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1. Introduction 
 

Micro-scale beams and plates are commonly used in 

micro-electro-mechanical system (MEMS) devices such as 

micro-sensors, micro-actuators, and micro-resonators. It is 

experimentally observed that, micro-scale structures exhibit 

size-dependent mechanical behavior (Andrew and Jonathan 

2005, Lam et al. 2003, Stölken and Evans 1998). 

Traditional continuum theories fail to predict the size effect 

in small-scale structures due to lack of a length scale 

parameter. Various higher-order continuum theories have 

been proposed to address the size-dependency. These 

theories employ one or more intrinsic length scale 

parameters. Among examples of such theoretical 

frameworks, we can mention nonlocal elasticity (Eringen 

1972), surface elasticity (Gurtin et al. 1998), strain gradient 

theories (Aifantis 1999, Lam et al. 2003) and couple stress 

theories (Mindlin and Tiersten 1962, Toupin 1962, Yang et 

al. 2002). Strain gradient theory (SGT) introduced by Lam  
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et al. (2003) and modified couple stress theory (MCST) 

proposed by Yang et al. (2002) are the two most commonly 

used higher order continuum theories in investigations 

involving small-scale structures. Strain gradient theory is 

derived by taking into account the second order 

deformation gradient beside the classical first order 

deformation gradient, resulting in three material length 

scale parameters in constitutive relations. Yang et al. (2002) 

incorporated the concept of moment of couples into 

classical couple stress theory and put forward modified 

couple stress theory, which employs a single length scale 

parameter. 

Using modified couple stress and strain gradient 

theories, researchers have developed various models to 

investigate behavior of homogeneous micro-plates 

undergoing static bending, free vibrations, or buckling. 

Akgöz and Civalek (2013), Asghari (2012), Jomehzadeh et 

al. (2011), Tsiatas (2009), Wang et al. (2013), Yin et al. 

(2010), Şimşek et al. (2015), and Zhong et al. (2015) 

adopted Kirchhoff plate model and analyzed mechanical 

behavior of homogeneous micro-plates in accordance with 

modified couple stress theory. In a number of studies, 

Mindlin plate model, i.e. first order shear deformation 

theory, and modified couple stress theory is utilized to 

examine structural mechanics problems of small-scale 

plates (Ke et al. 2012, Ma et al. 2011). Farokhi and 

Ghayesh (2016) used third-order shear deformation theory 
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in conjunction with modified couple stress theory. 

Lazopoulos (2009), Ramezani (2012), Wang et al. (2011), 

Akgöz and Civalek (2015), Farokhi and Ghayesh (2015), 

and Ansari et al. (2015) adopted strain gradient theory to 

capture the size effect in homogeneous micro-plates. 

In recent years, incorporation of functionally graded 

materials (FGMs) into small-scale structures has become 

feasible with advances in manufacturing technologies such 

as magnetron sputtering (Fu et al. 2003), chemical vapor 

deposition (Witvrouw and Mehta 2005), and modified soft 

lithography (Hassanin and Jiang 2014). As a result, 

structural problems involving functionally graded micro-

beams and micro-plates have attracted researchers’ 

attention. Some of these studies are carried out on the basis 

of modified couple stress theory (Mahmoud and Shaat 

2015, Kim and Reddy 2013, 2015, Lou and He 2015, 

Reddy and Kim 2012, Salehipour et al. 2015, Setoodeh and 

Rezaei 2017, Thai and Choi 2013, Thai and Kim 2013, Thai 

and Vo 2013). Strain gradient theory is also utilized to 

examine behavior of functionally graded small-scale 

structures. Farahmand  et al. (2015) employed strain 

gradient theory and Kirchhoff plate model for free vibration 

analysis of functionally graded micro-plates. In research 

work conducted by Sahmani and Ansari (2013) and 

Mohammadimehr et al. (2016), strain gradient theory is 

used in conjunction with third order shear deformation plate 

model to solve problems regarding FGM micro-plates. 

Examples of studies based on strain gradient theory and 

first order shear deformation theory include the articles by 

Ansari et al. (2013), Gholami and Ansari (2016), and 

Shenas and Malekzadeh (2016). 

