq. (8), the frequency 

response is written thus 

    21

22
21

211  
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r

f
YY e

 
(14) 

The advantage of the analytical determination of the 

frequency response in both cases of motions is the reduction 

of the resolution time since the numerical integration is slow 

(Fig. 4). 

For determining the coefficient of friction which separates 

the sliding zone from of the sticking zone. The difference 

between the friction force and the maximum inertia force 

acting on the absorber Facan be computed by the following 

equation 

   
r

yyyyyF aaa


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2
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(15) 

The effect of the increase of the friction coefficient on the 

difference Fa and on the amplitude at the frequencies of the 

resonances is shown in Figs. 5(a)-(b). The amplitude Y1 of the 

main mass decreases and the difference between the inertia 

force and the friction force is positive up to a limiting friction 

coefficient, where the two masses stick and the difference Fa 

becomes negative.  

The limit friction coefficient can be determined by the 

substitution of Eq. (14) on Eq. (7). At this limit value, the 

velocities of the main mass and of the FTMD are equals and  

 
(a) First frequency 

 
(b) First frequency 

Fig. 5 Response of the main mass(-) and the difference Fa(-

)as a function of the friction coefficient at the  resonant 

frequencies 

 

 

the amplitudes are also. 

The limit friction coefficient is written so 
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4. Optimum design of friction tuned mass damper 
 

The Optimization consists of determining the optimum 

FTMD parameters; the friction coefficient µ, the tuned 

frequency ωa and the mass ratio r at the frequencies of the 

resonance as a function of the main mass parameters as a 

function of the primary mass parameters and of the 

parameters excitation.  

 

4.1 System without viscous damping 
 

For the two frequencies of the resonance, the minimum 

vibration amplitude corresponds to the limit friction 

coefficient. Without viscous damping, the system has the two 

following pulsations of resonance 
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Fig. 6 Optimal tuned frequency as a function of the mass 

ratio 

 

 

Fig. 7 Optimal friction coefficient as a function of the mass 

ratio 
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The optimal friction coefficient can be determined by 

substituting the Eq. (17) and Eq. (18) in the Eq. (16) of the 

limit friction coefficient, hence the optimal coefficients for 

each pulse are written accordingly 
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The two coefficients are not equal. The equality of these 

two coefficients gives the optimal tuned frequency 

r
aop




1

1
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(21) 

We note that this result is coinciding with the result 

determined by Ricciardelli and Vickery when the vibratory  

 

Fig. 8 Maximum response of the main mass as a function of 

the mass ratio 

 

 

system is subjected to an excitation with varying frequency. 

This tuned optimal frequency is used to validate the 

optimization criterion of the friction coefficient. 

Then, the optimal coefficient of friction is obtained by 

replacing Eq. (21) in Eq. (19) or Eq. (20) and recalculating the 

coefficient of friction, the optimum coefficient of friction is 

obtained as follows 

  rrrr

rr
rfeop
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11

1
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(22) 

Eq. (21) shows that the best performance of the FTMD is 

obtained when this is tuned to the frequency of the stick 

system (Eq. (8)). Moreover, in Fig. 6, the optimum tuned 

frequency of a FTMD is higher than that of a viscous TMD. 

This frequency decreases by increasing the mass ratio. If the 

main mass m1 and the stiffness k1 are constant, it can be 

concluded that the increase in the mass of the FTMD favors 

the decrease of the stiffness k2.  

Fig. 7 shows that the optimum friction coefficient depends 

on the mass ratio. This optimal coefficient increases by 

increasing the mass ratio. Additionally, the amplitude of the 

excitation force fe favors the increase of the optimal 

coefficient at a constant mass ratio. These results also show 

that the zone of slip is proportional to the mass ratio and to the 

excitation force. 

Further, the effect of the mass ratio on the maximum 

response of the main mass is shown in Fig. 8. The 

augmentation of the mass of the FTMD favors the decrease of 

the maximum displacement of the main mass. 

Figs. 9(a)-(b) shows the frequency and the temporal 

responses of the primary mass without optimization and with 

optimization. This method gives a signification reduction of 

the vibration response of primary mass. 

However, it is recommended to optimizer the FTMD 

parameters for a desired primary mass displacement. It is 

posited that the amplitude of the primary mass equals to a 

desired displacement Ya, the optimal friction coefficient can 

be written using Eq. (5b) and Eq. (14) 
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(23) 

765



 

Aymen Nasr, Charfeddine Mrad and Rachid Nasri 

 

 
(a) Frequency responses 

 
(b) temporal Frequency responses 

Fig. 9 Frequency and temporal responses of the primary 

mass at the optimal parameters 

 

 

Fig. 10 Y1 as a function of the mass ratio for the two 

resonant frequencies 

 

 

Then, we substitute the resonant frequencies θ1 and θ2 

into equations Eq. (5b) and Eq. (14) and used the optimal 

tuned frequency expression from Eq. (21). The resolution of 

the equality of the two equations for r gives the optimal 

mass ratio.  

Finally, the optimal mass ratio is written as 
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Fig. 11 Optimal mass ratio as a function of the desired 

displacement Ya 

 

 

For an undamped system, Fig. 11 shows that the optimal 

mass ratio increase if the amplitude of the excitation force 

augmented for a constant main mass displacement and this 

ratio decreases if the desired displacement increases.  