In all studies mentioned in the foregoing paragraph, 

length scale parameters of functionally graded micro-plates 

are assumed to be constants. However, this is a strictly 

simplifying assumption since the length scale parameter is 

itself a material property (Mindlin 1963, 1965, Nikolov et 

al. 2007, Park and Gao 2006); and similar to the other 

material properties of a functionally graded medium it 

should vary as a function of spatial coordinates. For 

example, in strain gradient theory, the three length scale 

parameters are defined in terms of shear modulus and 

material parameters associated with higher-order 

deformation measures. Thus, for a functionally graded 

micro-structure, all of the three length scale parameters are 

themselves material properties, whose spatial variations 

need to be represented by suitable functions that depend on 

the coordinates. 

There are several studies in the literature, that account 

for the spatial variation of the length scale parameter. 

Kahrobaiyan et al. (2012) and Aghazadeh et al. (2014) 

incorporated through-the-thickness variation of the length 

scale parameter into the analysis of functionally graded 

micro-beams. Eshraghi et al. (2015, 2016) solved problems 

involving micro-scale FGM annular plates by considering 

the variation of length scale parameter. Alipour Ghassabi et 

al. (2017) applied nonlocal elasticity to examine free 

vibrations of rectangular nano-plates having a spatially 

variable nonlocal parameter. However, in the technical 

literature, there are no strain gradient theory-based studies 

that take into account smooth spatial variations of the three 

length scale parameters of micro-scale functionally graded 

rectangular plates. Note that developments presented in 

Aghazadeh et al. (2014) and Kahrobaiyan et al. (2012) are 

applicable for beams, those given in Eshraghi et al. (2015, 

2016) are valid for annular plates and those described in 

Alipour Ghassabi et al. (2017) are derived in accordance 

with nonlocal elasticity. Analysis of rectangular FGM 

micro-plates by means of strain gradient theory requires 

derivation and solution of completely different partial 

differential equations compared to those considered in these 

articles. The main objective in the present study is to put 

forward strain gradient theory based bending, free 

vibrations and buckling solutions for functionally graded 

rectangular micro-plates, that possess spatially variable 

length scale parameters.  

Governing partial differential equations and associated 

boundary conditions for bending, free vibrations, and 

buckling of rectangular FGM micro-plates are derived in 

accordance with strain gradient theory. All material 

properties, including the three length scale parameters of 

strain gradient elasticity, are assumed to be functions of the 

thickness coordinate in the derivations. Displacement field 

of the rectangular micro-plate is expressed in a unified way 

to be able to produce numerical results corresponding to 

three different plate theories, which are Kirchhoff, Mindlin, 

and third order shear deformation theories. Equation system 

comprising partial differential equations and boundary 

conditions is solved by means of differential quadrature 

method (DQM). Developed procedures are verified through 

comparisons made with the results available for limiting 

cases in the literature. Presented numerical results illustrate 

influences of length scale parameter variation, and 

geometric and material parameters upon static deflections, 

vibration frequencies, and critical buckling loads of 

functionally graded rectangular micro-plates. 
 

 

2. Formulation 
 

Fig. 1 depicts a functionally graded rectangular micro-

plate having a thickness h. Mid-plane of the undeformed 

plate is coincident with 1 2x x  plane. Deformed shape of 

the mid-plane in 1 3x x  plane is also shown in Fig. 1. 

Displacements of any point at time t along 1 2,x x  and 3x  

directions are denoted by 1 2,u u  and 3u , respectively; and 

can be expressed in a unified form as given below 

   

   
11 1 2 3 1 2 3 ,

3 1 1 2

, , , , ,

, , ,

xu x x x t u x x t x w

f x x x t

 


 (1a) 

   

   
22 1 2 3 1 2 3 ,

3 2 1 2

, , , , ,

, , ,

xu x x x t v x x t x w

f x x x t

 


 (1b) 

   3 1 2 3 1 2, , , , , ,u x x x t w x x t  (1c) 

where u , v  and w  are displacements of the mid-plane 

along 1 2,x x  and 3x , respectively; 1  and 2  are 

transverse shear strains of any point on the mid-plane due to  
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Fig. 1 Configuration and deformed shape of the FGM plate 

 

 

bending in 1 3x x  and 2 3x x  planes; and a comma 

stands for differentiation. Transverse shear strains 1  and 

2  are written in terms of the mid-plane rotations 1  and 

2  as follows 

     
11 1 2 , 1 2 1 1 2, , , , , , ,xx x t w x x t x x t    (2a) 

     
22 1 2 , 1 2 2 1 2, , , , , , .xx x t w x x t x x t    (2b) 

Shape function f in Eq. (1) controls through-the-

thickness distributions of transverse shear strain and stress. 

In the present study, we produce numerical results for three 

different plate theories, namely Kirchhoff plate theory 

(KPT), Mindlin plate theory (MPT), and third order shear 

deformation theory (TSDT). f-functions corresponding to 

these theories are given by 

  3
3

2
3

3 2

0,               for KPT,

,                for MPT,

4
 1 ,             for TSDT.

3

x
f x

x
x

h







 

  
  

 
 

 
(3) 

Note that in Kirchhoff plate theory transverse shear 

strain is assumed to be zero. Mindlin plate theory presumes 

constant transverse shear on the cross section. In third order 

shear deformation theory, transverse shear has a parabolic 

distribution. 

Partial differential equations of motion and boundary 

conditions are derived by using Hamilton’s principle, which 

postulates that 

  
2

1

0,
t

t
K U W dt     (4) 

where K , U , and W  are kinetic energy, total strain 

energy, and work done by external forces, respectively. 

According to strain gradient theory, strain energy of the 

micro-plate is written as 

    1 11
,

2

s s
ij ij i i ij ijijk ijkU p dVm     



     
(5) 

where ij  is stress; ij  is strain; 
 1

,  ,  s
i ijijkp m  are 

higher order stress tensors; i  denotes dilatation gradient  

 

Fig. 2 Discretization of the mid-plane 

 

 

vector; 
 1

ijk  represents deviatoric stretch gradient tensor; 

s
ij  is symmetric curvature tensor; and   is volume. 

Kinetic energy and work are of the forms 

22 2

31 21
,

2

uu u
K

t t t
dV



        
       

         
  (6a) 

1 2

2 2

1 2

1
.

2
x x

A A

w w
qwdA P P dA

x x
W

     
      
      

 
 (6b) 

 

where   is mass density;  1 2,q x x  is distributed 

loading; A stands for mid-plane area; and 
1x

P  and 
2xP  

are axial in-plane buckling loads. 

Deformation measures in Eq. (5) are defined by 

 , ,

1
,

2
ij i j j iu u    (7a) 

, ,i mm i   (7b) 

     
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1

, , , , ,
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1 1
2

3 15

1
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15
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 



  
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 (7c) 

 , ,

1
.

2

s
ij ipq qj p jpq qi pe e     (7d) 

eijk here designates alternating tensor, and ij  is 

Kronecker delta. Constitutive relations of strain gradient 

theory are expressed as 
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(8a) 

x2

x3

x1
b

a

h

q

Material 1

Material 2

x3, u3

x1, u1

w

x1

w,x1

ϕ1θ1

x1, i

x2, j

i=1 2 .     .     . 
j=1

2

.

.

.

j=Nx2

i=Nx1

0i,j

i,j+1

i+1,j

i,j-1

i-1,j

575



 

Reza Aghazadeh, Serkan Dag and Ender Cigeroglu 

 

   1 12 2 2
0 1 2,    ,  2 2 2  .s s

i i ij ijijk ijkp l l m l          (8b) 

where E is modulus of elasticity,   is Poisson’s ratio,   

is shear modulus, sk  is shear correction factor, and ,il  

0,1,2,i   are length scale parameters. All of the material 

properties, including the length scale parameters 

,  0,1, 2,il i   are assumed to be functions of the thickness 

coordinate 3.x  Shear correction factor is equal to unity in 

KPT and TSDT; and 5/6 in MPT. 