On the contrary, the tuned frequency decreases when the 

amplitude force decreases (Fig. 12(a)). That is to say that if 

the mass and the stiffness of the primary system are constant, 

it is necessary to increase the mass of the FTMD and to 

decrease the elasticity of the FTMD to have weak amplitude. 

On the other hand, to obtain a low displacement 

amplitude, the using of height friction coefficient is 

recommended, and it augments if the force amplitude 

increases (Fig. 12(b)).  

 

4.2 Systems with viscous damping 
 
If the viscous dampers of the main mass and absorber are 

taken into account, the frequencies of the resonance are 

determined by the use of Rayleigh damping. The notion of 

Rayleigh makes it possible to define the non-dimensional 

damping matrix C’as a linear combination of the matrices of 

stiffness K’and of mass M’ 
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From Eq. (25), the coefficients α and β are written as 
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(26) 

The combination is mathematically valid if the 

following condition is validated 

a 12 

 
(27) 

The pulsations of the resonance are written hence 
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(a) Optimal tuned frequency 

 
(b) Optimal friction coefficient 

Fig. 12 Optimal parameters system without viscous 

damping as a function of the desired displacement Ya 
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(28) 

The approach consists first on substituting Eqs. (28) in 

Eq. (16). The two coefficients obtained are not equal. 

Second, the equalization of these two coefficients gives the 

optimal value of the tuned frequency; it can be determined 

by solving the following equation 
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(29) 

Then the substitution of this frequency in Eq. (16) gives 

the optimal friction coefficient. This approach is applied by 

varying ξ1 and by respecting the condition of Eq. (27).  

The results in the Fig. 13(a) show that the increase in the 

damping rate ξ1 favors the increase of the optimal tuned 

frequency for a constant mass ratio. On the other hand, at a 

constant damping rate, if the mass ratio increases the 

optimal tuned frequency decreases. Hence, we can conclude 

that if the main system damping increases, the FTMD must 

be more rigid. For a high damping rate the optimal tuned 

frequency is supeieur to 1, it is on the contrary of TMD  

 
(a) Optimal tuned frequency 

 
(b) Optimal friction coefficient 

Fig. 13 Optimal parameters system with viscous damping 

as a function of the damping rate of the main mass 

 

 

Fig. 14 Damping rate of the FTMD as a function of the 

damping rate of the main mass 

 
 

where it does not exceed 1. This increase preserves the 

uniqueness of the coefficient of optimal friction. 

The optimum friction coefficient represents the limit of 

the sliding zone. (Fig. 13(b)).This optimum coefficient of 

friction decreases by increasing the damping rate ξ1 and  

the sliding area get reduced . 

From Eq. (27), the damping ξ1 and ξ2 are proportional. 

This relation validates the use of the Rayleigh damping 

approximation. Fig. 14 shows that the FTMD damping rate 

increases respectively with the increase of the main mass 

damping. 
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Fig. 15 Maximum response of the main mass as a function 

of the damping rate 

 

 

Fig. 16 Optimal mass ratio as a function of desired 

displacement Ya 

 

 

The damping rate effect on the maximum amplitude of 

the main mass vibrations shown in Fig. 15 demonstrates 

that the use of a high damping rate is recommended to 

reduce the vibrations of the main mass. 

For a desired main mass displacement and if the viscous 

dampers of the main mass and FTMD are taken into account, 

the resonant frequencies are the same of the first section of 

optimization. Using the same method to determine the friction 

coefficient, it is written as 
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(30) 

The analytical determination of the optimal parameters is 

complicated in this case, which requires the use of an 

algorithm implanted on Matlab. The tuned frequency can 

determine using Eq. (28). This method is only valid for low 

viscous damping rate. The effect of the viscous damping is 

very clear in Figs. 16, 17(a) and 17(b), the optimal values rop, 

ωaop and μop, decreases with the increase of the damping of the 

primary mass. 

Fig. 18 shows that the damping ξ1 and ξ2 are 

proportional and the increase in ξ1 requires an increase in 

FTMD viscous damping ξ2. 

 
(a) Optimal tuned frequency 

 
(b) Optimal friction coefficient 

Fig. 17 Optimal parameters system with viscous damping 

as a function of desired displacement Ya 

 

 

Fig. 18 Damping rate of the FTMD as a function of desired 

displacement Ya 

 

 
5. Conclusions 
 

In this paper, the response of a single degree of freedom 

system under a harmonic excitation to which an FTMD is 

attached, has been determined. In the sticking phase, the 

two masses stick together and form a single-degree-of-

freedom system and the response is set by solving an 
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equation of motion of a single-degree of freedom system. In 

the slip phase, the equivalent damping method represents a 

good approximation method for settling the main mass and 

the FTMD responses. 

Based on the method of Ricciardelli and Vickery, a 

formulation of the optimal parameters is established. For a 

system without viscous damping, the results found coincide 

with those of Ricciardelli and Vickery. The optimal 

coefficient of friction and the tuned frequency are 

determined with closed-form expressions in this case. For a 

system with viscous damping, the study illustrates the 

sensitivity of the optimal design of FTMD to the variation 

of the viscous damping of the main mass.  

The inverse problem of finding the TMD parameters 

given the magnitude of the force and the maximum 

acceptable displacement of the primary system is also 

considered, this study presents for a better design for 

industrial applications of the FTMD. 
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