Use of the Hamilton’s principle given by Eq. (4) in 

conjunction with Eqs. (5)-(8) leads to following system of 

governing partial differential equations 
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Note that in static bending problems time derivatives on 

the right sides and terms involving buckling loads are set to 

zero. In free vibration analysis, there is no external forcing. 

Buckling formulation does not include any time derivatives 

as well as distributed loading. Application of Hamilton’s 

principle also yields the boundary conditions. However, 

because of their rather lengthy forms, the boundary 

conditions are not provided here. The coefficients in Eq. (9) 

are as follows 

 

(10a) 

 

(10b) 

 

(10c) 

 

(10d) 

 

(10e) 

 

(10f) 

 

  2 22
3 3 3 3 3

2

0 1 2 3 4 5, , , , ,

1, , , , , .

h

h

I I I I I I

x x x f x f f dx


 
 

(10g) 

578



 

Modelling of graded rectangular micro-plates with variable length scale parameters 

 

3. Numerical solution 
 

Differential quadrature method is employed to solve the 

system comprising governing partial differential equations 

and boundary conditions. The technique, which was 

originally proposed by Bellman and Casti (1971), is based 

on approximating derivative of a function by a weighted 

sum of functional values. thm  derivative of a function 

 ,z x t  with respect to x at a point ix  is represented as 
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N here is the number of nodes, and 
 m

ijc  are the 

weighting coefficients for the thm  derivative. The 

coefficients are available in the book by Shu (2000). Fig. 2 

depicts discretization of the mid-plane of the FGM micro-

plate. 
1x

N  and 
2xN  in the figure are numbers of grid 

points in 1x  and 2x  directions, respectively. 

An important factor influencing stability of DQM is the 

distribution of grid points. We used Chebyshev-Gauss-

Lobatto points, which result in a more stable procedure 

compared to uniform grid points (Ng et al. 2009). 

Chebyshev-Gauss-Lobatto points for a two dimensional 

setting 10 1x   and 20 1,x   are given by 
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(12) 

 

3.1 Static bending 
 

For a rectangular FGM micro-plate under static loading, 

unknown generalized displacement vector d is defined as 

follows 

          
1 2

T
T T T T T

1 2,  ,  ,  ,  ,

   for  1,  2,  ...,  ,

p p p p p

x x

u v w

p N N

 

 

d  (13) 

where        1,  ,  ,  p p p pu v w   and  2p  are 
unknown vectors with 

1 2x xN N  elements. Eliminating 
in-plane forces and the terms including time derivatives; 
and utilizing DQM, governing equations and boundary 
conditions are recast into the following matrix form 

, Dd Q 0  (14) 

in which D  is coefficient matrix associated with grid 

points, and Q  is forcing vector resulting from distributed 

loading. 
 

3.2 Free vibrations 
 

In free vibration analysis, all external forces are equated 

to zero. Dynamic displacement vector is defined by 

ie ,td d  (15) 

where   represents natural frequency and *
d  is mode 

shape vector expressed as 

          
1 2

T
T T T T T

* * * * * *
1 2, , , , ,

   for  1,  2,  ...,  .

p p p p p

x x

u v w

p N N

 

 

d
 (16) 

Substitution of Eq. (15) into governing equations leads 

to 

2 ,    e i i
b dD d D d Md 0  (17) 

where e
d  and i

d  are dynamic displacement vectors for 

boundary and internal points, respectively; bD  and dD  

are coefficient matrices associated with boundary and 

internal points; and M  is mass matrix. Using Eq. (15) and 

boundary conditions one finds 

.  e i
b dB d B d 0  (18) 

bB  and dB  are coefficient matrices obtained from 

boundary conditions associated with boundary and internal 

points, respectively. Combining Eqs. (17) and (18), we 

derive the eigenvalue problem 

   .  2 i
K - M d 0  (19) 

K  here is stiffness matrix given by 

1 .  b b d dK D B B D  (20) 

 

3.3 Buckling 
 

In buckling analysis, we considered equiaxial loading 

and set 
1 2

.x xP P P   Thus, buckling forces acting in x1 

and x2 directions are the only external forces imposed on the 

micro-plate. Similar to the vibration formulation, buckling 

solution procedure leads to an eigenvalue problem. 

However, instead of mass matrix M , a coefficient matrix 

X is generated from the derivative terms 2 2
1w x   and 

2 2
2 .w x   The eigenvalue problem is derived in the 

following form 

  b- Χ  0.P  i
K d  (21) 

The eigenvalue P computed from Eq. (21) is the critical 

buckling load of the rectangular FGM micro-plate, and b
i

d  

is mode shape vector for internal points. 

 

 

4. Numerical results 
 

The functionally graded rectangular micro-plate is 

assumed to be simply-supported in numerical analyses. 

General geometry of the micro-plate is shown in Fig. 1. 

Boundary conditions to be satisfied by the simply-supported 
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plate are as follows: 

1 0,  :x a  

2
1

22
1 11

0,
u w

v w
x xx




 
     

 
 (22a) 

2
1

1 1 1

0,    0,    0,    0,    0,
v w

u
x x x




 
    

  
 (22b) 

2 0,  :x b  

2
2

12
2 22

0,
v w

u w
x xx




 
     
 

 (22c) 

1
2

2 2 2

0,    0,    0,    0,    0.
u w

v
x x x




 
    

  
 (22d) 

Boundary conditions are implemented similar to the 

implementation of boundary conditions in beams. If more 

than one condition is defined on a boundary, in order to 

implement the other boundary conditions, the closest grid 

points are used. For instance, for simply supported micro-

plates, the boundary conditions are given in Eq. (22), where 

for w , three conditions are defined based on w , its first 

derivative / kw x   and its second derivative 2 2/ kw x  . 

Boundary condition for w  is implemented on the outer 

grid points designated by red color in Fig. 2. In order to 

implement the boundary condition for / kw x   and 

2 2/ kw x  , grid points shown by green and blue colors are 

used, respectively. However, as one moves from the outer 

edges of the boundary to the inner edges, the number of 

grid points decreases by 8 at each step. Therefore, after the 

implementation of derivative boundary conditions, 

8+16=24 boundary equations are missing. In order to fully 

implement the boundary conditions, required number of 

equations are employed on the orange grid points. However, 

it should be noted that / kw x  , and 2 2/ kw x  for 1,2k   

are automatically determined for corner points on the outer 

edges because 0w   on all grid points shown by red 

color. Therefore, it is not required to implement conditions 

related with derivatives of w  for corner points indicated 

by red dots. Hence, 4+12=16 boundary equations are 

defined by using 16 grid points on the orange boundary 

edge. 

All mechanical properties, including the length scale 

parameters, are taken as functions of the thickness 

coordinate 3.x  The plate is 100% metal at 3 2x h   

and 100% ceramic at 3 2.x h  Volume fractions of the 

constituent phases are expressed as 

   33 ,        0.5 / 1.   
n

c c mV x h Vx V     (23) 

Subscripts c and m stand for ceramic and metallic 

components, respectively; and n is volume fraction 

exponent. Material properties are represented as follows 

     3 3 3 ,c c m mE x E V x E V x   (24a) 

Table 1 Comparisons of the dimensionless deflection 

(wmax/h) for a homogeneous micro-plate, ν = 0.3, b/a = 1.0, 

q = 1000 N/m2 

a/h  
h/l 

1.0 2.0 5.0 

10 
Present 3.3427E-5 8.0393E-5 2.0811E-4 

Ansari et al. (2015) 3.3211E-5 8.0250E-5 2.0834E-4 

50 
Present 0.0125 0.0412 0.1209 

Ansari et al. (2015) 0.0125 0.0413 0.1212 

 

 

Fig. 3 Dimensionless maximum deflection, l = 15 μm, l/h = 

0.4, a/h = 10, b/a = 1.0, β = 2.0, q = 1 N/m2 

 

 

     3 3 3 ,c c m mx V x V x     (24b) 

     3 3 3 ,c c m mx V x V x     (24c) 

     3 3 3 ,    0,  1,  2,
c mi i c i ml x l V x l V x i    (24d) 

where E is modulus of elasticity,   is Poisson’s ratio,   

is density, and ,il   0,1,2 ,i   are length scale parameters 

of strain gradient theory. The particular metallic and 

ceramic materials considered in computations are aluminum 

(Al) and silicon carbide (SiC) for which material properties 

are given as (Eshraghi et al. 2016) 

427 GPa,   70 GPa,c mE E   (25a) 

0.17,    0.3,c m    (25b) 

3 33100 kg/m ,    2702 kg/m .c m    (25c) 

Since there is not sufficient characterization data in the 

literature on length scale parameters, approximate values 

are used for functionally graded small-scale structures 

(Gholami and Ansari 2016, Sahmani and Ansari 2013). In 

the present study, length scale parameters of the metallic 

phase are taken as 0 1 2 15 m;
m m m

l l l l      and those of 

the ceramic component are defined as 0 1 2 ,
c c c

l l l l    

where   is length scale parameter ratio. Note that when  

n

0 1 2 3 4 5 6

w

0,0

0,2

0,4

0,6

KPT

MPT

TSDT
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Fig. 4 Dimensionless maximum deflection, l = 15 μm, l/h = 

0.4, a/h = 10, b/a = 1.0, q = 1 N/m2 

 

 

Fig. 5 Dimensionless maximum deflection, h = 25 μm, a/h 

= 10, b/a = 1.0, β = 2.0, q = 1 N/m2 

 

 

1,   length scale parameters are constant within the 

micro-plate. Any positive   value other than unity 

implies spatial length scale parameter variations. 

 

4.1 Static bending 
 

In order to be able to verify the developed procedures, 

we first present some comparisons to the static bending 

results provided by Ansari et al. (2015). Table 1 tabulates 

comparisons regarding normalized maximum deflection 

max ,w h  of a simply-supported homogeneous micro-plate 

under uniform loading q. Maximum deflection occurs at the 

mid-point of the simply-supported plate. Material properties 

are given by 

3

0 1 2

1.44 GPa,   1220 kg/m ,

17.6 m.

E

l l l l





 

   
 (26) 

The results are generated in accordance with Mindlin 

plate theory. The excellent agreement between the 

deflections is indicative of the high degree of accuracy 

attained by the application of the developed procedures. 

Fig. 3 shows dimensionless maximum deflection w  

for a functionally graded simply-supported micro-plate  

 

Fig. 6 First dimensionless transverse natural frequency, l = 

15 μm, l/h = 0.4, a/h = 10, b/a=1.0, β=2.0 

 

Table 2 Comparisons of the first natural frequency 1  (in 

MHz) for a homogeneous micro-plate, ν = 0.38, a/h = 10, 

b/a = 1.0 

 

h/l 

1.0 1.5 2.0 5.0 10 

Present 1.7107 0.8889 0.5564 0.1421 0.0618 

Ansari et al. (2015) 1.7094 0.8887 0.5564 0.1420 0.0617 

 

 

subjected to uniform loading q = 1 N/m2. Normalized 

deflection is defined by 

3

max 4

100
.mE h

w w
qa

  (27) 

w  is plotted with respect to power function exponent n 

for three different plate theories. When n = 1, all material 

variation profiles are linear. The plate is metal-rich for n > 

1, and ceramic-rich if n < 1. Mid-point deflection is found 

to be an increasing function of the exponent n. This is the 

expected result since for larger n the plate is metal-rich, and 

elastic modulus of the metallic component is much smaller 

than that of ceramic component. Deflection profiles found 

in accordance with Kirchhoff plate theory and third-order 

shear deformation theory are close to each other, whereas 

MPT overestimates the micro-plate deflection. Further 

results generated for static bending presented in Figs. 4 and 

5 are calculated by considering TSDT.  

Fig. 4 illustrates influence of the length scale parameter 

variation upon the static bending behavior. Normalized 

maximum plate deflection is plotted as a function of the 

exponent n for four different values of the length scale 

parameter ratio .  Note that when 1,   all length scale 

parameters of the strain gradient theory are constant, while 

any value other than unity implies through-the-thickness 

variations for these parameters. Maximum micro-plate 

deflection w  decreases as the ratio   is varied from 1/2 

to 4. Impact of   upon static bending behavior underlines 

the importance of inclusion of length scale parameter 

variations in the formulation of micro-scale structural 

problems. Fig. 5 depicts variations of the maximum  

n

0 1 2 3 4 5 6

w

0,0

0,2

0,4

0,6

0,8

1,0

1,2

l/h

0,0 0,2 0,4 0,6 0,8 1,0 1,2

w

0,0

0,5

1,0

1,5

2,0

2,5

n = 1/2

n = 1.0

n = 2.0

n = 4.0

n
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0
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Table 3 Dominant modes and corresponding frequencies, l 

= 15 μm, l/h = 0.4, a/h = 10, b/a = 1.0, n = 2.0 

β=1/2 β=4.0 

  Dominant Mode   Dominant Mode 

14,0703 Transverse w, mode 1 33,7745 Axial, mode 1 

32,6332 Axial, mode 1 33,7745 Axial, mode 1 

32,6332 Axial, mode 1 41,4124 Transverse w, mode 1 

33,7162 Transverse w, mode 2 48,8784 Axial, mode 2 

33,7162 Transverse w, mode 2 74,6516 Axial, mode 3 

45,6546 Axial, mode 2 74,6516 Axial, mode 3 

52,0493 Transverse w, mode 3 82,6270 Axial, mode 4 

63,6646 Transverse w, mode 4 85,4552 Axial, mode 5 

63,6646 Transverse w, mode 4 85,4552 Axial, mode 5 

65,8387 Axial, mode 3 99,8940 Transverse w, mode 2 

 

 
(a) 

 
(b) 

Fig. 7 Dominant transverse mode shapes: (a) Transverse 

mode 1 (w); (b) transverse mode 2 (w). l = 15 μm, l/h = 0.4, 

a/h = 10, b/a = 1.0, n = 2.0, β = 2.0 

 

 

deflection with respect to the normalized length scale 

parameter ,l h  where l is length scale parameter of the 

metallic component. The curves are plotted for four 

different values of the exponent .n  Maximum normalized 

deflection decreases as l h  is increased from 0 to 1.2. 

Reduction in the deflection is due to size effect, which is 

more prominent when h is close to l. As l h  approaches  

 

Fig. 8 First dimensionless transverse natural frequency l = 

15 μm, l/h = 0.4, a/h = 10, b/a = 1.0 

 

 

Fig. 9 Dimensionless critical buckling load, l = 15 μm, l/h = 

0.4, a/h = 10, b/a = 1.0 

 

 

zero, size effect weakens and this causes considerably larger 

deflections. 

 

4.2 Free vibrations 
 

In order to verify free vibration analysis techniques, in 

Table 2 we compare first natural frequencies of a simply-

supported homogeneous micro-plate to the frequencies 

given by Ansari et al. (2015). Material properties are same 

as those given by Eq. (26), and MPT is used in analyses. 

Natural frequencies computed are found to be in excellent 

agreement. 

Figs. 6-8 and Table 3 present our results regarding free 

vibrations of functionally graded rectangular micro-plates. 

Dimensionless natural frequency in this set of results is 

defined as 

2

/ .m m

a
E

h
    (28) 

Fig. 6 shows first dimensionless transverse natural 

frequency as a function of the exponent n for three different 

plate theories. Dimensionless frequency is found to be a 

decreasing function of n. Therefore, ceramic-rich micro-

plates possess higher natural frequencies compared to  
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Fig. 10 Dimensionless critical buckling load, h = 25 μm, a/h 

= 10, b/a = 1.0, β = 2.0 

 

 

metal-rich plates. Frequencies found in accordance with 

KPT and TSDT are in close agreement. MPT slightly 

underestimates the natural frequency. Remaining parametric 

analyses on free vibrations are thus carried out in 

accordance with TSDT. 

Table 3 tabulates first ten dimensionless natural 

frequencies computed for length scale parameter ratios β = 

1/2 and β = 4. The table also lists dominant mode of 

vibration at each frequency. The dominant mode is 

determined by comparing axial (u and v), transverse (w) and 

rotational ( 1  and 2 ) mode shapes. Transverse vibration 

mode shapes of a simply-supported FGM micro-plate are 

illustrated in Fig. 7. The frequencies at which rotational 

vibration is dominant are generally the higher frequencies. 

Examining Table 3, it is seen that dominant mode of 

vibration strongly depends upon the length scale parameter 

ratio .  Fig. 8 depicts variation of the first dimensionless 

transverse natural frequency 1  with respect to n, for four 

different values of the length scale parameter ratio β. 

Increase in β causes a notable rise in the first dimensionless 

frequency. Thus, the micro-plate behaves in a stiffer manner 

for larger values of the length scale parameter ratio. 

Influence of β on vibration behavior is another finding 

illustrating the need to account for length scale parameter 

variation in structural analysis of micro-scale components. 

 

4.3 Buckling 
 

Numerical results regarding critical buckling loads of 

functionally graded rectangular micro-plates are provided in 

Figs. 9 and 10. For biaxial buckling, dimensionless critical 

buckling load is expressed in the form 

2

3
.

m

Pa
P

E h
  (29) 

The results provided are generated by TSDT. Fig. 9 

shows n-variation of the buckling load for four different 

values of the length scale parameter ratio β. Buckling load 

is highly sensitive to the changes in the length scale 

parameter ratio. It rises significantly as β is increased from 

1/2 to 4. Fig. 10 presents variation of critical buckling load 

with respect to l/h for four different values of n. This figure 

is illustrative of the size effect in that it shows that critical 

load computed for larger l/h is considerably larger than that 

evaluated for macro-scale plates for which l/h tends to zero. 

 

 

5. Conclusions 
 

In this article, we present new strain gradient elasticity-

based analysis procedures for static bending, free 

vibrations, and buckling of functionally graded rectangular 

micro-plates. Proposed methods allow consideration of 

spatial variations of the length scale parameters. Analyses 

carried out in accordance with three different plate theories 

indicate that results found by Kirchhoff and third-order 

shear deformation theories are in very good agreement. 

Mindlin plate theory however slightly overestimates plate 

deflection, and underestimates free vibration frequency. 

Thus, third-order shear deformation theory could be used in 

micro-plate analysis because of higher-order variation of 

displacement field. Developed model allows assessment of 

micro-plate behavior for different types of FGM 

composition profiles. This is accomplished by changing the 

power function exponent n. It is numerically shown that 

ceramic-rich FGM micro-plates have lower static deflection 

and higher natural frequency compared to metal-rich plates. 

The figures displaying static deflection and buckling load as 

a function of l/h are illustrative of size effect. This effect 

becomes highly notable as l/h gets larger. Classical 

continuum theories are applicable at the other end of the 

spectrum, i.e. when l/h tends to zero. Length scale 

parameter ratio β identifies the degree of spatial variations 

of the length scale parameters. The ratio β is shown to have 

a significant impact on static deflection, vibration 

frequency, and buckling load of a rectangular FGM micro-

plate. A rise in β leads to a drop in dimensionless maximum 

deflection, and increases in dimensionless vibration 

frequency and buckling load. Hence, sufficiently accurate 

results can be generated only if spatial variations of the 

length scale parameters are taken into account in the 

formulation of the relevant problem.  

As part of future research activities, the developed 

procedures can be extended to examine mechanical 

behavior of micro-scale plates under different loading and 

environmental conditions. Thermal strains can be included 

in the formulation to analyze the response of micro-plates 

subjected to temperature gradients. Effect of time-

dependent loads, such as harmonic, step, and impulsive 

forces, can be revealed by means of forced vibration 

analysis. Building the formulation of the problem on 

different non-classical theories such as modified couple 

stress theory, which employs a single length scale 

parameter; and nonlocal elasticity, which addresses nano-

scale problems, could also be considered as an alternative 

venue for future work. 
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